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Abstract—This work proposes the modeling and application
of the so-called “multi-hydro plants” for the stochastic mid-
term hydrothermal planning problem. The approach consist in
aggregating sub-cascades of hydroelectric plants based on the fact
that the operation of the cascades is dictated only by decisions
on the release of the reservoirs with regularization capacity, and
the operation of run-of-the-river plants is a consequence of such
decisions. As a consequence, we obtain a formulation of the
problem with a smaller number of variables and constraints,
without any loss of representation of the physical and operation
constraints of the hydro plants. This yields a reduction in the
computational time to solve typical stochastic hydrothermal coor-
dination problems of more than 20%, and results are presented
for a real case of the Brazilian system. Furthermore, there is
even a gain in accuracy of about 6% in the approximation of
the non-concave hydro production function, and an analytical
investigation regarding this aspect is conducted.

Index Terms—Hydro production function, mid-term planning,
stochastic programming, piecewise-linear models

I. INTRODUCTION

The operation planning of hydrothermal systems aims to co-
ordinate the use of water and thermal resources to obtain a less
costly operation, while ensuring the security of supply. In such
problem, it is crucial to accurately model the hydro generation,
which is a nonlinear function of storage, turbine discharge,
and, in some plants, spillage [1]. Given its complexity and
associated challenges, operation planning is traditionally split
into long, mid, and short-term [2] problems, with different
levels of detail among them. In long-term planning (1-5 years,
monthly time steps), aggregation methods for representing
hydro plants still prove to be advantageous and, since the
seminal work [3], several approaches have still been proposed
[4]-[6]. Although this type of modeling allows representing
the variation of generation of hydro plants with the water
head, the water balance equations along the cascade – which
is essential for mid-term (up to 1 year, weekly steps) [7] and
short-term (hourly steps, 1 week horizon) [8] planning - is
usualy neglected.
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An important aspect of hydrothermal coordination is that the
operation of hydro cascades is dictated by plants with reser-
voirs, since run-of-the-river plants must release its incoming
water flow, preferably by the turbines. Based on this, the work
[9] proposed the aggregation of each reservoir with its run-
of-the-river plants immediately downstream in the cascade,
to form a so-called “multi-plant”, for which a single hydro
production function – which is able to represent generation as
accurately as in the full individualized modelling – is built.

In this context, the main objective of this work is to enhance
the modeling of the previously proposed multi hydro produc-
tion function (MHPF) [9] and to improve its performance,
in order to turn it more useful for application in larger and
more general systems. The contribution of this paper are as
follows: (i) extension of the MHPF model to more general
configurations of cascaded hydro plants; (ii) application of this
concept to stochastic hydrothermal coordination problems; (iii)
a more rigorous evaluation of the accuracy and computational
efficiency of the methodology for very large systems.

II. INDIVIDUAL HYDRO PRODUCTION FUNCTION (HPF)

The generation gh′ of a hydro unit depends on its turbined
outflow q′, the turbine (ηt) and generator (ηg) efficiencies and
the net head h, as shown in (1), where k is a constant (9.81×
10−3(kg/m2s2)) comprising the acceleration due to gravity,
the density of water, and a unit energy conversion factor.

gh′ = kηtηghq
′ (1)

The net head h is the difference between the forebay level
hup(v) – which depends on the storage v of the reservoir –
and the tailrace level hdw(q, s) – which depends on the total
turbined (q) and spillage (s) outflows of the hydro plant – and
later subtracting an average value hloss for penstock losses:

h = hup(v)− hdw(q, s)− hloss (2)

For run-of-the-river hydro plants, the value of hup is con-
stant since v does not vary. Assuming an average efficiency
value η, the generation gh of the whole plant, given by
the hydro production function (HPF) (3), is the sum of the
generations of its NU units:
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gh =

NU∑
u=1

kηhq′u =

kη(hup(v)− hdw(q, s)− hloss)

NU∑
u=1

q′u = HPF(v, q, s)

(3)

In short-term planning, the output of the hydro plant is
highly dependent on the distribution of discharge among its
units, as well as efficiency of turbines/generators, leading
to non-concave functions. However, for mid-term planning,
where weekly/monthly operation is usually considered, the
function is better behaved, showing a reasonable concave
shape [10], which allows the use of concave approximations
[1], [11].

