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Abstract—This work presents a Bayesian approach for inferring 

the capacity factor of an offshore wind farm. The calculation of 

the capacity factor depends on the power curve model and the 

probabilistic wind speed model, which in this work follows a 

Weibull distribution, whose scale and shape parameters are 

estimated using a Bayesian approach where the priors are 

independent gamma distributions, the likelihood is the Weibull 

distribution, and the posteriors are obtained by Hamiltonian 

Monte Carlo. The application of the described methodology is 

illustrated through a case study of an offshore wind power project 

located on the Northern coast of the Rio de Janeiro State, Brazil. 

Index Terms—Bayesian statistics; capacity factor; offshore wind 

projects; Weibull distribution; wind power. 

I. INTRODUCTION 

The use of wind energy to generate electricity is one of the 
main resources available to reduce dependence on fossil fuels 
that contribute to greenhouse gas emissions and global 
warming, a fundamental requirement for meeting global 
commitments with carbon neutrality by 2050. The energy 
transition towards carbon neutrality and the search for energy 
security has contributed to the rapid expansion of renewable 
energies, especially wind energy. According to the most recent 
edition of the Global Wind Report [1], in global terms, wind 
power plants installed in 2022 added about 78 GW, increasing 
installed capacity in wind power plants to 906 GW, an annual 
growth of around 9%. The expectation is that installed capacity 
will reach the 2 TW in 2030, most of which will come from the 
addition of new onshore wind farms, but the opportunities 
provided by offshore wind farms point to an important 
contribution of the latter in expanding installed capacity. 

The abundance of offshore wind resources makes possible 
the use of electrolysis to produce hydrogen without the use of 
fossil fuels, i.e., “green” hydrogen [2]. The hydrogen is 
considered a promising alternative to fossil fuels, as its 
combustion only produces water vapor and as hydrogen is a key 
input in several industries, the green hydrogen has a multiplier 
effect on decarbonizing the economy. In addition, electrolysis 
requires water and the possibility of using seawater creates a 
synergy between offshore wind and hydrogen production. 

Although electrolysis with seawater still presents some 
technological challenges to be overcome [3], offshore wind has 
attracted several investors, as illustrated by the 74 offshore 
wind farms projects with environmental licensing processes 
currently under analysis by the Brazilian Institute for the 
Environment and Renewable Natural Resources (IBAMA) and 
that add up a total installed capacity of 182 GW, a small portion 
of Brazil’s offshore wind potential of around 3 TW and 14,800 
TWh of average annual electricity production [4]. It is worth 
noting that offshore and onshore wind power potentials in 
Brazil are unlikely to be negatively impacted by global climate 
change in the future [4]-[6]. 

The offshore wind farms can span larger areas and exploit 
winds smoother and faster, free of obstacles and with more 
powerful turbines [7]. In addition, offshore wind projects are 
close to load centers - the coastal zone of Brazil concentrates 
almost a quarter of the population and activities in this range 
are responsible for approximately 20% of the Brazilian GDP 
[8]. However, the investment and operating costs of offshore 
wind farms are higher than their onshore counterparts and the 
assessment of the wind potential of offshore wind projects is 
more complex [9],[10].  

As Brazil moves towards harnessing its offshore wind 
potential, accurate capacity factor estimations will play a 
crucial role in informing investment decisions. Aiming to 
contribute to the subject, this work presents a case study where 
a Bayesian approach [11]-[14] was applied to evaluate the 
capacity factor of an offshore wind project, based on data from 
the Brazilian Wind Potential Atlas - BWPA [15], wind speed 
measurements and technical turbine parameters. Importantly, 
the methods applied in the case study is equally applicable to 
onshore wind farms.  

Furthermore, in contrast to the study in [14], which models 
the capacity factor of offshore wind farms operating in the 
United Kingdom, the methodology employed in this case study 
enables the estimation of the capacity factor for wind farms 
during the planning phase, when available measurements 
consist solely of wind speed records. Thus, this study extends 
beyond the Bayesian estimation of Weibull distribution 
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parameters [11]-[13], commonly adopted in wind speed 
modelling [16]. It's noteworthy that traditionally, wind speed 
frequency distribution modeling follows a classical statistical 
inference approach to estimate the shape and scale parameters 
of the Weibull distribution. These parameters, when combined 
with the power curve of a wind turbine, allow for the estimation 
of the capacity factor [17],[18]. 

