Non-cooperative Games to Control Learned Inverter Dynamics of Distributed Energy Resources

Paul Serna-Torrea,b, Vishal Shenoyc, David Schoenwaldd, Jorge I. Povedae, and Patricia Hidalgo-Gonzaleza,b,c

a Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, United States
b Center for Energy Research, University of California, San Diego, CA 92093, United States
c Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States
d Sandia National Laboratories, Albuquerque, NM 87185, USA
e \{psernatorre, vshenoy, poveda, phidalgogonzalez\}@ucsd.edu, daschoe@sandia.gov

Abstract—We propose a control scheme via a non-cooperative linear quadratic differential game to coordinate the inverter dynamics of Distributed Energy Resources (DERs) in a microgrid (MG). The MG can provide regulation services in support to the upper-level grid, in addition to serving its own load. The control scheme is designed for the MG to track a power reference, while each DER seeks to minimize its individual cost function subject to learned inverter dynamics and load perturbations. We use a nonlinear high-fidelity model developed by Sandia National Laboratories to learn inverter dynamics. We determine a Nash strategy for the DERs that uses state estimation of a Loop Transfer Recovery. Results show that the control scheme enables savings up to 9.3 to 208 times in the DERs objective cost functions and a time-domain response with no oscillations with up to 3 times faster settling times relative to using droop and PI control.

Index Terms—Ancillary services, control of voltage-source inverters, learned inverter dynamics, non-cooperative differential game, smart grid.

I. INTRODUCTION

Distributed Energy Resources (DERs) can be harnessed to tackle local operational issues such as voltage and frequency fluctuations in a microgrid (MG) or in a distribution grid [1], [2]. In addition to addressing local issues, they can also assist the upper-level grid, e.g., the transmission grid, in solving operational challenges.

Although DERs are geographically dispersed and belong to different owners, they can be coordinated to work as a Virtual Power Plant (VPP) [3] to provide regulation services in support to the upper-level grid operation [4], [5], [6]. Indeed, governments are increasingly fostering the integration of DERs in microgrids into ancillary service markets for the provision of regulation services to the transmission grid at the system operator’s request [7].

A body of work on the control of DERs for the provision of regulation services has been proposed from the optimization perspective. For instance, the work in [8] proposes an online algorithm that drives DERs’ power outputs so that the net power delivered from the distribution grid to the transmission grid tracks a power reference. This online algorithm is based on an AC Optimal Power Flow formulation using primal-dual-gradient methods in which the distribution grid pursues the optimal trajectory while satisfying the power reference tracking. In [9], the authors develop a bidding strategy for a VPP in which the customer load is satisfied and simultaneously the VPP is able to sell load-following ancillary services to Western Australian grid. The work in [10] proposes a linear programming model to maximize the profit of a DER aggregator by controlling the charge of electric vehicles (EVs) and by providing day-ahead reserve services to the transmission grid or other stakeholders. For further references on this topic the reader may refer to [11], [12], [13].

While optimization-based methods hold promise for online implementation and fast computation, these approaches rely on optimizing global economic satisfaction for both the operator and DERs. This approach can disregard the fact that DERs belong to different owners who may be selfish and seek to optimize their individual economic interests. One way to address this limitation is by using non-cooperative game theory to coordinate DERs to provide regulation services. In fact, the extensive survey in [14] remarks that non-cooperative games, among other game-theoretic approaches, is the most widely used coordination method (in academia) for demand response and DERs in electricity markets. The works in [15], [16] propose game theoretic-based frameworks to coordinate the charging/discharging power of EVs such that the EVs’ aggregators can trade that amount of energy with the upper-level grid to support frequency regulation. For a more complete literature review on the coordination of DERs to provide ancillary services using Game Theory, we refer the reader to [17], [18]. Moreover, for local regulation services, the work in [19] develops a Nash equilibrium-based control scheme to coordinate DERs in an islanded MG to bring frequency deviations back to zero. The authors of [20] propose a non-cooperative differential game control scheme to steer the state
of a MG to nominal operating conditions by controlling the input impedance of storage units.

However, to the best of our knowledge, non-cooperative game-based work for control of DERs does not: (i) consider nonlinear high-fidelity dynamics of the voltage-source inverter (VSI) with its associated control loops, or (ii) implements the resulting controllers in a grid with VSIs.

