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Abstract—The proliferation of Electric Vehicles (EVs) creates
new challenges for EV Charging Station Operators (CSOs) due
to the increasing charging demand, but also opportunities to
leverage EV user flexibility. In this work, we consider an EV
CSO offering several charging power rates at different prices,
and we explore the design of a price menu. In our setting, EV
users are inflexible in their parking duration but flexible in terms
of their energy demand, and choose the option that maximizes
their welfare, i.e., their utility minus their cost of charging.
We formulate the optimal price menu design problem of a
profit maximizing CSO as a Mixed Integer Linear Programming
problem, and we compare against the outcome of social welfare
maximization. We further account for the provision of demand
response by the CSO, i.e., lowering its power consumption for
a certain period given a certain price for remuneration, by
adjusting the price menu (in real time), so as to incent EV users to
choose lower power rates. Our numerical demonstrations provide
useful insights on the construction of the optimal price menu.

Index Terms—Electric vehicle, charging station operator, op-
timal price menu design, demand response.

I. INTRODUCTION

In view of the growing adoption of Electric Vehicles (EVs)

[1], public charging stations are attracting significant attention.

Their aggregate power consumption may stress the grid and

its assets (e.g., transformers [2], [3]), and hence, leveraging

the EV user flexibility is key to avoid costly and potentially

unnecessary upgrades. An EV Charging Station Operator

(CSO), with a capability to modulate its aggregate power

consumption for a given period, by intelligently designing

the options/services/prices offered to the EV users, can thus

provide some type of remunerated demand response service

and/or a non-wires solution [4] to the grid operator (e.g., [5]).

In the vast amount of literature on the scheduling and

coordination of EV charging, there are only a few works [6],

[7], [8], [9], [10], [11], [12], [13] considering the design of

some type of price menu that is offered by the CSO to the

EV users. Such a menu typically consists of a price that can

be associated with a delay in the completion of charging [6],

[7], [8], [9] (assuming that the utility of EV users depends on

the delay of their departure), and/or the amount of energy that

EV users receive [10], [11], [12].
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Considering the flexibility of EV users in the completion

of charging, some works [6], [7], [8] propose some type of

“deadline-differentiated” pricing, i.e., a price associated with

a deadline. In [6], the CSO solves a profit maximization mixed

integer quadratic programming problem to determine optimal

prices that incent EVs to prolong their charging sessions when

the cost of electricity is low. In the same spirit, [7] adds a linear

penalty in the CSO aggregate power consumption, and uses

block coordinated descent to solve a profit maximization prob-

lem that considers bounded rationality for the EV user deadline

choice. In [8], the focus shifts to identifying optimal deadline

value offers, and the CSO solves an optimal control problem,

aiming at smoothing the aggregate power consumption that

is associated with a convex cost for electricity. In [9] the

charging intervals and corresponding prices are determined in

an online fashion, considering a bound on the aggregate power

consumption, and aiming at minimizing the overall delay in

the completion of charging.

The aforementioned works [6], [7], [8], [9] account for

the EV user flexibility in the charging deadline but not in

their energy demand. Conversely, [10], [11] account for the

flexibility in the energy demand but consider fixed deadlines.

In a rather general setting for electric power loads [10],

consumers define their energy demand for time intervals before

their deadline, and pay a price that depends on the aggregate

power consumption. Using a game theoretic setting, it is found

that marginal cost pricing, combined with “earliest-deadline-

first” charging, maximizes the CSO profit as well as the social

welfare provided that the EV user willingness to charge is

greater than the electricity cost. In [11], several online schedul-

ing algorithms are proposed that maximize social welfare, in

which the CSO ensures a guaranteed amount of energy upon

the EV arrival and until the deadline, while taking into account

constraints in aggregate power and concurrent EV charging.

In [12], the CSO offers a price menu that considers the EV

user flexibility in both the energy demand and the deadline for

charging. Electricity is sourced either from a local renewable

energy supply at zero cost or through purchases from the grid.