The Bayesian approach differs from the classical paradigm 
in its ability to incorporate prior knowledge into the inference 
process, expressed through prior distributions, and combine it 
with data using Bayes' theorem. Then the Bayesian approach 
allow combine previous knowledge about the wind in the 
region where the wind power project will be sited with local 
wind speed measurements without the need for long series of 
wind speed measurements [11]. The resulting posterior 
distributions provide easily interpretable and useful results for 
assessing the risks of a wind project, such as credibility 
intervals for the capacity factor and energy production. 

This work is organized into six sections. Next, in section II, 
some basic concepts about wind energy are presented, with 
emphasis on the calculation of the capacity factor of a wind 
power project. In turn, section III presents the basic principles 
of Bayesian inference. The methodology for evaluating the 
capacity factor of a wind farm is described in section IV. The 
application of the described methodology is illustrated in 
section V through the case study of an offshore wind farm 
located on the Northern coast of the State of Rio de Janeiro, 
Brazil, next to important economic hubs [19]. Finally, the main 
conclusions of the work are presented in section VI. 

II. WIND POWER 

The relationship between the wind speed v (m/s) and the 
generated electrical power P (Watts) is determined by the 
power curve P (v) in Fig. 1, whose mathematical formulation is 
described in (1), where Cp denotes the coefficient of 
performance, ηg is the efficiency of the generator, ηm is the 
efficiency of the transmission box, ρ is the air density (kg/m3), 
A is the area swept by the rotor (m2),vcut-in, vrated and vcut-out 
represent the velocity levels of the wind (m/s), i.e., cut-in wind 
speed, rated wind speed e cut-out wind speed, respectively [18].  

 

Figure 1.  Power curve.  

The power curves can be obtained from the turbine catalogs 
provided by the manufacturers. As illustrated in Fig. 1, power 

generation starts with wind speeds above 2 or 3 m/s. The 
generated power grows with the cube of the wind speed until 
reaching the rated wind speed, whose value varies between 10 
m/s and 17 m/s, depending on the turbine model. For speeds 
above the vrated, the generated power is close to the rated power, 
but the turbine is turned off to avoid the risk of damage when 
the cut-out wind speed is exceeded, e.g., 25 m/s. 

𝑃(𝑣) =

{
 
 

 
 

0, 𝑣 ≤ 𝑣𝑐𝑢𝑡−𝑖𝑛
1

2
𝐶𝑝𝜂𝑚𝜂𝑔𝜌𝐴𝑣

3, 𝑣𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑟𝑎𝑡𝑒𝑑
1

2
𝐶𝑝𝜂𝑚𝜂𝑔𝜌𝐴𝑣𝑟𝑎𝑡𝑒𝑑

3 , 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 ≤ 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡

0, 𝑣 > 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡

   () 

The maximum (rated) power corresponds to the power 
achieved at rated wind speed: 

 𝑃𝑚𝑎𝑥 =
1

2
𝐶𝑝𝜂𝑚𝜂𝑔𝜌𝐴𝑣𝑟𝑎𝑡𝑒𝑑

3  () 

The wind speed v in (1) correspond to the speed at the hub 
height. In general, the anemometers are installed between 10 m 
and 50 m above the ground, but through (3) the wind speed 
measurements v1 at height h1 are adjusted to v2 at the hub height 
h2, whose magnitude can exceed 100 m. For offshore projects, 

the power exponent  in (3) is fixed at 0.06 [20]. 

 𝑣2 = 𝑣1 (
ℎ2

ℎ1
)
𝛼

 () 

Due to its intermittent behavior, the wind speed v can be 
described by a random variable with Weibull distribution 
[16],[21], whose probability density function (4) depends on the 
parameters of scale s and shape k. The expected value of the 
wind power production is given in (5). 