In the sequel, all subscripts refer to variables for the whole
hydro plant, rather than to each individual generating unit.

A. Approximate Hydro Production Function (AHPF)

For the cases where the HPF is nearly concave, an ap-
proximate piecewise linear model can be computed, by the
following steps [1]: (i) first, a grid of N points in the
v × q plane is defined, yielding a value of gh for each
point (vi, qi), for s = 0; (ii) the convex hull of the points
gh(vi, qi), i = 1, . . . , N , is calculated [12], providing an initial
model AHPF0; (iii) using a linear regression technique, a
scaling factor α is calculated for the AHPF0 model, aiming to
minimize the average difference from the exact HPF, leading
to the model AHPF(v, q) = αAHPF0(v,q); (iv) finally, the
AHPF model is extended to include spillage effects through
a secant approximation, due to the positive curvature of the
function along this axis. The formulation of the final model
AHPF(v, q, s) is given by (4), where γ are the coefficients
for each variable and Ki is the number of hyperplanes for i.
The procedure is illustrated in Fig. 1, for the case of a run-
of-the-river hydro plant. For details we refer to [1].

ghi ≤ α
(
γk
0,i + γk

v,ivi + γk
q,iqi

)
+ γk

s,isi, k = 1, . . . ,Ki (4)

hydro generation, gh

turbined outflow, q

(a)

gh

spillage, s

(b)

Fig. 1. (a) Illustration of the construction of the AHPF model, for a given
value v′; (b) secant approximation for spillage as an additional axis.

We note that the secant approximation for spillage is a
drawback of the AHPF, as significant deviations from the exact
HPF are expected along this axis. As described later, the multi-
plant model proposed in this paper mitigates this limitation.

Despite providing adequate accuracy of hydro generation,
the AHPF model requires an individual modeling of all plants
within a hydrographic basin, which motivated the introduction
of the concept of “multi-hydro production function (MHPF)”,
proposed in [9], which is further improved in this work. In the
sequel we briefly describe the MHPF with the enhancements
proposed in this work, which are detailed in [13].

III. ENHANCED MULTI-HYDRO PRODUCTION FUNCTION

The MHPF model consists of aggregating, within a sin-
gle function, the generation of a subset of cascade plants,
comprised of a reservoir and several run-of-the-river plants
[9]. Since it does not require the conversion of storage or
inflow/discharges into energy, the MHPF is a good alternative
to the use of energy equivalent reservoirs [3]. Moreover, it
reduces the dimensionality of the problem while maintaining
the explicit representation of the hydro cascade, i.e., modeling
the individual operation of each hydroelectric plant.

The sole assumption made in the construction of the MHPF
is that spillage occurs only when the plant is at its maximum
turbine discharge. Thus, a variable d = q + s is created to
represent the total release of the plant. Mathematically, this
means that there is one less variable in the modeling of the
MHPF, and therefore, a lower computational effort is expected
in constructing and using the function in the optimization
problem. It is important to emphasize that this assumption
is acceptable for long/mid-term problems [14], while the
approach in [1] remains useful when using a more detailed
temporal granularity, as in the daily scheduling problem.

A. Identification and Construction of Multi-Plant Topology

The identification of multi-plants in a topology with reser-
voirs (triangles) and run-of-the-river (circles) plants is shown
in Fig. 2, in a broader context where each plant may have
more than one upstream plant, which is an enhancement as
compared to the topology in [9]. To simplify the explanation,
we initially assume that all hydro plants are located in the same
subsystem. Since the operation of the hydro plants in each set
(rectangles) depends only on the operation of the upstream
reservoirs, it is possible to create an MHPF for each set.

In tree-shaped configurations, where a plant may have more
than one upstream plant (e.g., plants 5, 6, 12, and 17), which
is common in large river basins, special attention is required.
In [9], the construction of a multi-plant with more than one
reservoir in parallel was mentioned, which would lead to a
convex envelope in the R2n+1 space, where n is the number of
reservoirs. However, computing the convex hull for the MHPF
in this case becomes prohibitive: if only 3 points out of 16
discretization points are used for variables v and d, up to 2.1×
1016 hyperplanes can be evaluated for n ≥ 3 [9].

