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Abstract—With the increasing amount of Distributed Energy
Resources (DERs), coordination of Distribution Grid Opera-
tors (DSOs) and Transmission Grid Operators (TSOs) is of
paramount importance. Managing a large number of DERs at
the TSO level is, however, challenging. To address this problem,
flexibility aggregation is a topic of frequent research activities.
Aggregation means to describe the combined flexibility of the
DERs at the vertical grid coupling between DSO and TSO.
Existing works are often limited with respect to guaranteeing
feasibility, with respect to efficient numerical implementation,
and in terms of quantification of the cost of DER usage. In the
present paper, we investigate aggregation based on Approximate
Dynamic Programming (ADP). We propose efficient numerical
aggregation schemes using tools from computational geometry
thus avoiding the need to solve multiple OPF problems. We
rely on different variants of the DistFlow model for radial
grids, which are computationally efficient. This allows to model
of current and voltage limits and enables the consideration of
voltage dependencies in the aggregation. Furthermore, we pro-
pose a method for cost aggregation and identify open problems
of flexibility aggregation.

Index Terms—Flexibility Aggregation, Congestion Manage-
ment, Feasible Operation Region, TSO-DSO Coordination, Ap-
proximate Dynamic Programming

I. INTRODUCTION

With the increasing amount of renewable energy sources,
congestions and voltage bound violations are more likely to
occur. At the same time, an increasing number of Distributed
Energy Resources (DERs) can provide flexibility, i.e., the
ability to deviate from their active and reactive power set
points within certain bounds. This property can be leveraged
to mitigate congestions and voltage bound violations. From
the Transmission System Operator’s (TSO) perspective, the
increasing number of DERs calls for methods towards struc-
tured flexibility aggregation to avoid the explicit consideration
of a large amount of DER at the TSO level, and to prevent
the communication of sensitive customer data.

There exist several approaches to estimate flexibility at
the vertical interconnection to the upper-level grid [1–10].
These approaches compute an approximation of the set of

This research is supported by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) under agreement no. 03EI4043A (Re-
dispatch3.0).
Submitted to the 23rd Power Systems Computation Conference (PSCC 2024).

admissible operating conditions of active and reactive power
called Feasible Operating Region (FOR) via sampling. These
samples approximate the FOR, e.g., by taking their convex
hull. In general, however, it is not guaranteed that the FOR
is convex due to the nonlinearity of the power flow equa-
tions [4]. Hence, calculating the convex hull may lead to the
inclusion of points incompatible with technical limits and,
therefore, to infeasibility of the disaggregation problem. In
general, providing guarantees on the feasibility of aggregation-
disaggregation schemes seems to be an open problem in the
available literature.

In existing works the cost of DER usage is rarely considered
in aggregation. The work [4, 8] compute level-sets for the
DER cost via sampling. This results in a piece-wise defined
cost function for the aggregated flexibility, which is cumber-
some to consider in optimization at the TSO level.

In the present work, we approach aggregation in the frame-
work of Approximate Dynamic Programming (ADP). ADP
provides a powerful abstraction, leading to new avenues for
flexibility and cost aggregation with feasibility guarantees
[11]. From the ADP perspective, aggregation is a set projection
problem that, for grid models constituting affine constraints,
can be solved via tools from computational geometry [12]
while avoiding the sampling efforts of existing methods. To
guarantee affine presentation of the power flow equations,
we utilize different variants of DistFlow, which combine
computational efficiency with the consideration of voltage and
current limits for radial grids [13]. Moreover, we employ
the DistFlow variant from [14] to compute a strict inner
approximation of the FOR to ensure feasibility. For heavily-
loaded cases, the FOR critically depends on the voltage at the
coupling node [15]. We show that our proposed scheme can
easily incorporate this dependency. Furthermore, we propose
a cost approximation that is easy to communicate and to
integrate into numerical optimization schemes at the TSO
level.

The paper is organized as follows: In Section II we present
the TSO-DSO coordination problem and we review the state-
of-the-art of flexibility aggregation. Section IV introduces
our ADP framework, which we use in Section V to derive
numerical aggregation methods based on different affine grid
models. In Section VI, we propose a cost approximation
scheme. We conclude our work in Section VII.
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II. PROBLEM FORMULATION

We briefly recall a basic AC Optimal Power Flow (OPF)
problem for the combined TSO-DSO grid, which we use as a
basis for our aggregation schemes [7, 16, 17].