 𝑓(𝑣) =
𝑘

𝑠
(
𝑣

𝑠
)
𝑘−1

𝑒𝑥𝑝 [− (
𝑣

𝑠
)
𝑘

]  () 

 𝑃̅ = ∫ 𝑃(𝑣)𝑓
∞

0
(𝑣)𝑑𝑣  () 

The capacity factor (CF ) is given by the ratio 𝑃̅/𝑃𝑚𝑎𝑥 and 
as demonstrated in [17], can be estimated by (6). 

 𝐶𝐹 =
1

𝑣𝑟𝑎𝑡𝑒𝑑
3 ∫ 𝑣3𝑓(𝑣)𝑑𝑣

𝑣𝑟𝑎𝑡𝑒𝑑
𝑣𝑐𝑢𝑡−𝑖𝑛

+ ∫ 𝑓(𝑣)𝑑𝑣
𝑣𝑐𝑢𝑡−𝑜𝑢𝑡
𝑣𝑟𝑎𝑡𝑒𝑑

   () 

Note that the CF  depends on the scale and shape parameters 
of the Weibull probability density function f (v), estimated from 
wind speed data. Under the commonly accepted Rayleigh 
distribution assumption (Weibull with k=2) for wind speed 
prevalent in Europe, the capacity factor can be estimated by the 
following nonlinear approximation [22]: 

𝐶𝐹 = (1 − 0.087) [𝑡𝑎𝑛ℎ (
0.087𝑉2

2𝜋(1+
𝑃

𝐷2
)+

𝑃

2𝐷2

)] −
0.087

2𝜋𝑉(1−
𝑃

𝐷2
)
     (7) 
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where 𝑉̅ represents the average wind speed, P is the nominal 
power of the turbine, and D denotes the rotor diameter. 

As indicated in (8), from the capacity factor it is possible to 
estimate the energy produced over an interval of T  hours by a 
wind farm composed of N turbines with unit power P. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑁 × 𝑃 × 𝑇 × 𝐶𝐹           () 

III. BAYESIAN INFERENCE 

In the Bayesian approach the unknown parameter  is 
modeled by a probability distribution, a clever way to represent 
the underlying uncertainty. Initially, such distribution, called 

prior p(), capture the available information about the 
parameter, but through Bayes' Theorem, it can be updated with 
data from a random sample with n observations X={x1,..., xn} 

in order to achieve a posterior distribution p( |X) [23]: 

𝑝(𝜃|𝑋) =
𝑝(𝑋|𝜃)𝑝(𝜃)

𝑝(𝑋)
                  () 

where 𝑝(𝑋) = ∫𝑝(𝑋|𝜃)𝑝(𝜃)𝑑𝜃. 

Given that p(X ) is just a normalization constant, then the 
posterior probability is proportional to the product of the 

likelihood p(X | ) and the prior p( ): 

𝑝(𝜃|𝑋) ∝ 𝑝(𝑋|𝜃)𝑝(𝜃)                  () 

From the posterior distribution in (10) we can compute the 
probability distribution of a new value (xnew), i.e., the predictive 
distribution in (11). 

𝑝(𝑥𝑛𝑒𝑤|𝑋) = ∫ 𝑝(𝑥𝑛𝑒𝑤|𝑋, 𝜃)𝑝(𝜃|𝑋)𝑑𝜃        () 

The choice of a prior distribution is an important step in the 
Bayesian approach. In the case of the Weibull distribution, there 
are some options for choosing the prior distribution, among 
them the gamma-gamma model [12], in which the priors for the 
scale and shape parameters are modeled by independent gamma 
distributions [13], whose probability density functions are 
presented in (12) and (13): 

𝑠~𝑔𝑎𝑚𝑚𝑎(𝛼1, 𝛽1) → 𝑝(𝑠) =
𝛽1
𝛼1

Γ(𝛼1)
𝑠𝛼1−1𝑒−𝛽1𝑠    (12) 

𝑘~𝑔𝑎𝑚𝑚𝑎(𝛼2, 𝛽2) → 𝑝(𝑘) =
𝛽2
𝛼2

Γ(𝛼2)
𝑘𝛼2−1𝑒−𝛽2𝑘   () 

It is worth noting that the core of the Rayleigh distribution 
(Weibull with k=2) is a gamma distribution, in this case the 
prior and the posterior are gamma distributions [24], i.e., they 
are conjugated.  