The increasing deployment of DERs opens the question on how to coordinate DERs for the provision of regulation services to the upper-level grid considering nonlinear high-fidelity dynamics of VSIs. To the best of our knowledge, there is no previous work addressing this challenge from a non-cooperative game theory perspective.

II. CONTRIBUTIONS

The contributions of this work are:

- To propose, for the first time, a non-cooperative game framework that incorporates learned VSI dynamics of DERs from a nonlinear high-fidelity model to represent their participation in a VPP to meet regulation services in support to the upper-level grid. We illustrate this framework in the context of regulating real power injections.
- To show the cost effectiveness and time-domain performance of our proposed control scheme compared with classic control techniques such as droop control and proportional-integral (PI) control.
- To provide guidelines to the system operators to develop and implement non-cooperative differential games that incorporate VSI dynamics.

III. PROBLEM FORMULATION

A. Overview

We consider a MG that consists of photovoltaic (PV) panels, Battery Electricity Storage Systems (BESS), loads, and a connection with the upper-level grid. The control scheme we propose consists of a controller for each DER to steer the VSI using dq-frame control loop dynamics. This control scheme enables the MG to provide a regulation service for the upper-level grid. This regulation service consists of a power reference invariant state-space representation models the VSI-based DER dynamics, which is a design choice.

First, we formulate a state-space representation of the MG that groups the learned VSI dynamics of DERs and a compensator. The compensator models the tracking error dynamics of the MG’s power output relative to the power reference. We use system identification (SI) to learn transfer functions from a high-fidelity model of each DER considering its VSI dynamics using a dq-frame control loop.

Second, we design a control scheme for DERs via a non-cooperative linear quadratic differential game. Under this approach, each DER seeks to minimize its individual linear quadratic cost subject to the MG’s state-space representation.

Third, we find the Nash equilibrium of the non-cooperative game, and then, we determine the state feedback control for each DER. Since all the states of each DER are not accessible, we use Loop Transfer Recovery for each DER that estimates all DER’s state. We feed the DERs’ estimated states and the dynamic compensator’s states into the controller of each DER.

 Fourth, we validate the control scheme by checking parity in cost solutions and simulation performance of: (i) the MG’s state-space representation that has learned DERs dynamics, and the three-phase MG with high-fidelity DERs dynamics. Each high-fidelity DER model has a VSI and uses a dq-frame control loop, which was designed in [21], [22], [23] by Sandia National Laboratories.

Lastly, we compare the cost effectiveness and time-domain performance of the control scheme we propose against the classical droop control and PI control across a set of MGs with different numbers of DERs.

B. Assumptions

In this work, we assume that the MG connects with the upper-level grid which imposes frequency and voltage at nominal values at the point of connection. The DERs engaged in the provision of regulation service communicate complete information about their states to each other. The matrix pair \((A_i, B_i) \) of the state-space realization of each DER is controllable, which is a design choice.

C. Control Scheme Design

1) Learned voltage source inverter (VSI) dynamics: In this work, we assume a PV panel or BESS that uses a dq-frame control loop for its VSI that regulates the DER’s active/reactive power output according to a reference input [24].

We use SI to represent the dynamics of the VSI and its dq control loop into one dynamical system for each DER. SI is a method that identifies the transfer function of a dynamical system from observed input-output data [25]. We use the SI approach under a non-linear least squares with automatic line search method to learn the dynamics of each DER instead of deriving its full white-box model because: (i) DERs’ owners may not disclose the full model of their DER due to privacy concerns, and (ii) each DER may contain multiple control loops resulting in a state-space representation with high computational complexity.

2) Virtual power plant and compensator: A learned time-invariant state-space representation models the VSI-based DER dynamics. In this learned model generated by SI, the state \(x_i(t) \in \mathbb{R}^d \) does not necessarily represent physical quantities. The i-th DER can regulate its active power output \(y_i(t) \in \mathbb{R} \) by regulating the control input \(u_i(t) \in \mathbb{R} \). From here onwards we will drop the explicit dependence with time \(t \) when it can be inferred from the context, e.g., in our notation \(x_i(t) \) is equivalent to \(x_i \). The dynamics of each DER are expressed as follows

\[
\dot{x}_i = A_ix_i + B_iu_i \quad (1)
\]

\[
y_i = C_ix_i \quad (2)
\]