A. AC Optimal Power Flow

Consider a power system described by a graph Ge =
(N ,B), where N = {1, . . . , |N |} is the set of all buses in
all voltage levels of the grid and B ⊆ N × N is the set of
branches. Assume that we have a balanced grid and zero line-
charging capacitances. The associated bus-admittance matrix
Y = G+ jB ∈ C|N |×|N| is given by

[Y ]k,l =

{∑
k∈N yk,l if k = l,

−yk,l, if k ̸= l.

Here, yk,l = gk,l + jbk,l ∈ C is the admittance of branch
(k, l) ∈ B, and gk,l and bk,l are its susceptance and conduc-
tance, respectively. Note that yk,l = 0 if (k, l) /∈ B. The flow
of active power and reactive power along branch (k, l) ∈ B is
given by

pk,l = vkvl(Gk,l cos(θk,l) +Bk,l sin(θk,l)), (1a)
qk,l = vkvl(Gk,l sin(θk,l)−Bk,l cos(θk,l)). (1b)

Here, vk is the voltage magnitude at node k ∈ N and θk,l
.
=

θk − θl is the voltage angle difference between the two nodes
k, l ∈ N . Using (1), the AC power flow equations for all buses
k ∈ N read

pk =
∑
l∈N

pk,l, qk =
∑
l∈N

qk,l, (2)

where pk, qk ∈ R are the net active and reactive power
injection at node k ∈ N . These net powers are given by

pk = pgk − pdk, qk = qgk − qdk, (3)

where pgk and qgk are the active/reactive power generation and
pdk and qdk are the active/reactive power demand at node k ∈ N .
The active/reactive power generation must stay within lower
and upper bounds

pg
k
≤ pgk ≤ p̄gk, k ∈ G. (4)

For “flexible” renewable generators, i.e., generators which
can alter their set points, we have pg

k
= 0 and p̄k = fg

k ,
where fg

k represents the maximal active power generation
given by irradiation/wind conditions. Moreover, the renewable
generators k ∈ G are able to offer reactive power support qk,
constrained by the maximum apparent power s̄k and a power
factor limit α. Thus, we consider affine constraints [18]

pgk ≤ s̄k cos(α), −pk ≤ αqk ≤ pk. (5)

The resulting optimization problem minimizes operation costs
fk : R → R while avoiding grid congestion

min
x

∑
k∈G

fk(p
g
k)

subject to (1)-(5), (6a)
v ≤ vk ≤ v̄, k ∈ N , (6b)

p2k,l + q2k,l ≤ s̄2k,l, (k, l) ∈ B, (6c)

pgk = qgk = 0, k ∈ N \ G, (6d)
θ1 = 0, v1 = 1, (6e)

Here, (6b) and (6c) express the voltage and line limits. The
feasible set of problem (6) reads

XAC .
=

{
x ∈ Rnx | (6a)-(6e) hold ∀k ∈ N , and ∀(k, l) ∈ B

}
with x

.
=

[
[pgk, q

g
k, pk, qk, vk, θk]k∈N , [pk,l, qk,l]

⊤
(k,l)∈B]

]
.

III. THE AGGREGATION PROBLEM AND ESTABLISHED
SOLUTION APPROACHES

Problem (6) is generally hard to solve across multiple
voltage levels and system operators. To reduce complexity,
aggregation approaches can exploit the natural tree structure
among TSOs and DSOs systems, cf. Figure 2.

A. Problem Partitioning

We decompose the set of buses N into a set with the TSO
buses N1 and into |C| bus sets for the DSOs Ni, i ∈ C, for
all DSOs where C .

= {2, . . . , |S|}. Similarly, we split the set
of branches B into {Bi}i∈S such that all branches connecting
nodes in Ni belong to Bi. We assign the branches connecting
TSO and DSO grids Bc

i ⊆ Bi to the DSOs. We denote the
buses at the TSO level connected to a branch between TSO
and DSO i as N c

i ⊆ N .
With the above definitions, one obtains local constraint sets

XAC
i

.
=
{
xi ∈ Rnxi | (6a)-(6d) hold ∀k ∈ Ni, and ∀(k, l) ∈ Bi

}
where xi

.
=

[
[pgk, q

g
k, pk, qk, vk, θk]k∈Ni

, [pk,l, qk,l]
⊤
(k,l)∈Bi

]
]

for all i ∈ C. The TSO set X1 is defined as above with the
additional reference constraints (6e).