The optimal pricing is provided as a function of the outcome of

the charging scheduling problem (cost minimization linear pro-

gramming problem), both for the social welfare and the CSO

profit maximization. Conversely, [13], [14] consider inflexible

EV users in both the energy demand and the deadline. In [13],
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the CSO price menu consists of several options with different

energy amounts and deadlines; the arriving EV users choose

whether to charge or not depending on their utility and the

charging price of the option that matches their requirements.

The profit and social welfare maximization are formulated as

a partially observable Markov decision process and solved

through deep reinforcement learning. In [14], the charging

station is modeled as a queuing network, and EV users can

choose between two charging power levels that are associated

with different queue lengths and prices. The CSO sets a static

admission price that minimizes the “dropping rate,” i.e., the

proportion of EV users leaving the charging station (choosing

not to charge) because of a long waiting queue.

Most of the aforementioned works require EV users to

specify or provide some type of information on their parking

duration (deadline) and/or their energy demand. Apart from

privacy concerns, it is not unreasonable to assume that many

users may not have a specific requirement for energy, and/or

there may be some uncertainty in their parking duration.

Furthermore, in the deadline-differentiated pricing, there may

be no guarantee on the amount of energy charged if the EV

user leaves sooner than expected (also not unreasonable to

assume). For these reasons, we suggest a price menu that

offers a guaranteed power rate for a certain price, so that

EVs can choose among different power rates, thus securing

a certain quality of service. In this paper, our aim is to

investigate the problem of the CSO price menu design and its

capability to provide demand response. We consider a CSO

equipped with a large enough number of charging points, i.e.,

the station’s capacity (in terms of charging points) does not

become a limiting factor for serving EVs. We also consider EV

users that view charging more as an opportunity rather than

an indispensable need. Hence, the parking duration depends

only on their on-site activities — see, e.g., [15] on the in-

elasticity of the parking demand. A profit maximizing CSO

would offer a menu with different prices per power rate,

which can adapt to heterogeneous requirements of EV users,

using information that may be either provided by the users

or obtained from the CSO statistics/data collected on its EV

user utility/characteristics/behavior. Assuming a certain price

for offering demand response in real time, the CSO could

then dynamically adjust the price menu to reduce its aggregate

power consumption.

Our main contribution is three-fold. First, we formulate the

price menu design problem of an EV CSO that differentiates

the options in the power rate, instead of the deadline, as a

Mixed Integer Linear Programming (MILP) problem. Second,

we propose a setting for the provision of demand response

by the CSO, given a price for reducing its aggregate power

consumption over a certain time period, by adjusting the

price menu in real time. Third, we provide insights through

numerical experimentation on the construction of the optimal

price menu, and the trade-offs considered in terms of the

CSO profits and the social welfare under different prices for

electricity and demand response.

The remainder of the paper is organized as follows. Section

II presents the preliminaries for the CSO and EV models.

Section III formulates the price menu design problem, and

Section IV describes the provision of demand response by the

CSO. Section V discusses a numerical experimentation, and

Section VI concludes and provides further research directions.

II. MODEL PRELIMINARIES

In this section, we introduce the EV CSO offered charg-

ing options (in Subsection II-A), the utility function of EV

users, (in Subsection II-B), and we define the CSO profit (in

Subsection II-C) and the social welfare (in Subsection II-D).

A. EV CSO Offered Charging Options

The CSO offers a discrete set of K options, denoted by

K = {1, ...,K}, where option k corresponds to a constant

power rate Pk and a price per energy unit (kWh) πk. For

notational simplicity, we denote the set of available options,

which includes option k = 0 corresponding to “not charging,”

i.e., P0 = 0 and π0 = 0, by K+ := K ∪ {0}.

The CSO options are ordered from lowest power rate to

the highest, i.e., Pk−1 < Pk, ∀k ∈ K, with prices that are

non-decreasing with the power rate, i.e.,

πk−1 ≤ πk, ∀k ∈ K. (1)

In most of the charging stations in reality, a higher charging

power is offered at a higher price, see for example [16].

B. EV Utility

Let EV class i ∈ I, where I = {1, ..., I} is the set of EV

classes, have (upon arrival) an initial State of Charge (SoC)

denoted by e0i , and parking duration denoted by di. Let emax
i

denote the EV battery capacity, and ei the SoC at the time of

departure.

