“22nd PSCC 2022 papers submission and review platform

Full Program »

Decentralized Safe Reinforcement Learning for Inverter-Based Voltage Control

View File
PDF
7.8MB

Inverter-based distributed energy resources provide the possibility for fast time-scale voltage control by quickly adjusting their reactive power. The power-electronic interfaces allow these resources to realize almost arbitrary control law, but designing these decentralized controllers is nontrivial. Rein- forcement learning (RL) approaches are becoming increasingly popular to search for policy parameterized by neural networks. It is difficult, however, to enforce that the learned controllers are safe, in the sense that they may introduce instabilities into the system.
This paper proposes a safe learning approach for voltage control. We prove that the system is guaranteed to be exponentially stable if each controller satisfies certain Lipschitz constraints. The set of Lipschitz bound is optimized to enlarge the search space for neural network controllers. We explicitly engineer the structure of neural network controllers such that they satisfy the Lipschitz constraints by design. A decentralized RL framework is constructed to train local neural network controller at each bus in a model-free setting.

Author(s):

Wenqi Cui    
University of Washington
United States

Jiayi Li    
University of Washington
United States

Baosen Zhang    
University of Washington
United States

 

Powered by OpenConf®
Copyright ©2002-2014 Zakon Group LLC