We distinguish between local variables {yi}i∈C∪{1} and
coupling variables {zij}i,j∈S∪{1}, where we define local
variables of subsystem i ∈ S as all variables on which only
one fi or Xi depend. Since we assume a tree structure between
the system operators, each child (DSO) has a unique parent
(TSO). Thus, we define zi

.
= zi,par(i) as the coupling variable

of DSO i ∈ S with the TSO. For the sake of simplicity, we
avoid a more formal description of the underlying interaction
graph and instead refer to [11] for details.

Next, we identify coupling variables of problem (6).
Consider the power flow equations (1) for coupling lines
(k, l) ∈ Bc

i in combination with nodal power bal-
ance (2) for coupling nodes k ∈ N c

i in Figure 1.
Doing so reveals that coupling variables are z⊤i

.
=
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pk,l = vkvl(Gk,l cos(θk − θl) +Bk,l sin(θk − θl))

qk,l = vkvl(Gk,l sin(θk − θl)−Bk,l cos(θk − θl))

(k, l) ∈ Bc
i

k ∈ N c
i l

pk =
∑

i∈N pk,i

qk =
∑

i∈N qk,i

pk,m = vkvm(Gk,m cos(θk − θm) +Bk,m sin(θk − θm))

qk,m = vkvm(Gk,m sin(θk − θm)−Bk,m cos(θk − θm))

m

zi =
[
pk,l qk,l vk θk

]
TSO DSO i

XAC
1 XAC

i

Fig. 1: Coupling variables zi (blue) between the constraint set of the TSO XAC
1 , and one DSO constraint set XAC

i for (k, l) ∈ Bc
i .

Transmission Grid

Distribution Grid

Fig. 2: Hierarchically structured power system.

[
[pk,l, qk,l](k,l)∈Bc

i
, [vk, θk]k∈N c

i

]
, and local decision vari-

ables are y⊤i
.
=

[
[pgk, q

g
k, pk, qk]k∈Ni

, [vk, θk]
⊤
k∈Ni\N c

i
,

[pk,l, qk,l]
⊤
(k,l)⊤∈Bi\Bc

i

]
for all i ∈ C ∪ {1}.

Using the above, the aggregation problem from the TSO
perspective can be phrased as follows:

Determine all values of coupling variables zi, that can be
generated using the flexibility of DERs in the distribution

grids.

Note that this formulation is generic: it is equivalently ap-
plicable to multi-stage OPF including storage and to problems
with multiple interconnections to the upper-level grid. In these
cases, the constraints included in Xi and the dimension of zi
changes.

B. Existing Approaches

Observe that the feasible set of the DSO sub-problems XAC
i

contain the power flow equations (1)-(3) and (6d) as equality
constraints. For fixed set-points of the flexibilities (pgk, q

g
k)k∈Ni

in the DSO grid, these equations can be solved uniquely
for the corresponding coupling variables zi solving a power
flow problem. Early approaches sample (pgk, q

g
k)k∈Ni (e.g.,

from uniform distributions) and compute the corresponding zi
numerically for a fixed vk = 1 at the interconnection k ∈ N c

i

[1, 3, 5, 6]. Points that do not satisfy the inequality constraints
((4),(5),(6a),(6b)) are neglected a posteriori. This leads to a
collection of feasible points for zi, i.e., for a set of admissible
{pk,l, qk,l}(k,l)∈Bc

i
at the interconnection to the TSO grid.

More recent approaches explore the boundary of admissible
zi more systematically by solving a sequence of auxiliary
optimization problems

min
yi,zi

∑
(k,l)∈Bc

i

ck,l pk,l + dk,l qk,l s.t. (yi, zi) ∈ XAC
i , (7)

where ck,l, dk,l ∈ {−1, 0, 1} are cost coefficients. Note that
the solution to (7), (p⋆k,l, q

⋆
k,l), is located at the boundary of

PAC
i , see also [2, 7, 8].
The above methods compute sampling points, which are

difficult to consider in the TSO problem without further
processing. A common remedy is to compute the convex hull
of the sampling points leading to a convex polyhedron, which
can be easily integrated into the TSO problem. This polyhe-
dron is, however, an approximation of the true admissible set
and thus might include non-admissible {pk,l, qk,l}(k,l)∈Bc

i
, cf.