For brevity, we refer to EV i instead of EV class i. If EV

i charges at a power rate P , its SoC at the time of departure

is given by:

ei = e0i + P di. (2)

Given any option k, EV i can charge at most min{emax
i −

e0i , Pk di}, so that the battery capacity is not exceeded. We

can therefore denote the options available to EV i using a

subset Ki = {1, ...,Ki} ⊆ K, where Ki is defined as the

highest available power rate such that the battery capacity is

not exceeded given the parking duration di.
Let Ui denote the utility of EV i, which depends on the SoC

ei at the time of departure, and is increasing and concave in ei
[17]. Essentially, increasing the SoC increases the EV utility

but with diminishing returns (due to the concavity). From (2),

we can express the dependency of the EV utility on the power

rate P using Ui(P ).
Let ui(Pk) denote the marginal utility of EV i choosing

option k related to power Pk, i.e.,

ui(Pk) :=
∂Ui(P )

∂P

∣∣∣
P=Pk

. (3)

Given the increasing and concave utility in ei, which also,

from (2), implies that the utility is increasing and concave in
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P , the marginal utility is non-negative and decreasing in k,

i.e.,

ui(Pk−1) ≥ ui(Pk) ≥ 0, ∀k ∈ K+
i . (4)

Eq. (4) simply states that the marginal utility is positive but

decreasing in the power rate, hence, there are diminishing

returns when choosing an option with a higher power rate.

C. CSO Profit

The CSO buys electricity from the grid and sells electricity

to EVs. Let λt be the price (per kWh) at which the CSO buys

electricity at time t. Let ci denote the average cost (per kWh)

over time that the CSO incurs when charging EV i, which is

given by:

ci =
1

di

∫ τ0
i +di

τ0
i

λt dt, (5)

where τ0i and τ0i + di are the arrival and departure times,

respectively of EV i.

When EV i chooses option k, the CSO charges πk (per

kWh), whereas incurs a cost ci (per kWh). Hence, the CSO

profit for charging EV i choosing option k, denoted by Πi(πk)
to indicate the dependence on πk, is then given by:

Πi(πk) = (πk − ci)Pk di. (6)

D. Social Welfare

Let Wi(πk) denote the welfare of EV i choosing option k,

which is the difference between their utility Ui(Pk), and the

cost of charging at the charging station, i.e.,

Wi(πk) := Ui(Pk)− πk Pk di. (7)

Note that we express the dependence of the welfare on the

price πk, whereas the dependence of the utility is on the

associated power rate Pk.

EV i aims at maximizing its welfare, hence, the optimal

choice, k∗i , is given by:

k∗i = argmax
k∈K+

i

Wi(πk). (8)

Using the concavity of the utility function and the price

ordering (1), one can show that for any set of options the

welfare increases (in k) until the option that corresponds to

the optimal choice for the EV user, and then decreases. Hence,

one can find the optimal choice, with a simple search among

ordered options (from the lowest power rate to the highest

power rate) until the welfare begins to decrease.

The social welfare, WS
i (πk), i.e., the sum of the CSO profit

and the welfare of EV i choosing option k, is given by:

WS
i (πk) := Πi(πk) +Wi(πk) = Ui(Pk)− ciPkdi, (9)

where we added the dependence on πk, which naturally

associates to the power rate Pk.

III. PRICE MENU DESIGN PROBLEM

In this section, we consider the price menu design problem

of a CSO who has information on the distribution of EV users

among a finite set of classes, I. These classes and their weight

over the population, denoted by θi for EV (class) i, can be

obtained using data on the EV user behavior — see e.g., [6].

In what follows, we consider the price menu design problem

under two objectives: (i) maximization of the expected CSO

profit (in Subsection III-A), and (ii) maximization of the

expected social welfare (in Subsection III-B). Notably, the

two problems can be solved for each time period separately

(no time coupling constraints), i.e., the CSO can update the

price menu at each time period, assuming without loss of

generality an hourly granularity (although the offered price

when an EV arrives will be binding for that EV for its entire

parking duration).