For this reason, going from the downstream to the upstream
plants, whenever there is a bifurcation in the topology with at
least one reservoir in each branch, a different multi-plant is
constructed for each branch (e.g., multiple hydroelectric plants
E and F). Therefore, the piecewise linear approximation of the
MHPF (see section III.C) remains in the R3 space.
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Fig. 2. Example of the construction of multi-plants, yielding a reduction from
18 to 10 hydro plants.

B. Calculation of the Exact MHPF for Each Multi-Plant

The assumption that spillage only occurs when the plant
reaches its maximum discharge (q) leads to (5a) and (5b).

q(d) = min{d, q} (5a)
s(d) = d− q(d) (5b)

When using (3) for the generation ghi of each multi-plant
i, two situations are considered: a multi-plant with reservoir
and a multi-plant with only run-of-the-river individual plants.

1) Multi-plant with a reservoir r: The generation is given
by ghr = HPFr(vr, qr(dr), sr(dr)) for the reservoir r and
ghj = HPFj(qj(dr), sj(dr)), for each remaining run-of-the-
river plant, with the operation of each plant j given by:

dj = dr +
∑

k∈Ωup
j

(Ik −Rk) (6a)

qj(dr) = min{dj , qj} (6b)
sj(dr) = dj − qj(dr) (6c)

where Ωup
j is the set of upstream run-of-the-river plants

belonging to the same multiple plant of the individual plant j
(including j itself), and Ik and Rk are the incremental inflows
and water withdrawals for other uses of water (input data)
of each individual plant k. The MHPF, which is the sum of
individual HPFs for the entire set Ωi of plants belonging to

multi-plant i, can be expressed as a function of storage vr and
release dr of the reservoir r, as shown in (7), where Ωi \ r is
the set of individual plants in multi-plant i excluding plant r:

MHPFi(vr, dr) = HPFr(vr, qr(dr), sr(dr))

+
∑

j∈Ωi\r

HPFj(qj(dr), sj(dr)) (7)

2) Run-of-the-river multi-plant: The generation equation is
given by ghj = HPFj(qj(udi), sj(udi)) for all plants, where
udi is the sum of releases from all reservoirs of the upstream
multi-plants of plant i (such as multi-plants E and F in the
case of multi-plant I in Fig. 2). Therefore, we have:

dj = udi +
∑

k∈Ωup
j ∪j

(Ik −Rk) (8a)

qj(udi) = min{dj , qj} (8b)
sj(udi) = dj − qj(udi) (8c)

The MHPF is again given by the sum of individual HPFs
for the entire set Ωi of plants. However, in this case, since
there is no reservoir, it is expressed solely as a function of
udi, as shown in (9):

MHPFi(udi) =
∑
j∈Ωi

HPFj(qj(udi), sj(udi)) (9)

We note that: (i) in both types of multi-plants, the MHPF is
uniquely determined based on the operation of the reservoirs;
(ii) the set of equations (6a)-(9) are not included in the
stochastic mid-term hydrothermal planning problem described
in section IV. Instead, they are used to make an a priori
computation of the points of the exact MHPF, which are used
to build the approximate AMHPF model, as detailed below.

C. Approximate Multi-Hydro Production Function (AMHPF)

The same algorithm proposed in [1] for the individual HPF
is applied to build the piecewise linear model for the MHPF,
as detailed in [13], with some differences described below.

1) Spillage: To model spillage, a single point is added
to the outflow window, with 110% of the maximum turbine
discharge (qmax) of the multi-plant, which is the highest value
of maximum turbine discharge among all individual plants
within the multi-plant. This point was chosen because it is
desirable to have a better representation of the function for
lower spillage values, since for larger values of spillage the
water value tends to be very low, and larger deviations between
the exact and approximate functions have less impact. Fig.
3 illustrates the linear constraint on the spillage axis for a
constant value v, passing through points qmax and 1.1qmax.