Section V-C. If the TSO chooses one of these points values,
disaggregation fails.

IV. AGGREGATION VIA APPROXIMATE DYNAMIC
PROGRAMMING

The aggregation ideas from above can be generalized to
tree-structured optimization problems resulting in Feasibility-
Preserving Approximate Dynamic Programming (FP-ADP)
[11]. Next, we apply this ADP framework to problem (6).

A. Aggregation as Set Projection

The fundamental observation of FP-ADP is that aggregation
is equivalent to a set projection of the feasible set of the DSOs,
Xi, on the coupling variables zi. The set projection of X ⊆
Y × Z onto Z is defined as [19]

projZ(X )
.
= {z ∈ Z | ∃ y ∈ Y with (z, y) ∈ X} ⊆ Z. (8)

The above definition (8) can be interpreted as searching for
all coupling variables to the TSO, zi, for which there exist
local variables yi, i.e., admissible set-points of the local DERs,
which satisfy all grid constraints. Hence, aggregation can be
interpreted as computing the FOR

PAC
i

.
= projZi

XAC
i . (9)
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B. Value-Function Reformulation

Next, we outline the full loop of aggregation, solving
the TSO problem, and disaggregation in the framework of
FP-ADP [11]. Doing so allows to guarantee feasibility and
it enables to include cost information in the aggregation-
disaggregation scheme.

We partition the cost function of problem (6) into local ones

fi(x)
.
=

∑
k∈Gi

fk(p
g
k), (10)

where Gi is the set of generators in DSO problem i ∈ C.
Next, we reformulate problem (6) via value-functions Vi for
each DSO, which depend on the coupling variables zi:

min
y1,{zj}j∈C

f1(y1) +
∑
j∈C

Vj(zj) (11a)

subject to (y1, {zj}j∈C) ∈ X̄AC
1 . (11b)

Recall that C is the set of all DSOs, and subsystem j = 1
refers to the TSO. Moreover,

X̄1
.
= X1 ∩ (Rny1 ×

⋂
j∈C

PAC
j ),

where X1 is the constraint set of the TSO and PAC
i is the set

projection of the feasible sets of the DSO problems onto the
coupling variables with its parent zi from (9), i.e., the FOR
of the feasible sets of all DSOs.

The value functions Vj are defined via DSO problems

Vi(zi)
.
= min

yi

fi(yi, zi) (12a)

subject to (y1, zi) ∈ XAC
i (12b)

for all i ∈ C. Note that Vi includes cost information of the
DSOs, i.e., the cost for using a DER can be communicated to
the TSO via Vi. Computing Vi explicitly is hard in general
due to the minimization over yi. An explicit computation
is possible only for special problem classes such as convex
quadratic programs [20]. To overcome this issue, one can
compute approximations Ṽi ≈ Vi, one of which we present
in Section VI.

C. Feasibility-Preserving ADP

The overall algorithm is summarized in Algorithm 1 with
a graphical illustration in Figure 2. In step 1), the projections
PAC
i (i.e., the FORs) of the feasible sets of all DSO problems

j ∈ C are computed (Aggregation). It is possible to combine
this information with an approximation of the value function
Ṽi ≈ Vi which captures cost information. If this is not
desired, one can use the trivial approximation Ṽi ≡ 0 or the
approximation presented in Section VI. Step 2) includes all
(PAC

i , Ṽi) in the TSO problem (11), which is solved in step
3). The optimal coupling variables z̄⋆i , are communicated to
the DSOs in step 4). The DSOs solve their OPF problems (12)
for fixed z̄⋆i (Disaggregation) in Step 5).

Note that if one is able to compute exact projections
PAC
i and exact value functions Vi, Algorithm 1 recovers the

exact solution of the original OPF problem (6). Moreover,

Algorithm 1: Feasibility-Preserving ADP for (6)

Backward sweep:
1) Compute the FORs PAC

i via (9), and Ṽi ≈ Vi for all
DSOs i ∈ C and send them to the TSO. (Aggregation)

2) Include all (Ṽi,PAC
i ) into the TSO problem (11).