A. CSO Profit Maximization

The CSO expected profit is given by:

Eθ[Πi(πk∗
i
)] =

∑
i∈I

θi(πk∗
i
− ci)Pk∗

i
di, (10)

where k∗i is the optimal choice of EV (class) i that is given

by (8). Hence, the CSO profit maximization problem is given

by:

max
π,k∗ Eθ[Πi(πk∗

i
)] given by (10),

s.t. (1) and (8). (11)

The optimal choice, k∗i , for EV user i can be modeled using

a binary variable, ai,k, ∀i ∈ I, k ∈ K+
i , denoting whether EV

i chooses option k (value 1, otherwise 0). The expected profit

is thus given by:

Eθ[Πi] =
∑
i∈I

∑
k∈K+

i

θi ai,k (πk − ci)Pkdi, (12)

where we require that only one option is chosen, i.e.,∑
k∈K+

i

ai,k = 1, ∀i ∈ I. (13)

Similarly to [6], (8) can then be reformulated using the big

M method as follows:

Wi(πk) +MW
∑
m �=k

ai,m ≥ Wi(π�),

∀i ∈ I, k, � ∈ K+
i , � �= k, (14)

where MW is a positive and sufficiently large number. With

(13), constraint (14) ensures that ai,k∗
i
= 1. The idea of this

constraint is that for k such that ai,k = 0, the inequality is

verified because the lhs second term takes a very large value

(i.e., MW ). For the unique k such that ai,k = 1, the lhs second

term becomes equal to zero, which enforces option k to be the

optimal option in terms of EV welfare maximization.

The objective function in (12) contains a product of a binary

variable ai,k and a non-negative continuous variable πk. Using

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



standard big M linearization techniques [18], we can replace

the product by a new, non-negative, continuous variable, say

bi,k, ∀i ∈ I, k ∈ Ki, so that (12) becomes:

Eθ[Πi] =
∑
i∈I

∑
k∈Ki

θi (bi,k − ai,kci)Pk di, (15)

and add the following constraints:

bi,k ≤ ai,kM
π, ∀i ∈ I, k ∈ Ki, (16a)

bi,k ≥ 0, ∀i ∈ I, k ∈ Ki, (16b)

bi,k ≤ πk, ∀i ∈ I, k ∈ Ki, (16c)

bi,k ≥ πk − (1− ai,k)M
π, ∀i ∈ I, k ∈ Ki, (16d)

where Mπ is a positive and sufficiently large number. Con-

straints (16) ensure that the variables bi,k take the value πk

when ai,k = 1 and 0 otherwise. Specifically, constraints (16a)

and (16b) enforce bi,k = 0 when ai,k = 0, whereas (16a)

becomes redundant when ai,k = 1. Constraints (16c) and (16d)

enforce bi,k = πk when ai,k = 1, and they become redundant

otherwise.

Summarizing, the CSO expected profit maximization prob-

lem, ΠCSO
max is given by:

ΠCSO
max : max

π,a,b
Eθ[Πi] given by (15),

s.t. (1), (7), (13), (14), and (16). (17)

Problem (17) is a MILP problem.

B. Social Welfare Maximization

Using the aforementioned binary variable ai,k, the expected

social welfare is given by:

Eθ[W
S
i ] =

∑
i∈I

∑
k∈Ki

θi ai,k [Ui(Pk)− ciPkdi]. (18)

For practical purposes, in order to ensure a non-negative profit

for the CSO (who sets the prices), we require from (15) that:∑
i∈I

∑
k∈Ki

θi (bi,k − ai,kci)Pkdi ≥ 0, (19)

where bi,k are described by constraints (16).

Summarizing, the expected social welfare maximization

problem, WS
max, is as follows:

WS
max : max

π,a
Eθ[W

S
i ] given by (18),

s.t. (1), (7), (13), (14), (16) and (19). (20)

Problem (20) is also a MILP problem.