2) Adding “non-differentiable” points: The MHPF is non-
differentiable at points where the maximum turbined discharge
of each plant within a multi-plant is reached (see Fig. 4).
Exactly at these points, the multi-plant has a decrease in its
overall efficiency since one plant starts to spill instead of
increasing generation. Since the optimization process tends to
find a solution at these points, it is interesting to explicitly
include them in the piecewise linear approximation (AMHPF)
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gh

Fig. 3. Additional point in the d-grid for modeling spillage and how the linear
constraint would be in this region in case of a run-of-the-river multi-plant.

of the MHPF . Therefore, for Ni being the number of plants
within the multi-plant, at most Ni − 1 points are added to the
set of discretization points used to build the AMHPF (note:
since the point corresponding to the plant with the highest
maximum turbine discharge is already in the window, there
is no need to add it twice). However, not all Ni − 1 points
are necessary: if the sum of known inflows to an individual
plant is already greater than its maximum turbine discharge in
a given scenario, that point does not need to be included.

gh

Fig. 4. Example of a MHPF for a multi-plant composed of three hydro plants
(qmax3 > qmax2 > qmax1) and the additional points that would be included
(the point qmax3 would be already in the window).

3) Piecewise linear concave approximation for MHPF:
After applying all these procedures, the approximate multiple
hydroelectric production function (AMHPF), composed of a
set of Ki linear inequalities for the generation ghmi of each
multi-plant i can be obtained, for each type:

• for a multi-plant i with a reservoir r:

ghmi ≤ γk
0,i + γk

v,ivr + γk
d,idr, k = 1, . . . ,Ki (10)

• for a run-of-the-river multi-plant i:

ghmi ≤ γk
0,i + γk

d,i

∑
u∈ΩUR

i

du, k = 1, . . . ,Ki (11)

where ΩUR
i is the set of reservoirs upstream of multi-plant i,

and
∑

u∈ΩUR
i

du = sdu. If ΩUR
i = ∅, ghmi = γk

0,i, meaning it
is a constant value that depends only on the natural inflows for
the hydro plants. In principle, this generation value could be
subtracted from the demand. However, to avoid infeasibilities
in the optimization problem, this type of run-of-the-river multi-
plant is also included in the set of problem constraints, and
the solution to (11) allows a value in the range [0, γk

0,i]

IV. FORMULATION OF THE HYDROTHERMAL
COORDINATION PROBLEM WITH MULTI-PLANTS

In theory, the application of the multi-hydro plant concept
leads to a reduction in the size of the problem, for two main
reasons: (i) since there are fewer multi-plants than individual
plants (see Fig. 2), the number of water balance equations
is much lower, as explained later in this section. (ii) only
one variable d is needed to represent water release (see
section III-B) for each multi-plant, time step, scenario and
load level, while in the AHPF model two variables (q and
s) are necessary. Consequently, a decrease in computational
time is also expected. However, since the AMHPF model
requires more hyperplanes in its modeling, this premise must
be carefully evaluated.

In addition to the proposed modifications in the MHPF,
other constraints of the mid-term hydrothermal coordination
problem (see more in [7]) may also be modified, allowing for
an even greater reduction in problem size. We note that the
hydrothermal coordination problem with a representation of
multi-hydro plants is still capable of preserving the individual
characteristics of the hydro plants, as described below.

A. Objective Function

The traditional objective function used in hydrothermal
planning is cost minimization. After a time decomposition of
the problem in order to apply Dual Dynamic Programming
(DDP) [15], the subproblem of each time step t and inflow
scenario a considers the sum of present costs and the expected
value of future costs, as shown in (12), where p indexes the
NL load levels in which time step t is divided:

Z = min

NT∑
l=1

NL∑
p=1

(ctlgt
p,t,a
l + cdtdefp,t,a)

+E[Qt,a(vt)]

(12)

where NT is the number of thermal power plants, ctl is
the thermal incremental cost, and gtp,t,al is the generation of
thermal power plant l; cdt is the unit deficit cost, and defp,t,a

is the deficit value. The term E[Qa
t (v

t)] is the expected
value of the recourse function for time step t and scenario a,
evaluated at the storage vector vt. Such function is composed
by the Benders cuts generated by the DDP algorithm and,
for the leaf nodes of the scenario tree, represents the future
cost function (FCF) provided by the long-term planning model
[16]. Slack variables with artificial costs are included for all
constraints, in order to guarante relatively complete recourse.