Forward sweep:
3) Solve (11). (Solve TSO problem)
4) Distribute optimal coupling variables z̄⋆j to all

DSOs j ∈ C.
5) Solve (12) for fixed z̄⋆j at all DSOs. (Disaggregation)

if we replace Vi with approximations Ṽi and compute PAC
i

by suitable, i.e., not too conservative, inner approximations
P̃i ⊆ PAC

i , Algorithm 1 guarantees to compute a feasible but
potentially sub-optimal solution [11]. Recall that for a safe
system operation, guaranteed feasibility is pivotal.

V. AGGREGATION BASED ON SET PROJECTION

The previous discussion leads to four core research ques-
tions for aggregation:

1) How to efficiently compute set projections PAC
i or

approximations thereof (P̃i ≈ PAC
i )?

2) How to ensure that approximations satisfy P̃i ⊆ PAC
i ?

3) What are suitable value function surrogates Ṽi ≈ Vi that
capture the cost of DER usage?

4) What are suitable parametrizations and data formats to
communicate (PAC

i , Vi) between DSOs and the TSO?
In the following, we present first ideas for addressing these
questions. We focus on the computation of the projections
PAC
i and P̃i, i.e., on aggregation, which is most expensive and

critical in Algorithm 1 to guarantee feasibility of solutions.
All numerical results in this section are based on the

15-bus radial DSO grid model case15nbr from [21, 22],
where the loads on buses 8, 10 and 13 are replaced by
renewable generators with double the active power limit. We
use JuMP and IPOPT for solving optimization problems
and Polyhdra.jl for computing polyhedral projections
[23–25]. The computations used an Intel i5-10210U machine
with 8GB of RAM.

We start by assuming constant voltage vk = 1p.u. for the
coupling node k ∈ N c

i as commonly done in the literature.
Since this assumption might not always be satisfied in reality,
we show how to consider voltage dependency in our scheme
later in Section V-E. Furthermore, we use a quadratic penal-
ization of RES curtailment for a cost fk.

A. Projection Based on the DC Model

In case the DC model is used for the DSO problems,
Xi is a convex polyhedron in half-space representation (H-
polyhedron) [12, 26]

XDC
i

.
= {xi | Aixi = bi, Cixi ≤ di},

where the matrices and vectors (Ai, Ci, bi, di) contain the
DC power flow equations, generator limits and line flow
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limits [11]. In this case, projection algorithms from com-
putational geometry such as Fourier-Motzkin elimination or
vertex enumeration can be used to compute PDC

i , cf. [26–28]
and references therein for an overview, and to [29] for an
implementation. However, using the DC model for distribution
grid is problematic since voltage limits and the reactive power
are neglected. Furthermore, the feasible range in the active
power can be too optimistic since line losses are neglected.
Next, we employ different versions of the DistFlow model
for radial and balanced grids, which allows constraining nodal
voltage magnitudes and reactive power. These constraints are
especially important for distribution grid operation.

B. Projection Based on the DistFlow Model
Consider the DistFlow model [30]—an alternative repre-

sentation to the AC power flow model for radial grids. It reads

pk,l =
∑
j∈Ck

pk,j + pk + rk,l ℓk,l, (13a)

qk,l =
∑
j∈Ck

qk,j + qk + xk,lℓk,l, (13b)

νk = νl + 2(rk,l pk,l + xk,l qk,l)− (r2k,l + x2
k,l)ℓk,l, (13c)

ℓk,l =
p2k,l + q2k,l

νl
(13d)

where rk,l and xk,l are the resistance and reactance, the real
and imaginary part of the impedance zk,l = 1

gk,l+jbk,l
of

branch (k, l) ∈ B. The variables νk and ℓk,l are, respectively,
the squared nodal voltage and the squared branch current, i.e.,

νk
.
= v2k for all k ∈ N . (14)

Hence, the feasible set of the DSO problems becomes

XDF
i

.
=

{
xi ∈ Rnxi | (2)-(5), (6b)-(6d), and (13) hold

for all k ∈ Ni, and ∀(k, l) ∈ Ei
}
,

with xi =
[
[pgk, q

g
k, pk, qk, vk, θk]k∈Ni

, [pk,l, qk,l]
⊤
(k,l)∈Bi

]
]
.