The hyperparameters  and  in (12) and (13) are 
determined from information about the scale and shape 
parameters from BWPA [15]. In a gamma distribution, the 

mean is / and the variance is /2, but for the purposes of 
determining the hyperparameters of a prior, it can be admitted 

that  is inversely proportional to , i.e., =1/. Thus, from the 

estimates provided by the wind atlas (𝑠̂ and 𝑘̂), the 
hyperparameters can be determined by the method of moments, 
as shown in Table I. 

TABLE I.  COMPUTATION OF PRIOR HYPERPARAMETERS 

Prior 
Hyperperameters 

  

gamma(1,1) 𝛼1 = √𝑠̂  𝛽1 = 1 √𝑠̂⁄   

gamma(2,2) 𝛼2 = √𝑘̂  𝛽2 = 1 √𝑘̂⁄   

For a set {x1,...,xn} with n records sampled from a 
Weibull(s,k) distribution, the likelihood is given by (14). 

𝑝(𝑥|𝑠, 𝑘) =
𝑘𝑛

𝑠𝑛𝑘
∏ (𝑥𝑖)

𝑘−1𝑒−
∑ (

𝑥𝑖
𝑠
)
𝑘

𝑛
𝑖=1𝑛

𝑖=1     () 

Then, the posterior distribution is proportional to the 
product of the likelihood in (14) by the priors in (12) and (13): 

𝑝(𝑠, 𝑘|𝑥) ∝
𝑘𝑛+𝛼2−1

𝑠𝑛𝑘−𝛼1+1
∏ (𝑥𝑖)

𝑘−1𝑛
𝑖=1 𝑒−

∑ (
𝑥𝑖
𝑠
)
𝑘

𝑛
𝑖=1 −𝛽1𝑠−𝛽2𝑘     () 

The posterior joint distribution of (s,k) in (15) cannot be 
analytically treated when the objective is to obtain the marginal 
distributions of s and k. However, the marginal distributions 
can be obtained by applying the Gibbs sampler through the 
conditional density functions (16) and (17) [24]. 

𝑝(𝑠|𝑥, 𝑘) ∝
1

𝑠𝑛𝑘−𝛼1+1
𝑒−

∑ (
𝑥𝑖
𝑠
)
𝑘

𝑛
𝑖=1 −𝛽1𝑠    (16) 

𝑝(𝑘|𝑠, 𝑥) ∝
𝑘𝑛+𝛼2−1

𝑠𝑛𝑘
𝑒𝑘

∑ 𝑙𝑛(𝑥𝑖)
𝑛
𝑖=1 −∑ (

𝑥𝑖
𝑠
)
𝑘

𝑛
𝑖=1 −𝛽2𝑘   () 

In this work we applied the Hamiltonian Monte Carlo - 
HMC [25] instead of the Gibbs sampler. The HMC is available 
in the rstan [26] and just as the Gibbs sampling, it is a method 
of Markov Chain Monte Carlo - MCMC. However, the HMC 
method is more efficient than the Gibbs Sampling [25]. The 
posterior predictive distribution is given by the following 
double integral: 

𝑝(𝑥𝑛𝑒𝑤|𝑥) = ∬𝑝(𝑥𝑛𝑒𝑤|𝑠, 𝑘)𝑝(𝑠, 𝑘|𝑥)𝑑𝑠𝑑𝑘   (18) 

IV. CAPACITY FACTOR MODELING 

From the posterior distributions in (15), (16) and (17) one 
can sample pairs of (scale factor s, shape factor k) and introduce 
them into (6) to compute the respective capacity factor (CF). As 
shown in Fig. 2, at the end of this process the probability 
distribution of the capacity factor is achieved. From the 
distribution of the capacity factor, it is possible to compute the 
average or median capacity factor of the offshore wind farm 
project and the respective credibility interval. 
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Figure 2.  Simulation to estimate the probability distribution of the CF.  