where \(A_i \in \mathbb{R}^{d \times d}, B_i \in \mathbb{R}^{d \times 1}, C_i \in \mathbb{R}^{1 \times d} \). The DERs are connected in parallel to a single bus in the MG. Fig. 1 illustrates a MG with two DERs and a load. In this way, the
state-space representation of the VPP (augmented dynamics) that groups the DERs can be expressed as
\[
\begin{bmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_N
\end{bmatrix} =
\begin{bmatrix}
A_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & A_N
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_N
\end{bmatrix} +
\begin{bmatrix}
B_1 \\
\vdots \\
B_N
\end{bmatrix}
\begin{bmatrix}
u_1 \\
\vdots \\
u_N
\end{bmatrix}
\]
where \(N \) is the number of DERs in the MG. In a more compact form, the state-space representation of the VPP is denoted by
\[
\begin{align*}
\dot{x} &= Ax + Bu, \\
y &= Cx,
\end{align*}
\]
where \(x = [x_1 \ldots x_N]^T \in \mathbb{R}^{N \times d} \), \(A \), \(B \) and \(C \) are the corresponding block matrices from (3) and (4). In (6), \(y(t) \) is the active power output of the VPP. Since a load, \(d(t) \in \mathbb{R} \), is connected to the MG, the net power delivered to the upper-level grid is \(y(t) - d(t) \).

We represent the power reference of the regulation service by \(p_{\text{req}}(t) \in \mathbb{R} \). In this regulation service, the MG’s power delivered to the upper grid \(y(t) - d(t) \) must track the requested power \(p_{\text{req}}(t) \). Equivalently, the VPP’s power generation \(y(t) \) must track the reference \(r(t) = p_{\text{req}}(t) + d(t) \).

In order for the MG to comply with the power regulation service, we propose a compensator of the form
\[
\begin{align*}
\dot{w} &= Hv + Ge, \\
v &= Dw,
\end{align*}
\]
where \(w(t), v(t) \in \mathbb{R} \), and \(e(t) \) represents the tracking error of \(y(t) \) with respect to \(r(t) \) defined as follows
\[
e(t) := r(t) - y(t) = r(t) - Cx(t).
\]
The matrices \(H, G, \) and \(D \in \mathbb{R} \) are chosen according to the desired structure of the compensator. Using (5)-(9), the augmented state-space representation that includes the dynamics of the VPP and compensator can be written as
\[
\begin{align*}
\dot{x} &= Ax + Bu, \\
y &= Cx,
\end{align*}
\]
where \(\bar{x}, \bar{w}, \) and \(\bar{v} \) are the states achieved when the tracking error \(e(t) \) becomes zero. In the same manner, we express \(\bar{e}(t) \) as follows
\[
\bar{e}(t) = e(t) - e_{\text{ss}} = r(t) - Cx(t) - (r(t) - Cx_{\text{ss}}) = -C\bar{x}(t).
\]

Using (12) - (14) and similarly defining \(\bar{u}(t), \bar{y}(t) \) and \(\bar{r}(t) \), we construct the state-space representation of the augmented system in deviation form as follows
\[
\begin{align*}
\dot{\bar{x}} &= \bar{A}\bar{x} + \bar{B}_1 \ldots \bar{B}_N \bar{u}, \\
\bar{y} &= \bar{C}\bar{x},
\end{align*}
\]
where \(\bar{A} = \begin{bmatrix} A & 0 \\ -GC & H \end{bmatrix}, \bar{B}_i = \begin{bmatrix} 0 & \ldots & B_i & \ldots & 0 \end{bmatrix}^T \), and \(\bar{C} = \begin{bmatrix} C \\ 0 \end{bmatrix} \).

We also note that when the original augmented system (10) - (11) begins to track an input reference \(\bar{r}(t) \), its corresponding deviation system (15) - (16) is out of the equilibrium since \(x(t_0) - x_{ss} \neq 0 \) and \(w(t_0) - w_{ss} \neq 0 \). Finally, when the tracking error is zero at \(t_0 \), then \(\bar{x}(t_0) = x(t_0) - x_{ss} = 0 \) and \(\bar{w}(t_0) = w(t_0) - w_{ss} = 0 \) which indicates that the deviation system is at the origin. Therefore, a tracker problem for the augmented system is actually equivalent to a regulator problem for its corresponding deviation system [26].