IV. CSO DEMAND RESPONSE

In this section, we consider the case of a CSO providing

demand response, by reducing the aggregate power consump-

tion by a certain amount, during specific time periods. This

reduction can be viewed as the provision of a reserve product

(to be used interchangeably with demand response) — or flexi-

bility as is often mentioned in the literature — w.r.t. its “usual”

power consumption. Indeed, there is a long debate on how to

determine such a “base case,” or whether this is even possible.

However, for the purposes of this paper, we can employ the

outcome of the CSO profit maximization problem as the “usual

consumption,” upon which any reduction can be calculated.

Alternatively, one can think of a day-ahead commitment on

a certain power consumption (considering an expected profit

maximization problem and the resulting power consumption

given the “optimal price menu”) and a “real-time adjustment”

of the price menu to reduce the actual consumption by a certain

amount. In what follows, we consider the problem for the

provision of demand response through a certain reduction in

the aggregate consumption during a certain time period.

For clarity, we introduce the notation in the multi-period

problem, whose horizon is represented by the set T =
{1, . . . , T}, assuming without loss of generality that t refers

to an hourly period.

Let Nt denote the number of EV arrivals at time t, of

expectation N̄t, and with weights per class i at hour t, θi,t.
For brevity, we define parameter ni,t = N̄t θi,t representing

the expected number of vehicles of class i arriving at time t.
The price menu is denoted by πk,t, i.e., the prices can

change every hour, assuming without loss of generality that

the power rates, Pk, are parameters that do not change every

hour. Still, for each time period, prices should be ordered as

in (1), i.e.:

πk−1,t ≤ πk,t, ∀k ∈ K, t ∈ T . (21)

The binary variables ai,k,t denote whether EV i, arriving at

time t, chooses option k, with:∑
k∈K+

i

ai,k,t = 1, ∀i ∈ I, t ∈ T . (22)

The optimal choice of EV i, that is k∗i such that ai,k∗
i ,t

= 1,

arriving at time t is given by the following constraints:

Ui(Pk)− πk,tPkdi +MW
∑
m �=k

ai,m,t ≥ Ui(P�)− π�,tP�di,

∀i ∈ I, k, � ∈ K+
i , � �= k, t ∈ T , (23)

where we replaced the EV welfare by its definition — see (7).

Similarly to (16), the continuous variables bi,k,t verify the

following conditions:

∀i ∈ I, k ∈ Ki, t ∈ T : (24)

0 ≤ bi,k,t ≤ ai,k,tM
π,

πk,t − (1− ai,k,t)M
π ≤ bi,k,t ≤ πk,t.

The aggregate expected profit over the time horizon, using

(15) and parameter ni,t, is given by:

Π̂T =
∑
t∈T

∑
i∈I

∑
k∈Ki

ni,t (bi,k,t − ai,k,tci)Pkdi. (25)

Let TR = {τ1, . . . , τ2} be the set of time periods during

which the CSO reduces the aggregate power consumption by

a certain amount denoted by PR
t , from the aggregate power

consumption, denoted by PΠ
t that pertains to the solution of

Problem (17), which can be solved separately for each time

period.
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Let indicator (parameter) δi,t′,t denote whether an EV of

class i arriving at time t′ is connected at time t, where t ≥ t′

— i.e., for as long as its parking duration di. Let variable P̂t

denote the expected aggregate power consumption, given by:

P̂t =
∑
i∈I

∑
k∈Ki

t∑
t′=1

ni,t′ ai,k,t′ Pk δi,t′,t, ∀t ∈ T . (26)

The reduction of the power consumption for the provision of

demand response is then enforced through:

P̂t ≤ PΠ
t − PR

t , ∀t ∈ TR. (27)

Summarizing, the CSO demand response problem, given a

price λR
t for reducing the power consumption during hour t,

is now as follows:

DRCSO
λR : max

π,a,b,PR
[Π̂T given by (25)] +

∑
t∈TR

λR
t P

R
t ,

s.t. (21) − (23), (26), and (27), (28)

with PR
t ≥ 0, ∀t ∈ TR. Problem (28) is a MILP problem.