V. CASE STUDY 

To illustrate the application of the described methodology, 
consider the offshore wind project RJ-04 located about 41 km 
away from the city of Armação dos Búzios – RJ, Brazil, more 
precisely at coordinates 22º38'22''S and 41º28'59''W, the 
location indicated by the blue circle on the map of Brazil in Fig. 
3. The offshore wind farm will have 188 turbines of 15 MW 
each, leading to a total installed capacity of 2,820 MW. In this 
case study, the wind turbines correspond to the reference model 
with a capacity of 15 MW from the International Energy 
Agency (IEA) with a rotor of 240 m, hub height at 150 m above 
sea level and speeds vcut-in=3 m/s, vrated=10.59 m/s and vcut-

out=25 m/s [27]. Annual estimates of scale and shape factors at 
100 m height (onshore) in the vicinity of the wind farm can be 
obtained from the BWPA (Table II). 

 

Figure 3.  Location of the offshore wind farm project RJ-04. 

TABLE II.  SCALE AND SHAPE ESTIMATES FROM BWPA 

Coordinates 
Armação dos Búzios  

22º44’17’’S, 41º52’20’’W 

scale factor (m/s) s = 8.5 

shape factor k = 2.4 

The application of the described methodology is preceded 
by the adjustment of the estimates of the scale and shape factors 
for the hub height, in this case 150 m. The adjusted estimates 𝑠̂ 
and 𝑘̂ presented in Table III are obtained through (19) and (20), 
where h1 is the reference height of the estimates (in this case 
100 m) and h2 is the hub height [21]. 

         𝑠ℎ2 = 𝑠ℎ1 (
ℎ2

ℎ1
)
𝑛

 () 

𝑘ℎ2 = 𝑘ℎ1 [
1 − 0.088 × 𝑙𝑛(ℎ1 10⁄ )

1 − 0.088 × 𝑙𝑛(ℎ2 10⁄ )
] () 

where  

𝑛 =
0.37 − 0.088 × ln (𝑠ℎ1)

1 − 0.088 × 𝑙𝑛(ℎ1 10⁄ )
 (21) 

TABLE III.  ADJUSTED SCALE AND SHAPE ESTIMATES 

Parameters Adjusted Estimates 

scale 𝑠̂ = 9.3227 

shape (m/s) 𝑘̂ = 2.5124 

Inserting the estimates presented in Table III into the 
formulas shown in Table 1, we obtain the hyperparameters of 
the priors illustrated in Fig. 4. 

  
Scale prior distribution 

Gamma(=3.0533; =0.3275) 

Shape prior distribution 

Gamma(=1.5851; =0.6309) 

Figure 4.  Priors for scale and shape parameters. 

In the absence of wind speed measurements for the location 
of the RJ-04 wind farm project, we considered the hourly data 
from the Cabo Frio 2 buoy maintained by the National Buoy 
Program (PNBOIA) and located at coordinates 23º37'47.28''S 
and 42º12'10.08''W, 132 km away from the RJ-04 wind farm.  

The Cabo Frio 2 buoy has two anemometers located at 4.7 
m and 3.7 m above the sea surface. The wind speed records 
were adjusted for 150 m height using (3) with h1=4.7 m and 
power exponent equal to 0.06 [20]. The buoy was launched in 
June, 2016 and was collected in November, 2018. For the case 
study, the 8,751 hourly records comprising the period between 
August 1, 2016 and July 31, 2017 were considered, whose 
histogram, adjusted for 150 m, is shown in Fig. 5. 

 

Figure 5.  Wind speed records from Cabo Frio 2 buoy adjusted to 150 m.  
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The computational implementation of the described 
methodology was carried out by the rstan package [26] for R 
environment [28]. Thus, from the priors presented in Fig. 4 and 
the wind speed measurements in Fig. 5, the Hamiltonian Monte 
Carlo [25] was applied to obtain the posterior distributions of 
the scale and shape parameters. Four Markov chains (the 
default setting of the rstan R package) with 5,000 iterations of 
the MCMC algorithm were executed as shown in Fig. 6, for the 
purpose of assessing convergence (2500 warmup samples). 

 

Figure 6.  MCMC Simulation Convergence.  

The histograms of the posterior distributions are illustrated 
in Fig. 7 and Fig. 8. From these distributions we achieved the 
95% credibility intervals [10.47, 10.65] and [2.56, 2.64] for 
scale and shape parameters respectively. 