4) Non-cooperative linear quadratic differential game for DER coordination: We consider DERs that belong to different owners, i.e., players, such that each DER seeks to minimize its individual linear quadratic cost \(J_i(\bar{x}_0, \bar{w}_0, \bar{u}) \) during the power regulation service. This cost is given by
\[
J_i(\bar{x}_0, \bar{w}_0, \bar{u}) = \int_{t_0}^{\infty} \left\{ \bar{x}^T \bar{w}_0 Q_i \bar{x} + \bar{u}^T R_i \bar{u} \right\} dt,
\]
where \(\bar{x}_0 \) is the DER’s deviation state vector (12) at \(t_0 \), \(\bar{w}_0 \) is the compensator’s deviation state (13) at \(t_0 \), and \(\bar{u} \) is the strategy that steers \([\bar{x} \bar{w}]^T \) to the origin.

We highlight that the individual cost of the \(i \)-th DER (17) is affected not only by its own strategy \(\bar{u}_i \), but it is also implicitly affected by the strategies of the other DERs that participate in...
the regulation service because it considers all the states. The matrices $Q_i = Q_i^T \geq 0$ and $R_i \geq 0$ are the state weighting matrix and the control weighting matrix, respectively.

We can reformulate the individual cost of the i-th DER (17) to make it easy to interpret by expressing Q_i as follows:

$$Q_i = \begin{bmatrix} q_{i,1} C_1^T C_i & \cdots & q_{i,N} C_N^T C_i \\
\vdots & \ddots & \vdots \\
q_{i,1} C_1^T C_1 & \cdots & q_{i,N} C_N^T C_N \\
\end{bmatrix}$$

where C_i is the output matrix of the state-space representation of the i-th DER (2), and $q_{i,1}, \ldots, q_{i,N} \in \mathbb{R}$ are factors chosen by the i-th DER. Using (18) and (17) we obtain

$$J_i(x_0, \bar{w}_0, \bar{u}) = \int_{t_0}^{\infty} \left\{ \sum_{j=1}^{N} q_j \hat{y}_j^2 + p_w \bar{w}^2 + \hat{u_i}^T R_i \hat{u_i} \right\} dt.$$ \hspace{1cm} (19)

Each DER i adjusts its factors $\{q_{i,1}, \ldots, q_{i,N}\}$ according to its incentive to penalize the departure of the power output vector y away from the vector y_{ss}. The factor $q_{i,w}$ reflects the incentive of the DER to take a high share of power in the provision of the regulation service. If the DER i sets $q_{i,w}$ to a high value, its power share in the power regulation service may be less than other DERs that set the factor to lower values.

On the other hand, R_i reflects the cost that the i-th DER assigns to its available energy for the power regulation service. A high value of R_i means that the DER i regards its energy source, e.g., solar energy, as expensive for the power regulation service.

The non-cooperative game consists of the minimization of the individual linear quadratic cost (17) for $i = \{1, \ldots, N\}$, subject to the dynamical system described in (15) - (16). Each DER employs a linear feedback strategy given by

$$\hat{u}_i = [K_i \ F_i] \ \begin{bmatrix} x \\
\bar{w} \end{bmatrix}$$

where $K_i \in \mathbb{R}^{1 \times N \cdot d}$, and $F_i \in \mathbb{R}$. Using (12) and (13), we can express the control strategy as a function of the states $x(t)$ and $w(t)$ as follows

$$u_i - u_{ss} = [K_i \ F_i] \ \begin{bmatrix} x - x_{ss} \\
\bar{w} - \bar{w}_{ss} \end{bmatrix}$$

$$u_i = [K_i \ F_i] \ \begin{bmatrix} x \\
\bar{w} \end{bmatrix}$$

The set of feedback strategies $\{u_1, \ldots, u_N\}$ is admissible if the eigenvalues of the closed-loop system are in the left half-plane. A necessary and sufficient condition for this set to not be empty is that $(A, [B_1 \ \ldots \ B_N])$ is stabilizable [27], [28].