Note that XDF
i and XAC

i are equivalent under a nonlinear
coordinate transformation, i.e., XDF

i is (in contrast to the
following models) not an approximation.

C. Approximation via LinDistFlow and Loss Linearization
The only constraint leading to non-convexity of the

DistFlow model is (13d). Hence, different simplifications
of the equation have been proposed in the literature. In the
simplest version, [13], LinDistflow, line impedances are
neglected and therefore the squared branch current ℓk,l is taken
out of the calculation of power branches and nodal voltages,
i.e., ℓk,l = 0. Unlike the DC formulation, LinDistFlow also
models non-constant voltages. The resulting set of constraints

XLDF
i = {xi ∈ Rnxi | (3)-(5), (13a) − (13c), (15a)

v2 ≤ νk ≤ v̄2, k ∈ Ni, (15b)
pgk = qgk = 0, k ∈ Ni \ Gi, (15c)
ℓk,l = 0, (k, l) ∈ Bi} (15d)

Fig. 3: Computing PAC
i using set projection.

has only affine terms and is thus again a H-polyhedron. The
resulting projection on the coupling variables (aggregation)
is shown in Figure 3 (orange). Furthermore, Figure 3 shows
the “true” PAC

i computed with sufficiently fine sampling from
Section III-B, and its corresponding convex hull PAC−CH

i .
We can see that the PLDF

i
.
= projZi

(
XLDF

i

)
using

LinDistFlow approximates PAC
i relatively well, but the

center is off-set compared to PAC
i to the lower left. This is

due to the fact that LinDistFlow neglects the power losses,
which results in the underestimation of the required power at
the interconnection to satisfy the demand.

Loss Linearization: Replacing (15d) by an affine approxi-
mation mitigates this issue. Here, similarly to [14, 31, 32], we
approximate (13d) by

ℓk,l ≈ ℓ0k,l + Jk,l|⊺x0
k,l

δk,l (16)

where

δk,l =

pk,l − p0k,l
qk,l − q0k,l
νl − ν0l

 , Jk,l|x0
k,l

=


2pk,l

ν0
l

2qk,l

ν0
l

− (p0
k,l)

2+q0k,l)
2

(ν0
l )

2

 , (17)

i.e., its first order Taylor series around the current operation
point x0

k,l
.
= [p0k,l, q

0
k,l, ν

0
l ] for all (k, l) ∈ E .

This leads to

XLDF−LL
i (x0

i )
.
=

{
xi ∈ Rnxi | (15a)-(15c), (16)

}
, (18)

which is again a convex polytope.
The resulting PLDF−LL

i of the LinDistFlow is also
shown in Figure 3 (red). Although not being an inner approxi-
mation of PAC

i , PLDF−LL
i is a close approximation computed

in one step, i.e., avoiding solving multiple AC OPF problems.
Moreover, it explicitly maintains (close to) feasibility in the
current and voltage limits of the DSO grid.

Extreme Renewable Generation: Next, we analyze the
approximation using the different methods in an extreme
case, when the power generation is unrealistically high.
Figure 4 shows the results of this experiment. We can see
that calculating the convex hull of the sampled points using
the AC-OPF leads to the inclusion of infeasible points, since
the area is non-convex.
The projection using the DC model no longer provides
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Fig. 4: Approximations of PAC
i using set projection for

extremely high generation.

the same range for active power as the LinDistFlow
model. This is due to the fact that the DC model doesn’t
express the nodal voltages and cannot therefore identify the
voltage violation that may occur. The LinDistFlow model
considers the voltages, but by ignoring the losses it still
overestimate the active power range. Lastly, we can see that
the LDF-LL variant suffers from the much larger range of
flexibility, having a worst approximation in the areas further
away from the operational point.