 

Figure 7.  Posterior of the scale parameter s.  

 

Figure 8.  Posterior of the shape parameter k.  

The posterior predictive distribution of wind speed is 
presented in Fig. 9. Sampling the posteriors of the scale and 
shape parameters and substituting in (6) we obtain the 
distribution of the capacity factor depicted in Fig. 10, whose 
median is 0.6066, a value compatible with the estimated 
capacity factor of 60% for the wind turbine adopted in the RJ-
04 project.  

The application of the described procedure for each month 
of the year produced the results presented in Table IV, that 
include the mean values and the credible intervals of 95% (CI 
95%) for shape and scale parameters of the wind speed 
distributions at 150 m height. The monthly estimates of the 
capacity factor and energy production from a wind turbine of 
15 MW are presented in Table V. Based on (8), the annual 
energy production for the offshore wind farm RJ-04 (188 wind 
turbines of 15 MW) is estimated in 14,970 GWh with CI 95% 
between 14,790 GWh and 15,153 GWh, as shown in Table VI. 

 

Figure 9.  Distribution of wind speed.  

 

Figure 10.  Capacity factor distribution.  

TABLE IV.  SCALE AND SHAPE POSTERIORS FOR 150 M HEIGHT 

Months 
Shape Scale 

Mean 2.5% 97.5% Mean 2.5% 97.5% 

Jan 2.64 2.49 2.80 11.45 11.13 11.78 

Feb 3.08 2.89 3.28 10.60 10.33 10.87 

Mar 2.55 2.40 2.70 9.23 8.97 9.50 

Apr 2.43 2.29 2.57 9.52 9.23 9.81 

May 2.40 2.27 2.54 10.66 10.33 11.00 

Jun 2.68 2.53 2.83 9.71 9.43 9.99 

Jul 3.69 3.47 3.91 10.85 10.63 11.08 

Aug 2.69 2.53 2.85 11.42 11.10 11.74 

Sep 2.57 2.43 2.72 10.02 9.72 10.32 

Oct 2.90 2.73 3.06 11.27 10.98 11.57 

Nov 2.25 2.12 2.38 10.99 10.62 11.36 

Dec 2.34 2.20 2.48 10.04 9.72 10.37 

Annual 2.60 2.55 2.64 10.57 10.48 10.66 
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TABLE V.  CAPACITY FACTOR AND WIND ENERGY PRODUCTION  

Months 
Capacity Factor Quantiles 

Quantiles of Energy 

Production (GWh) from 

a turbine of 15 MW 

2.5% 50% 97.5% 2.5% 50% 97.5% 

Jan 0.6398  0.6656  0.6905   7.14   7.43   7.71  

Feb 0.6108  0.6367 0.6622   6.16   6.42   6.67  

Mar 0.4773  0.5016 0.5263  5.33   5.60   5.87  

Apr 0.4951  0.5207 0.5463   5.35   5.62   5.90  

May 0.5739  0.5999 0.6260   6.41   6.70   6.99  

Jun 0.5208  0.5463 0.5715   5.63   5.90   6.17  

Jul 0.6645  0.6879 0.7105   7.42   7.68   7.93  

Aug 0.6412  0.6671 0.6921   7.16   7.44   7.72  

Sep 0.5399  0.5399 0.5924   5.83   5.83   6.40  

Oct 0.6473  0.6722 0.6965   7.22   7.50   7.77  

Nov 0.5800  0.6074 0.6336   6.26   6.56   6.84  

Dec 0.5283  0.5546 0.5808  5.90   6.19   6.48  

Annual 0.5993 0.6066 0.6140 78.67 79.63 80.60 

TABLE VI.  ANNUAL ENERGY PRODUCTION OF THE WIND FARM RJ-04 

Quantiles of the Annual Energy Production (GWh) 

2.5% 50% 97.5% 

 14,790   14,970   15,153  

 
In order to test the robustness of the results, other sets of 

priors for the scale and shape parameters were investigated. 
This was done by maintaining the gamma distribution for the 
shape parameter but varying the distribution of the scale 
parameter. The following pairs of distributions were evaluated: 
(gamma, exponential) and (gamma, lognormal). However, it is 
worth mentioning that the results did not undergo significant 
changes due to the use of this set of alternative priors. For 
brevity, we will not present the results. 