We determine the set of admissible strategies $\{u_1, \ldots, u_N\}$ of the form (22) using the concept of Nash equilibrium [29], which requires the equilibrium strategies \bar{u}_i to satisfy the following inequality

$$J_i(x_0, \bar{w}_0, \bar{u}) \leq J_i(x_0, \bar{w}_0, \bar{u}_{-i})$$

for $i = \{1, 2, \ldots, N\}$, where $\bar{u}^* = [\bar{u}_1^* \ \ldots \ \bar{u}_N^*]$, and $\bar{u}_{-i} = [\bar{u}_1^* \ \ldots \ \bar{u}_{i-1}^* \ \bar{u}_{i+1}^* \ \ldots \ \bar{u}_N^*]$. Inequality (23) means no DER can improve its optimal individual cost, $J_i(x_0, \bar{w}_0, \bar{u}^*)$, by a unilateral deviation from its equilibrium strategy \bar{u}_i. As [30] indicates, the Nash strategy for player i can be explicitly computed to be

$$u_i = -R_i^{-1} B_i F_i \ \begin{bmatrix} x \\
\bar{w} \end{bmatrix}$$

(24)
for $i = \{1,...,N\}$, where the matrices P_i are the symmetric stabilizing solution of the coupled Algebraic Riccati equations:

$$
\begin{align*}
(A - \sum_{j \neq i}^{N} S_j P_j) P_i + P_i \left(A - \sum_{j \neq i}^{N} S_j P_j\right) - P_i S_i P_i + Q_i &= 0 \\
&\text{for } i = \{1,...,N\}, \text{where: } S_i = \bar{B}_i R_i^{-1} \bar{B}_i^\top
\end{align*}
$$

Moreover, the optimal cost solution of DER i in the Nash equilibrium is given by

$$
J_i(\bar{x}_0, \bar{w}_0, \bar{u}^*) = \begin{bmatrix} \bar{x}_0 & 0 \end{bmatrix}^\top P_i \begin{bmatrix} \bar{x}_0 \\ 0 \end{bmatrix}.
$$

We remark that the Nash strategy (24) steers the deviation state $[\bar{x} \hspace{1mm} \bar{w}]^\top$ to the origin. Due to the equivalence of the regulator problem and the tracker problem that we explain in Section III-C3, the Nash strategy (24) also results in $y(t)$ tracking the reference input $r(t)$. Hence, the MG complies with the power regulation service when the DERs employ the Nash strategy (24).

There have been extensive efforts [27], [31], [32], [33], [34], [35] to solve the coupled Riccati equations (25). In this work, we employ an iterative algorithm based on the reference [35]. We finds stabilizing solutions P^k_i of the iteration k of the N non-coupled Riccati equations

$$(A^k_i - \sum_{j \neq i}^{N} S_j P^k_j) P^k_i + P^k_i A^k_i - P^k_i S_i P^k_i + Q_i = 0
$$

for $i = \{1,...,N\}$. The matrices $A^k_{i-1} := \bar{A} - \sum_{j \neq i}^{N} S_j P^k_j$ are calculated using the stabilizing solutions of a previous iteration. The algorithm stops when $\sigma(A - \sum_{i=1}^{N} S_i P^k_i) \in \mathbb{C}^-$.

5) Loop Transfer Recovery (LTR) for DERs: Since the proposed controllers are state feedback controllers and the states of the DERs are inaccessible, we design a LTR for each DER to estimate the state x_i. The system parameters $[A_{Li}, B_{Li}, C_{Li}]$ of the LTR are the following

$$
\begin{align*}
A_{Li} &= A_i + \Delta A_i - L_i (C_i + \Delta C_i) \\
B_{Li} &= [B_i + \Delta B_i \hspace{1mm} L_i] \\
C_{Li} &= I_{dxd},
\end{align*}
$$

where the gain L_i is a Kalman filter gain iteratively tuned so that the closed-loop DER system loop gain using L_i approaches the loop gain using full state feedback. In this manner, despite the parameter perturbations $\Delta A_i, \Delta B_i$, and ΔC_i, the LTR can recover the robustness and performance granted by the state feedback control, which could have been lost if we had used only the Kalman filter [36]. For more details about LTR, the reader may refer to [26], [37].

IV. SIMULATIONS AND RESULTS

We implement the proposed control scheme in MATLAB/Simulink [38] and run EMT (Electromagnetic Transient) simulations with a time sampling of 10^{-3} s. We design four scenarios with different numbers of DERs in the MG. Then, we validate our results using a MG with high-fidelity DER models to determine if the control scheme we propose achieves parity with respect to optimal individual costs and performance when compared to a case where the MG has learned DER models. We perform this comparison across all four scenarios. Second, we compare the cost effectiveness and time-domain performance of three strategies across all four scenarios using high-fidelity DER models: droop control, PI control, and the control scheme we propose.