So far, we have considered the expected number of arrivals

per class, ni,t, and calculated expected profits and power

consumption. One may think that the provision of demand

response, i.e., the reduction in power, should be enforced

with a higher probability. A simple way would be to replace

the expected number of arrivals ni,t in constraint (26) by an

appropriately-defined “worst-case” number of arrivals, during

the periods TR (potentially even earlier). Indeed, in a practical

setting, the CSO can re-solve the problem, after each hour,

and define the price menu dynamically every hour, with the

information available up to that hour. However, due to space

considerations, we will refrain from such settings in this first

work. Future work will be directed to more elaborate robust

optimization formulations and appropriate uncertainty sets as

well as more dynamic settings that employ the information

that becomes available during the day.

V. NUMERICAL RESULTS

In this section, we provide a numerical experimentation of

the optimal price menu design problem. In Subsection V-A,

we describe the test case (CSO and EVs). In Subsection V-B,

we present the results from the profit and social welfare max-

imization problems, whereas in Subsection V-C, we discuss

the results from the CSO demand response provision.

A. Test Case

1) CSO: We consider the provision of 4 power rates for

charging: P1 = 2.5 kW, P2 = 5 kW, P3 = 7.5 kW, and P4 =
10 kW, i.e., K = 4. Note that we consider “low” charging

rates [19] in our numerical illustrations to emphasize the fact

that EVs view charging more as an opportunity than as an

absolute need (which would make them less flexible or direct

them to fast charging stations). However, our analysis remains

relevant for higher charging rates.

TABLE I
PARAMETERS OF EV CLASSES

Class i: Ki Utility Parameters
e0i / di 1 h 2 h 3 h 4 h αi βi

10 kWh 1: 4 2: 4 3: 4 4: 3 0.425 0.017
20 kWh 5: 4 6: 4 7: 2 8: 2 0.35 0.021
30 kWh 9: 4 10: 2 11: 1 12: 1 0.275 0.027

Fig. 1. Optimal price menu, Base Case and Benchmark.

2) EVs: We consider that all EVs have a battery capacity

of 50 kWh, and can charge between 20% and 80%. EV classes

are determined by their initial SoC and parking duration. We

consider 3 different initial SoCs: 10 kWh, 20 kWh, and 30

kWh. We also consider 4 different parking durations: 1h, 2h,

3h, and 4h. Hence, in total, we have 12 EV classes, assumed

to be equally distributed. EVs arrive at the charging station

with a constant rate of 120 vehicles per hour, from 7am to

8pm. They share a quadratic utility function given by Ui(P ) =
αi [P di − 1

2 βi (P di)
2 ], where αi, βi, are positive scalars,

which parameterize EV i willingness to charge while ensuring

an increasing utility for practical power rates. In order to ease

the exposition and interpretation of the results, we assume that

scalars αi and βi depend only on the initial SoC, thus keeping

the number of EV classes contained. Table I summarizes the

12 EV classes, the highest (in power rate) option available

(Ki) for EV class i, and utility parameters. Big M values are

set at 15 for MW and 0.5 for Mπ .

All problems were solved using CPLEX 22.1.1.0 solver.

B. Profit and Social Welfare Maximization Results

For convenience, we shall refer to the outcome of the

CSO expected profit maximization problem (17), ΠCSO
max , as the

“Base Case,” and to the expected social welfare maximization

problem (18), WS
max, as the “Benchmark.”

Fig. 1 presents the optimal price menu for the Base Case

and the Benchmark, as well as the electricity price (parameter),

λt, for comparison purposes. We observe that the Base Case

optimal price menu offers higher charging prices than the

electricity price (maximizing CSO profit). For the most part of

the day (from 7am to 5pm), when the electricity price is low
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Fig. 2. Average power chosen during the day for each EV class, Base Case
and Benchmark.

(around 20 cents per kWh), the prices in the Base Case menu

remain stable (spanning around 2 cents from option 1 to option

4). When the electricity price increases (from 6pm to 8pm), the

prices in the menu increase and remain practically stable for

all options. The shape of the Base Case menu indicates that,

when the CSO maximizes its profits, the prices of the menu are

not very sensitive to small changes in the electricity price. This

is attributed to the fact that the price menu considers also the

utility of the EV users, whose optimal choices are discrete;

hence, a small increase in the offered price might result in

the EVs choosing a lower power rate or even not charging.