B. Load Supply

The satisfaction of demand Dp,t
e of subsystem e, period t,

and load level p is given by:∑
l∈ΩT

e

gtp,t,al +
∑

i∈ΩMH
e

ghmp,t,a
i

+
∑

f∈ΩInt
e

(
intp,t,af→e − intp,t,ae→f

)
defp,t,a

e = Dp,t
e

(13)
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where ΩT
i / ΩMH

i are the sets of thermal / multi-hydro plants
in subsystem e; ghmp,t,a

i is the generation of multi-plant i;
ΩInt

e is the set of subsystems directly connected to subsystem
e and intp,t,af→e is the interchange from subsystem f to e.

C. Reservoir Constraints

The reservoir constraints are composed by water balance
equations and evaporation. The number of water balance
equations is also reduced, as only one equation is included
for each multi-plant. The modified water balance equation for
each multi-plant i is given by (14), where ζ is a conversion
factor from m3/s to hm3 and a′ is the ancestor node of a. In
addition to the substitution d = q+ s, other modifications are
required in the formulation with individual hydro plants:

vt,ar − vt−1,a′

r +

NL∑
p=1

ζp,t

[
dp,t,ar −

∑
j∈ΩUR

i

dp,t,aj

]
+ qevapt,ar

= ζt

[
(It,ar −Rt

r) +
∑

j∈ΩUF
i

(It,aj −Rt
j − qevapt,aj )

]
(14)

• on the right-hand side, the water inflow is the sum of
the inflow into the reservoir (if any) It,ar , and the sum
of the inflows It,aj for all the plants j in the set ΩUF

i

of upstream run-of-the-river plants for multi-plant i up to
the first upstream reservoir;

• on the left-hand side, only the contributions of the out-
flows dp,t,aj from the multi-plants j in the set ΩUR

i of the
first upstream reservoirs of multi-plant i are considered;

• since evaporation qevap is a function of storage [7], it
is constant for run-of-the-river plants (thus, included on
the right-hand side of the equation) and must be decided
only for the reservoir of each multi-plant i.

Multi-plants composed solely of run-of-the-river plants can
also have their water balance equation represented for each
load level, as shown in (15). The subscript ref refers to the
most upstream plant of the run-of-the-river multi-plant, chosen
as a reference and whose variables dref and qevapref are
included in the optimization problem.

ζp,t

[
dp,t,aref −

∑
j∈ΩUR

i

dp,t,aj

]
=

δp,t

∆t
ζt

[
(It,aref −Rt

ref )

+
∑

j∈ΩUF
i

(It,aj −Rt
j − qevapt,aj )− qevapt,aref

] (15)

where δp,t is the duration of each load level p in period t
and ∆t is the duration of period t. One key aspect should be
highlighted: all run-of-the-river hydro plants in a multi-plant
have an implicit water balance equation per load level, as if
total release dr of upstream reservoir r was evenly distributed
in the water balance equations of downstream plants by load
level, according to their duration. This means that run-of-
the-river plant cannot modulate water from one load level

to another, and evaporation / incremental inflows are evenly
distributed along the period. This is an important difference
from water balance constraints of run-of-the-river plants in [7],
which are defined per period, and not per load level.

The evaporation of each reservoir r is modeled as a linear
function of the average storage in each period [7]:

qevapt,ar = atevr
+ btevr

(
vt−1,a′

r + vt,ar

2

)
(16)

where the terms atevr
and btevr

are 1st order Taylor approxima-
tions of the nonlinear evaporation function, computed using
initial storage as a reference. Since the right hand side of
(16) contains the state variable vt−1,a′

r , the multiplier of this
expression is also used when building the coefficient related
to storages in the Benders cuts built by the DDP algorithm.
This is also the case of constraints (10), where we consider the
average storage of the plant and then also use their multipliers
in the computation of Benders cuts.