A. Scenarios description

The four scenarios correspond to 10-kV MGs with different numbers of DERs: (i) 1 PV system and 1 BESS, (ii) 1 PV system and 2 BESS, (iii) 3 PV systems and 3 BESS, (iv) 4 PV systems and 6 BESS. Fig. 1 illustrates scenario 1’s MG. The upper-level grid is a 60-Hz stiff grid. All scenarios consider different $q_{i,j} \text{ and } R_i$ for each DER. For example, in the scenario with 2 DERs, $R_1 = 1, q_{1,1} = 0.5, q_{1,2} = 0.2$ and $R_2 = 1, q_{2,1} = 0.3, q_{2,2} = 0.5$. Hence, the DERs in competition have different incentives to regulate their power injection as it is explained in Section III-C4. The scenarios simulated consider that the load has the profile shown in the bottom panel of Fig. 4, that the DERs start delivering 10 MW in total, and that the power regulation service starts at $t = 0.25$ s and ends at $t = 6$ s. The data we use to generate all the scenarios is publicly available online1.

B. High-fidelity models and learned models of DERs

We consider a high-order nonlinear PV system model and a BESS model, each has six to eight states, from the Flex-Plant Power model used in [21], [22], [23]. Both high-fidelity DER models include the following Simulink power system devices: a DC-side voltage source, an average VSI model, feed-forward compensation, and a phase-locked loop (PLL). Each DER also includes a current-control loop designed with dq-frame PI controllers and feedback compensation. The current-control loop receives a power reference input, and then generates PWM signals for VSI to regulate the active power output of the DER.

We learn the dynamics of both high-fidelity DER models using the SI toolbox of MATLAB [38] under a non-linear least squares with automatic line search method. For each DER, the training data consists of input-output timeseries that come from three step responses for six different initial operating points. We validate the learned state-space representation using unseen 18 input-output time-series that come from new step responses. Table I shows the learned state-space representation for each DER type.

As system parameters may vary in practice, we intentionally introduce perturbations (Table II) to the LTR estimator of each DER across all scenarios.

C. Implementation and validation of the control scheme

For each scenario, we compute the Nash strategies (24) using the learned DER models (Table I) and the compensator ($H = 0, G = D = 1$). We implement the resulting controllers in: (a) the MG with learned DER models and (b) the MG with high-fidelity DER models. We underline while (a) simulates

\footnote{https://github.com/REAM-lab/der-control-games}
only the control block diagram in Fig. 2, (b) simulates a three-phase MG with VSIs as we describe in Section IV-B. We simulate both implementations for each scenario and then, validate if the proposed control scheme in the MG with high-fidelity DER models results in cost solutions and time-domain performance similar to the ones we obtain using learned DER models.

Fig. 3 shows optimal individual costs $J_i(x_0, \tilde{w}_0, \tilde{u}^*)$ for each DER in each scenario for: (a) the MG with learned DER models, and (b) the MG with high-fidelity DER models. For (a), we compute $J_i(x_0, \tilde{w}_0, \tilde{u}^*)$ using the expression in (26), and for (b) we compute it using a trapezoidal integration of (17).

Fig. 3 reveals that $J_i(x_0, \tilde{w}_0, \tilde{u}^*)$ for any DER i in (b) is slightly greater than its corresponding value in (a). In fact, as more DERs are integrated into the MG, this difference increases, although only marginally from 1.98% up to 6.63%. This confirms that (b) reaches parity in optimal individual costs with (a).

The top panel of Fig. 4 shows the MG’s power output trajectory in (a) and (b). Both correspond to a MG with ten DERs using our proposed control scheme. We observe that (i) the MG’s power output tracks the power reference despite transient deviations caused by load perturbations, and (ii) the trajectory of (a) is very close to the trajectory of (b) throughout the power regulation service.