Consider for example the case of EV class 5, which chooses

option 2 at 5 pm. Note that this class could choose any option,

however, it chooses option 2 and not the higher power rate

option 3, even though the price difference (between options 2

and 3) is only 0.625 cents; hence, this small difference in the

price is enough to discourage EV class 5 from choosing option

3. The Benchmark optimal price menu in Fig. 1 exhibits a

larger span during the day, with a trend of a “weighted moving

average” of the electricity cost, and some prices well below

the electricity price that attract EV users with a low marginal

utility.

Fig. 2 illustrates the average (over the entire day) power

chosen per EV class for the Base Case and the Benchmark.

Unsurprisingly, the Base Case average power is lower for all

EV classes, due to the higher charging prices — recall Fig. 1

compared to the Benchmark. For both, in general, the higher

the parking duration and/or the higher the initial SoC, the

lower the average power (due to lower marginal utilities). In

fact, EV classes 9–12, with a high initial SoC (30 kWh) refrain

from charging in the Base Case, since their marginal utility

(of 27.5 cents per kWh) is below the lowest price in the menu

(that ranges from 31 to 37 cents per kWh).

In Fig. 3, we illustrate the aggregate power consumption and

the number of EVs deciding to charge, for the Base Case and

the Benchmark. Clearly, the Benchmark charges more EVs

compared to Base Case, and at lower prices — see Fig. 1

— thus resulting in a significantly higher power consumption,

peaking at 1,925 kW, whereas the Base Case peaks at 875

kW. Recall that the average EV power consumption is also

higher for the Benchmark — see Fig. 2 for the daily average

Fig. 3. Aggregate power consumption (left axis, line) and number of EVs
deciding to charge (right axis, columns, lower part: EVs arriving at the hour;
upper part EVs remaining from previous hours).

Fig. 4. Hourly profit and social welfare, Base Case and Benchmark.

— due to the lower prices compared to the Base Case. We

elaborate further on the aggregate consumption shape of Fig. 3

and illustrate in Fig. 4, the hourly profit and social welfare, we

observe that the Benchmark maximum social welfare (2519.22

C for the entire day) is achieved with zero profits for the CSO,

and maximum welfare for the EV users. In the Base Case, the

observed social welfare (821.58 C lower than the Benchmark)

is primarily attributed to the CSO profits.

C. Demand Response Results

Using the solution of the Base Case as a “baseline” for the

CSO aggregate consumption, we solve the demand response

problem (28), with a 5-hour reserve period between 4pm and

9pm. We consider two cases for the reserve price, λR
t (constant

for the entire 5-hour period): 5 and 10 cents per kW.

In Fig. 5, we present the price menu for the Base Case, and

for the two values of the reserve price. For reasons that will

soon become apparent, we present the 5 hours affected (4pm,

5pm, 6pm, 7pm, 8pm) as well as the previous hour (3pm).

In Fig. 6, we illustrate the aggregate power consumption, for

the Base Case and the two reserve prices. Considering first

the lower reserve price (Fig. 5, middle), we observe that the

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Fig. 5. Optimal price menu (3pm to 8pm): Base Case and provision of demand
response (two reserve prices).

Fig. 6. Aggregate power consumption (3pm to 8pm): Base Case and provision
of demand response (two reserve prices).