We note that there are less water balance equations in the
multi-plant modeling than in the individual representation,
since the first model does not require water balance equations
for run-of-river plants, except for equations (15), which are
applied only for the most upstream run-of-the-river plant of a
run-of-the-river multi-plant.

D. Hydroelectric Generation Limits
The maximum generation of a multi-plant i is given by

the sum of the maximum generations of each individual
hydroelectric plant in the set Ωi. On the other hand, the
minimum generation needs to be zero since our model does
not allow a minimum generation for an individual plant within
a multi-plant. These statements are described in (17).

0 ≤ ghmp,t,a
i ≤

∑
j∈Ωi

ght
j (17)

E. Recovery of Individual Hydroelectric Generation
Once the solution of the optimization problem is obtained,

it is necessary to calculate the individual generation for each
plant that composes each multi-plant. With the values of v∗

and d∗ in the optimal solution, it is possible to calculate the
exact individual generation ghj of each hydro plant j using
(3), and thus, the exact generation ghmi of the multi-plant.
With these values, the αj,i ratio of each plant j belonging to
the multi-plant i is calculated:

αj,i =
ghj

ghmi
=

ghj∑
k∈Ωi

ghk
. (18)

These ratios are multiplied by the optimal solution ghm∗
i

for the generation of the multi-plant to obtain each individual
generation gh∗

j , as described in (19):

gh∗
j = αj,ighm

∗
i (19)

Since there are no minimum generation constraints, this
distribution is always feasible. However, if, after an initial
redistribution, any individual plant has a generation greater
than its maximum limit, the surplus value is redistributed to the
other plants within the mult-plant, following the same process.
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V. NUMERICAL RESULTS

To assess the performance of applying the multi-plant
concept for the hydro plants, a typical mid-term hydrothermal
coordination problem was constructed using real hydroelectric
and thermal power plants from the Brazilian interconnected
system and solved using the DDP technique. We represented
all constraints of the previous section with the exception of
the future cost function (FCF) at the leaf nodes. We note that
there is no loss of generality in the comparison, since the use
of the FCF does not favor any of the two modeling approaches.
Actually, the absence of the FCF makes the analysis even
more robust because the reservoirs will tend to use their entire
volume down to the minimum storage level, allowing for the
evaluation of the performance of both representations over a
wider range of reservoir operating conditions.

In order to properly compare the two methodologies, the
individual representation will have both types of water balance
equations: only by period (AHPF*), as currently used in
Brazil) and also for each load level for the run-of-the-river
plants (AHPF), which is closer to the multi-plant modeling,
as highlighted in section IV-C. In the individual modeling, the
AHPF for each plant was constructed with 5 discretization
points for both the turbined outflow and volume discretization
windows (see [1], [13] for details). For the multi-plant mod-
eling, the AMHPF was initially constructed using 4 points
in the total release window, with the eventual addition of
the breakpoint points described in section III-C, and 5 points
for the volume window. The case was run on a computer
cluster with the following configuration: CentOS Linux release
7.1.1503 operating system, 12 cores, 24 threads - AMD
Opteron(TM) 6238 1.530 GHz processor, and 98 GB of RAM.
The implementation was developed in C++ language, with
linear problems solved using CPLEX v22.1 [17].

A. Case Description

The case was based on data from the official Monthly
Operation Program of January 2022 developed by the Brazilian
Independent System Operator (ISO) [18]. A total of 150 hydro-
electric plants were considered, with the same characteristics
data as in the official studies. The 102 thermal power plants
had their variable costs per unit ($/MWh), minimum and
maximum generation adapted for the case, as well as the load
demand for each period. There were 12 periods with monthly
discretization, 3 load levels, and 2 scenario branches at each
node, with the same probability of occurrence, leading to a
scenario tree with a total of 4,095 nodes. The tolerance gap
for DDP convergence was set to 0.001%.