To illustrate the two previous observations, the top panel of Fig. 4 shows the real-time response in more detail. We also notice that despite the MG’s power output deviating from the power reference due to load perturbations, the proposed control scheme is able to steer it back to the reference. For instance, we see that the (a) and (b) increases from the -14-MW requested power up to -9 MW and -9.36 MW, respectively, at $t = 4.5$ s because of the sudden 8-MW load decline. Then, (a) and (b) come back to -14MW±5% at $t = 4.64$ s and $t = 4.65$ s, respectively.
D. Comparison between droop control, PI control, and the control scheme we propose

We tune the droop and PI controllers for each scenario as follows: 1) We run the simulation with the control scheme we propose, 2) we calculate a power share for each DER that results from the division of its power injection in steady-state by the total DERs’ power output, 3) we set the gains of the droop and PI to the power shares, 4) we slightly tweak the gains to reduce the steady-state error, and to try to have an overshoot less than 30% and a settling time less than 0.65 s. The latter step is the most demanding, particularly when the number of DERs increases, because more gains are simultaneously tuned with back-to-back simulations.

Table IV shows, most notably, that the proposed control scheme for a MG with one DER results in saving between 28.3 up to 209 times relative to using droop control, and between 1.3 up to 9.3 times relative to using PI control. We also note that some DERs can obtain greater savings than others under the proposed control scheme.

Table V also indicates that, despite achieving faster settling times compared to the proposed control scheme, the droop controller is always outperformed with respect to the steady-state error. In particular, the steady-state error the droop controller achieves is, at its best, 15.7%. In Fig. 5, we also observe that although the proposed control scheme does not produce any overshoot when power regulation begins at $t = 0.25$ s and the requested power changes at $t = 3$ s, it leads to greater decays (negative overshoot) compared to the PI and droop control in all scenarios whenever there is a sudden load increase and decrease at times $t = 1.5$ s and $t = 4.5$ s, respectively.

Therefore, the control scheme we propose outperforms the standard controllers (droop and PI), since it results in lower individual costs for the DERs and a better time-domain performance across the different metrics.

V. RECOMMENDATIONS FOR SYSTEM OPERATORS

A practical application of the proposed control scheme is the control of a DER-populated neighborhood for the provision of fast ancillary services. In this setting, the PV systems and BESS of the households can be coordinated by the proposed control scheme to provide power injections for a horizon of 2 - 5 seconds at the operator’s request. In this manner, the DER-populated neighborhood can improve the frequency nadir of the transmission network.

The control scheme we propose requires communication channels between the DERs to inform the full DERs’ estimated states in real time. Hence, DERs’ owners should commit to sharing the full state of their DERs during the provision of the regulation service, otherwise the control scheme may not
the matrices \(\bar{A}, \bar{B}_1, \ldots, \bar{B}_N \) to be stabilizable which is a necessary and sufficient condition for the existence of a Nash equilibrium solution for the control scheme. In the worst case, when some DERs suddenly abandon the regulation service, the feedback controller from the other DERs may still bring the tracking error to zero, which implies that the MG may still be able to comply with the power regulation. This is because the nature of the controller we propose is an integral-action type as we see using (9) and (22): \(u^*_i = K_i x + F_i w = K_i x + F_i \int (r - C x(t)) \, dt \). However, there could be capacity constraints when some DERs suddenly leave the regulation service. The power injection of the remaining DERs will increase to try to comply with the regulation service, and this event may cause overloading on the DERs. In addition, the controllers may not be able to ensure a Nash equilibrium solution anymore. In practice, to avoid these consequences, the operator should inform that the DERs that desire to participate in the regulation service should not desert in the middle of the regulation service, otherwise they would be financially penalized.

VI. CONCLUSIONS

We have introduced a novel control scheme capable of reducing individual costs for DERs and improving the time-domain performance of the MG when compared to classical control techniques like droop control and PI control. Two virtues of the proposed control scheme are that: (i) it employs learned VSI dynamics that reduce the complexity of deriving and computing the full dynamical model of DERs with \(dq \)-control schemes, and (ii) that it considers the potentially selfish nature of DERs using non-cooperative game theory and realistic DER dynamics.

The control scheme we design works in time intervals of seconds. For longer periods of control, e.g., minutes or hours, future work may focus on including energy constraints such as the state of charge of BESS, time-varying irradiance for the PV panels, and installed power rating constraints. Another future direction may be the design of a differential-game-theory-based control scheme in which the frequency is a state and the dynamics of the VSC are incorporated; in this manner, generators and VSCs will compete to restore the frequency deviation back to zero.

REFERENCES