For comparison purposes, Table VII displays the capacity 
factor estimates from alternative approaches. 

TABLE VII.  CAPACITY FACTOR ESTIMATES FROM OTHER APPROACHES. 

Methods Assumptions Estimates 

The same approach described 

in this work, but with 
reanalysis data. 

Likelihood calculated 

with reanalysis  

Median = 57% 

CI 95%  
(56.3%,57.7%) 

Estimator in (7) with nominal 

power turbine P=15000 kW 

and rotor diameter D=240 m 

Average wind speed 

𝑉̅=9,4 m/s  

(buoy data) 

55.4% 

Average wind speed 

𝑉̅ =8,75 m/s 

(reanalysis data) 

49.7% 

 Estimator in (6) with  

vcut-in=3 m/s, vrated=10.59 m/s 

vcut-out=25 m/s and 

v~Weibull(s,k) 

Parameters estimated 

from buoy data 

(𝑠̂=10.9 and 𝑘̂ =2.59) 

60.8% 

Parameters estimated 

from reanalysis 

(𝑠̂=9.78 and 𝑘̂ =3.16) 

57.2% 

 
In Table VII, the first approach uses the same Bayesian 

methodology employed in this work but with reanalysis data 
from MERRA 2 provided by https://www.renewables.ninja/ 
[29] for the location of wind project RJ-04. Reanalysis data 
integrate historical observations into a numerical weather 
prediction model to reconstruct climate, providing a complete 
spatiotemporal dataset. It's worth noting that a correction was 
made to the wind speed reanalysis series for the turbine's hub 

height, in this case, 150 m. The second approach [22] assumes 
a Rayleigh distribution for wind speed. This assumption is 
reasonable for the European continent but lacks empirical 
support in the Brazilian case. The third alternative [17] utilizes 
(6) with parameters s and k estimated by the method of 
moments [18], a classical statistical inference approach.  

The results show that the estimates using velocity 
measurements from the Cabo Frio 2 buoy are higher than the 
estimates from MERRA2 reanalysis. The capacity factor 
estimates using reanalysis data reached close to 57%, while the 
estimates obtained from the Cabo Frio 2 buoy data achieved a 
capacity factor of 60%. The lowest capacity factor estimates 
(49.7% and 55.4%) were obtained by the approximation that 
assumes a Rayleigh distribution for wind speed, and for this 
reason, they should be viewed with caution in the Brazilian 
context.  

 These capacity factor estimates are in line with projections 
from the International Renewable Energy Agency (IRENA), 
which indicate a range between 36% and 58% for offshore 
wind capacity factors in 2030 and between 43% and 60% in 
2050 [30]. In addition, although measurements and reanalysis 
data are used in the case study, the described methodology can 
be applied to projections coming from general circulation 
models, to capture the impact of the global climate change on 
future wind patterns, e.g., RegCM4 [31] or CMIP5 [32]. 

VI. CONCLUSIONS 

The Bayesian based approach pointed to be useful in the 
evaluation of the capacity factor or the energy production of a 
wind power project, once from the statistics available in an atlas 
of wind potential it is possible to formulate prior distribution 
that represent the prior knowledge about the wind regime to be 
explored, that can be combined with site wind speed 
measurements. Furthermore, the existence of a prior 
distribution allows good inferences to be made even with small 
samples, as in the case study carried out which had only 1 year 
of hourly anemometric records. The posterior distribution 
provides results that are easy to interpret and useful for risk 
assessment of a wind power project, e.g., the credible intervals 
for the capacity factor and energy production. In the case study 
presented, measurements of offshore wind speed were 
considered at a point 132 km away from the evaluated wind 
project and containing only one year of hourly records. Despite 
these limitations, the results obtained were satisfactory and the 
estimates obtained for the capacity factor are compatible with 
the projections from IRENA and the estimate informed by the 
wind turbine manufacturer considered in the evaluated wind 
power project. 
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