B. Solution Time and Deviation Analysis

Table I shows the major data and optimization results for
the test case. The first information that can be extracted is that
the total operating costs with all modeling approaches for the
hydro production function are very close, with a difference of
less than 1.9%. Such difference is expected since the problems
are not identical, and its small magnitude indicates that the
multi-plant concept provides a close approximation to the

original problem. The AHPF variant shows a higher total
operating cost than the AHPF* variant, which is expected
since the AHPF problem is more restricted than the AHPF*
problem. We note that the main purpose of the AMHPF is not
to have a lower optimal value then the AHPF problem, but to
obtain a more accurate representation of the exact HPF.

TABLE I
COMPARISON BETWEEN TOTAL COSTS, TIME (AVERAGE FOR THREE

RUNS), AND PROBLEM SIZE BETWEEN THE REPRESENTATIONS.

AHPF* AHPF AMHPF

Total cost (106 $) 8082.87 8106.61 7954.55
Number of iterations 77 73 51
Solution time (min) 461.29 742.31 242.56
Time/iteration (min) 5.99 10.17 4.76
Number of variables 19,271,070 20,642,895 16,208,010
Number of constraints 11,339,055 12,047,490 11,666,655

The number of variables in the multi-plant model is signif-
icantly lower, especially because the turbined outflow q and
spillage s are replaced by the total release d. However, the
number of constraints is (at first sight surprisingly) almost
the same. This occurs because, although there are fewer
water balance equations for the multi-plant model, more linear
constraints are needed to model the AMHPF of each multi-
plant, as compared to the sum of constraints needed to model
the AHPF of each individual plant belong to that multi-plant.
Also, it is likely that more hyperplanes are generated in the
construction of AMHPF, since there are breakpoint points
being added in the discretization window for the total release
axis of this function.

In terms of CPU time, the performance of the multi-plant
representation was significantly better: reductions of over 20%
per iteration as compared to the AHPF* variant and over 50%
as compared to the AHPF model, which is the problem that
comes closest to the multi-plant representation. Although the
number of constraints is similar, their “complexity” appear to
be lower, due to the significant reduction in the number of
non-zero elements in the constraints matrix.

Table II presents the average deviations between the gener-
ation provided by the approximate AMHPF model (Equations
(10), (11)) and the corresponding exact MHPF functions
(Equations (7), (9)) for the same values of storage, turbine
discharge, and spillage obtained as outputs of the hydrothermal
planning problem for each time step and scenario. The same
procedure applies to the exact and approximate models for in-
dividual plants (Equations (4) and (3)), to which our proposed
approach is compared. We observe that the AMHPF model
exhibits lower deviations, especially for plants with reservoirs
and downward deviations.

Fig. 5 shows the average spillage at each month in our test
case, ranging between 3 and 11%, which is consistent with
the spillage levels observed in the Brazilian system. Therefore,
the absence of the FCF does not favor, in principle, any of the
compared approaches.
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TABLE II
AVERAGE DEVIATION CONSIDERING ALL PLANTS / LOAD LEVELS / NODES.

AHPF* AHPF AMHPF

Per plant MW 2.41 2.65 2.27
% 0.70 0.76 0.65

Per reservoir MW 2.16 2.15 1.65
% 0.63 0.63 0.48

Per run-of-the-river MW 0.25 0.51 0.62
% 0.07 0.15 0.18

Upwards MW 0.98 0.97 0.96
% 0.29 0.28 0.28

Downwards MW 1.43 1.68 1.30
% 0.42 0.49 0.37
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Fig. 5. Ratio of spillage to total release for each month of the case study.

Fig. 6 illustrates the average deviation for each period,
and we highlight that even without the FCF, no significant
advantage is being given to any representation, and the behav-
ior is similar across all periods. Fig. 7 shows the empirical
cumulative distribution function for each node in the scenario
tree. It is possible to observe that the curve for AMHPF is more
to the left, indicating smaller deviations, with about 90% of
them being lower than 3 MW. Finally, Fig. 8 and Fig. 9 present
the empirical cumulative distribution functions of the average
deviations for each hydro plant. These figures show that up
to the point with a value of 1 (both in MW and percent) on
the x-axis, there are more deviation values for both AHPF*
and AHPF approaches as compared to the proposed AMHPF
model. This means that for around 60% of hydro plants with
the smallest average deviations, these deviations are smaller
in the individual approach. However, the remaining 40% of
deviations larger than 1 (in MW and percent) have a greater
impact on the calculation of the overall average, which is why
AHMPF has a smaller overall average deviation.