main change w.r.t. the Base Case refers to hours 4pm and

5pm, when the prices increase (they span between 32 and 34

cents at 4pm, and reach 37 cents at 5pm). The reduction in

the aggregate power consumption (Fig. 6, green line) is 75

kW at 4pm and 275 kW at 5pm. Note that the price menu at

6pm is the same with the Base Case, however, we still see a

reduction by 200 kW, which is due to the lower amount of

EVs deciding to charge in the previous hours (we remind that

EVs may charge for 4 hours). The reduction drops to 175 kW

at 7pm and 75 kW at 8pm because the Base Case aggregate

power consumption is already low at these hours. Considering

next the higher reserve price (Fig. 5, right), we observe that the

prices increase earlier (slightly at 3pm, and then reach around

37 cents) achieving a higher reduction in the aggregate power

consumption (Fig. 6, red line), which amounts to 50 kW at

3pm, 275 kW at 4pm, 450 kW at 5pm, 350 kW at 6pm, 200

kW at 7pm, and 100 kW at 8pm. The reduction at 3pm —

before the beginning of the reserve period — is explained by

the fact that a lower number of EVs that decide to charge at

Fig. 7. CSO profit (lower part of column: profit for energy; upper part:
revenue from demand response).

Fig. 8. Total social welfare (over the entire day) breakdown: CSO profit,
revenue from providing demand response, and EV welfare (Base Case and
two reserve prices).

3pm affects the aggregate power consumption in the hours that

follow — recall the EV parking duration of up to 4 hours.

In Fig. 7, we illustrate the CSO profit for the Base Case

and the two reserve prices, which includes the revenue for

providing demand response. We observe that at 3pm, the Base

Case and the lower reserve price yield the same profit, whereas

the higher reserve price yields lower profit (see the higher

prices in Fig. 5, right). This occurs in anticipation of the

reserve period (as we saw in Fig. 5, right; and Fig. 6, red

line), which is advantageous when the reserve price is high,

e.g. 15 cC/kW. Indeed, the profit of the higher reserve price

(red column) is the highest in all other hours. The profit of

the lower reserve price (green column) becomes higher than

the Base Case at 5pm and remains higher until 8pm.

Fig. 8 shows the breakdown of the total social welfare

over the entire day into CSO profit, revenue from providing

demand response, and EV welfare. The total CSO profit for

the Base Case is 1,323.45 C. The total profit when providing

demand response increases by 16.04 C (1.21%) for the low

reserve price, and by 128.41 C (9.70%) for the high reserve

price. The total social welfare over the entire day for the

Base Case is 1697.64 C. Accounting for the revenues from

demand response, the total social welfare decreases by 56.69
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C (3.34%) for the low reserve price, and by 131.70 C (7.76%)

for the high reserve price. The total welfare of the EVs over

the entire day, which is 374.19 C for the Base Case, decreases

to 301.46 C for the low reserve price, and to 114.08 C for

the high reserve price. Summarizing, a higher reserve price

results in higher CSO profits, lower EV welfare, and lower

total social welfare.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this work, we considered a CSO serving EVs that are flex-

ible in their energy demand but not in their parking duration,

offering several power rates at different prices (price menu).

Arguably, this CSO model could fit well public charging

stations, considering the future EV adoption, where charging

would be viewed more as an opportunity (e.g., in a public

parking station), and charging point availability is unlikely to

be a limiting factor. In this context, we formulated the optimal

price menu design problem as a MILP problem, considering

both a profit maximizing CSO and (as a benchmark) social

welfare maximization. We further accounted for the provision

of demand response by considering an adjustment of the price

menu (in real time) to reduce the aggregate power consumption

and benefit from a certain price for remuneration (as a type

of reserve deployment). Our numerical experimentation illus-

trated the construction of the optimal price menu, the trade-

offs considered for the CSO profit and the social welfare, and

the price menu adjustment to provide demand response under

different (reserve) prices.

Future research is directed to account for uncertainty in the

parking duration and the EV user utility through robust opti-

mization approaches and the construction of appropriate data-

driven uncertainty sets. More elaborate price menus which

might also relate to the EV SoC, as well as CSO-EV contracts

for lowering the charging rate in case of demand response

provision, are also interesting directions for further research.

Furthermore, the literature that relates to yield management

could also be relevant in the context of the CSO model, with

stochastic EV arrivals that choose their power rates based on

dynamic prices — see e.g., [20]. Most importantly, establish-

ing the link between the construction of the price menus and

the spatiotemporal marginal costs for delivering electricity at

the charging points is key for efficient EV charging, including

aggregator managed EVs [21], in an adaptive manner that

accounts for the impact on the grid and its assets [22], [23].
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