D. Inner Approximation of DistFlow Based on [14]

Another challenge is to compute “true” inner approxima-
tions P̃i ⊆ PAC

i . Next, we present an approach based on [14],
which seems to deliver that for our setting although this is not
proven yet. The key idea is to replace (13d), with lower and
upper bounds instead of linearizations

ℓk,l(δ
+, δ−;x0) ≤ ℓ+k,l

.
= ℓ0k,l +max {2|J⊺

k,l+δ
+
k,l + J⊺

k,l−δ
−
k,l|,Ψk,l}, (19a)

ℓk,l(δ
+, δ−;x0) ≥ ℓ−k,l

.
= ℓ0k,l + J⊺

k,l+δ
−
k,l + J⊺

k,l−δ
+
k,l, (19b)

where

Hk,l|x0
k,l

=


2
ν0
l

0 − 2pk,l

(ν0
l )

2

0 2
ν0
l

− 2qk,l

(ν0
l )

2

− 2pk,l

(ν0
l )

2 − 2qk,l

(ν0
l )

2 2
(p0

k,l)
2+q0k,l)

2

(ν0
l )

3

 , (20a)

where Jk,l+ (Jk,l−) are vectors in which only the positive
(negative) elements of Jk,l appear and the other elements are 0
and Ψk,l represents the maximum value obtained by evaluating
(δ

+/−
k,l )⊺Hk,l|x0

k,l(δ
+/−
k,l ) over eight different combinations of

δ
+/−
k,l . These combinations arise from considering the two

possibilities for each of the three elements (pk,l, qk,l, vk),
switching the lower and upper bound for ℓk,l in the calculation,

described below in (21a)-(21f), cf. [14]. With these bounds,
we define proxy variables

p+k,l ≥
∑
j∈Ck

pk,j − pk + rk,lℓ
+
k,l(δ

+, δ−;x0), (21a)

p−k,l
.
=

∑
j∈Ck

pk,j − pk + rk,lℓ
−
k,l(δ

+, δ−;x0), (21b)

q+k,l ≥
∑
j∈Ck

qk,j − qk + xk,lℓ
+
k,l(δ

+, δ−;x0), (21c)

q−k,l
.
=

∑
j∈Ck

qk,j − qk + xk,lℓ
−
k,l(δ

+, δ−;x0), (21d)

ν+k
.
= νl − 2rk,lp

−
k,l − 2xk,lq

−
k,l + (r2k,l + x2

k,l)ℓ
+
k,l(·), (21e)

ν−k
.
= νl − 2rk,lp

+
k,l − 2xk,lq

+
k,l + (r2k,l + x2

k,l)ℓ
−
k,l(·). (21f)

The idea is that these proxy variables represent the “worst
case” for their counterparts by assuming that the correspond-
ing term for ℓk,l is fixed at its lower/upper bound. Since
rk,l, xk,l ≥ 0, these variables satisfy

p−k,l ≤ pk,l ≤ p+k,l, q−k,l ≤ qk,l ≤ q+k,l, ν−k ≤ νk ≤ ν+k , (22)

where (pk,l, pk,l, νk) are the “true” values from (13). If we
require that these proxy variables satisfy

v ≤ v−k , v+k ≤ v̄, k ∈ N , (23a)

0 ≤ l−k,l, l+k,l ≤ l̄k,l, (k, l) ∈ B, (23b)

we get ranges for the admissible zi for fixed set-points of the
DERs which correspond to the uncertainty due to the absence
of exact knowledge of the loss term. Consider

XDF+
i

.
= {(p−, p, p+, q−, q, q+, ν−, ν, ν+) | (19)-(23) holds},

which is an enlarged feasible set based on the DistFlow
model including all proxy variables. Observe that XDF+

i is
convex but described by nonlinear inequalities due to (19a).
Hence, we can not use the polyhedral tools from before.

However, we can use the sampling-based approach from
Section III-B, where we replace the feasible set by XDF+

i .
Doing so yields a range of possible (pk,l, qk,l), (k, l) ∈ Bc

i

defined by their corresponding proxy variables, see Figure 5
(yellow boxes). The uncertainty in (pk,l, qk,l), (k, l) ∈ Bc

i

comes from the unknown losses, which are considered via the
upper and lower bounds (19). We compute the corresponding
PDF+
i (Figure 5 (green)) set as the intersection of all P̃DF+

i ,
i.e, the four polyhedra formed by the sampling of the different
proxy variables (p−, q−), (p−, q+), (p+, q−), (p+, q+). It is
intuitively clear that this corresponds to feasibility even in
the worst realization of the losses and we conjecture that
doing so leads to an inner-approximation PDF+

i ⊆ PAC
i .