It is worth noting that there is no evidence that the AMHPF
modeling can reduce deviations that are already small in the
individual modeling, as illustrated in Figs. 8 and 9. Accuracy
gains in the hydro production function are achieved when
individual plants are spilling, as the AMHPF is capable
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Fig. 6. Average deviation considering all hydro plants / load levels per period.
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Fig. 7. Empirical cumulative distribution function of the average deviation
per plant and per load level for each node.

of better representing the hydro production function in this
situation: as discussed in [9], the HPF of the multi-plant only
presents a non-concave shape (which is much more difficult
to approximate) when all plants are spilling, while the AHPF
of the individual plant will face the non-concave region when
any of the plants in the cascade is spilling.

C. Sensitivity analysis on the size of the problem

Table III presents an analysis on the computation effort
with the complexity of the problem. Since no paralellization
scheme was applied in our implementation, one should look
only on relative CPU times. We note that, even though the
AMHPF model scales similar to AHPF model (and worse
than the AHPF* model) with the number of hydro plants,
it scales better with the number of load levels. However,
extensive numerical experiments are necessary to obtain more
solid conclusions.

TABLE III
CPU TIMES (MIN) VS. NUMBER OF HYDRO PLANTS/LOAD LEVELS.

Case AHPF* AHPF AMHPF

13 hydro, 3 load levels 11.57 15.13 7.34
50 hydro, 3 load levels 92.89 79.31 26.73
150 hydro, 3 load levels 461.29 742.31 242.56
150 hydro, 1 load level 342.69 347.77 205.13
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Fig. 8. Empirical cumulative distribution function of the average deviation
per node/load level for each hydro plant, in MW (log-scale for the x-axis).

10 3 10 2 10 1 100 101 102

deviation [%]

0.0

0.2

0.4

0.6

0.8

1.0 AHPF*
AHPF
AMHPF

Fig. 9. Empirical cumulative distribution function of the average deviation
per node/load level for each hydro plant, in % (log-scale for the x-axis).

VI. CONCLUSIONS

This work presented a formulation for the mid-term op-
eration planning problem using the concept of multi-plants,
which is an intermediate modeling approach to represent
the hydro plants, where reservoirs are aggregated with their
immediate downstream run-of-the-river plants in the same
cascade, since hydraulic resources are primarily managed by
the reservoirs. Despite this aggregated modeling, the individual
characteristics of each plant are still represented, which is a
great advantage to the use of equivalent energy reservoirs.
With the reduction in the number of non-zero elements in the
constraints matrix, resulting from the decrease in the number
of variables and the number of water balance constraints, there
was a reduction in the computational time in approximately
20% as compared to the individual modeling. In addition, there
was also a reduction in deviations between the actual hydro
production function and the proposed AMHPF, as compared
to the same deviations using the current AHPF. Gains were
mainly achieved when there is spilling in the operation, which
is a non-convex region that needs to be modeled using only a
single point in the window and always causes larger deviations
due to the inevitable loss of accuracy.

The results presented in this work show that it is possible
to apply the multi-plant concept to the stochastic mid-term
hydrothermal coordination problem, as this modeling approach

brought improvements as compared to the individual model.
We list as possible future works: (i) use of AMHPF with
electrical network and individual generation constraints for the
hydro plants; (ii) consideration of water delay times between
consecutive plants within a multi-plant, which is much more
challenging; (iii) extension of the multi-plant concept to long-
term operation planning model, solved by SDDP, where the
main challenge is the use of autoregressive models for water
inflows [16], which become not explicitly known a priori, but
obtained as a result of forward scenarios sampled during the
iterations of the algorithm. Finally, the AMHPF model could
also be applied in other solving strategies, e. g., metaheuristics,
once it becomes important to reduce the size of the problem.
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