Numerical simulations support this conjecture; a rigorous
proof is, however, subject to future investigation. Observe
that around the operational point, Figure 5 (black cross), the
difference between over and under approximation of the loss
is small. The opposite is true for points far from x0 indicating
a high dependency of the tightness of the approximation on
the operation point.
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Fig. 5: Inner approximation of PAC
i .

E. Considering Voltage Dependency

Now, we demonstrate the influence of the voltage on the
FOR and show that the proposed method can include voltage
information easily. Figure 6a shows PLDF

i , where the voltage
is not fixed anymore. One can see that if there is no congestion
on the lower grid, it is reasonable to fix the voltage at the
interconnection when calculation the aggregated area since the
FOR for pk,l and qk,l, (k, l) ∈ Bc

i almost doesn’t change with a
change in νk. However, considering that the main application
scenario of flexibilities is in case of congestion and voltage
bound violations, this assumption is not reasonable, cf. Figure
6b. It is also important to note that with our method it is
relatively simple to represent this interdependence: we simply
project the constraint set onto three variables instead of two.

pk,l
qk,l

νk
PLDF
i

(a) Basic feed-in.

pk,lqk,l

νk PLDF
i

(b) High feed-in.

Fig. 6: Dependency of (pk,l, qk,l) on νl, (k, l) ∈ Bc
i .

F. Comparison

Computation times for all previous aggregation schemes are
summarized in Table I. The computation time of the sampling
approaches for PAC

i and PDF+
i via (7) depends on the number

of samples, i.e., their desired “resolution”. Sampling PDF+
i

requires the highest amount of time due to the nonlinear
model and the additional proxy variables. Projection of PLDF

i

and PLDF−LL
i via Polyhedral.jl is slightly faster and

projecting PDC
i shows the lowest computational time due to

its simplicity. With respect to the quality of solution, the
resulting PLDF−LL

i seems to deliver the closest approximation
of PAC

i . From the sampling methods, PDF+
i results in a

convex inner-approximation of PAC
i potentially leading to

feasibility guarantees. However, depending on the load, this
approximation can be conservative and feasibility might be
lost. The sampling of PAC

i in combination with the convex

TABLE I: Computation times.
Algorithm #Samples Time (s)

AC Sampling of PAC
i 18 0.626377

64 1.624352
AC Sampling of PDF+

i 18 2.532605
64 6.197835

Projection PDC
i - 0.001840

Projection PLDF
i - 0.222937

Projection PLDF−LL
i - 2.927589

Fig. 7: Approximated cost of flexibility usage for vi = 1p.u..

hull includes infeasible points, which can lead to failure of
the overall scheme.

VI. COST AGGREGATION

Often it is important to also communicate some cost infor-
mation Ṽi ≈ Vi for DER usage such that the TSO can choose
an economical set-point. Next, we present a quadratic fit for
Vi, which can be easily communicated to the TSO via one
matrix-vector tuple. This description is smooth and easy to
handle by numerical solvers at the TSO level.

First, we collect samples of Vi, which we do by gridding.
For each grid-point z̄i = (p̄k,l, q̄k,l) with vk = 1p.u.1 at the
interconnection (k, l) ∈ Bc

i , we evaluate (12), i.e., we compute
Vi(z̄i) via numerical optimization. We then use a simple least-
squares regression from Optim.jl [33] to fit a quadratic
function

Vi(zi) ≈ Ṽi(zi)
.
=

1

2
z⊤i Hizi + h⊤

i zi, (24)

where (Hi, hi) are the coefficients to be found. The resulting
fit Ṽi and the “true” Vi computed by interpolation of samples
are shown in Figure 7. Although not being exact, especially
close to the boundary of PAC

i , the quadratic function provides
a good approximation in the interior, which is valuable infor-
mation for the TSO.

VII. CONCLUSION AND OUTLOOK

In this paper, we have proposed a framework for flexibility
and cost aggregation based on approximate dynamic pro-
gramming, which provides feasibility guarantees and makes
established tools from computational geometry available for

1In contrast to the FOR PAC
i , the cost Vi is insensitive to voltage change.
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aggregation. We have implemented the framework using dif-
ferent versions of the DistFlow model on a medium-sized
feeder. These results show that our proposed approach allows
to capture voltage information and they demonstrate promising
features of the proposed framework.

Future work will investigate rigorous inner approximation
properties and the extension towards problems with multiple
interconnections and including storage.
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