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Abstract—Reducing operating balancing costs is paramount
for an affordable transition towards renewable-dominated power
systems. In European balancing markets, operating balancing
costs are driven by the activation of automatic and manual
frequency restoration reserves, respectively aFRR and mFRR.
An inadequate combination of both products for resolving grid
imbalances may result in economic inefficiencies where, e.g.,
saturated aFRR can lead to balancing price spikes. To avoid such
situation, we propose a proactive activation policy of manual
reserves, aiming at an optimal trade-off between aFRR and
mFRR products via a stochastic optimization method. The tool
is fed with 1-min time trajectories of system imbalances covering
the next quarter hour. The one minute temporal granularity
allows modeling the ramping phenomena of mFRR products,
while keeping track of the faster activation of aFRR products.
The proposed balancing energy activation methodology is tested
on Belgian market data, which currently adopts a reactive bal-
ancing strategy. Ex-post comparisons of the proposed balancing
strategy with a reactive one show that our methodology allows
a decrease of the balancing activation costs. This is expected as
early activation of mFRR, when appropriately provided, allows
avoiding the activation of extremely high aFRR bids.

Index Terms—Frequency restoration reserve, proactive activa-
tion, probabilistic forecasting, stochastic optimization.

NOMENCLATURE

Sets and Indices

se8 Set of system imbalance scenarios.
teT Set of time intervals.
re R([j//rﬁ) Set of FRR bids (upward/downward).

Parameters

V. Volume of FRR bid [MW].

C, Price of FRR bid [€/MWh].

R, mFRR ramping rate [MW/min].

dtq aFRR control signal time step [h].

dt,, mFRR control signal time step [h].

Cack Cost associated to an area control error in the
objective function [€/MWh].

Ts Scenario probability.

Decision Variables

ag {? Activated aFRR volume [MW].
mge/ 1?7- Activated mFRR volume [MW].
mgea?t Real mFRR power supplied [MW].

This work is financed through the ADABEL project.

Amgff/)_ mFRR power step [MW].
ACE, , Area control error [MW].
RStUJr//[i Ramping start time interval (binary).
zgi?_ Ramping status (binary).

I. INTRODUCTION

Climate change concerns are driving European countries
to significantly increase the penetration of renewable energy
sources and thereby reduce greenhouse gas emissions [1]. The
growing share of intermittent renewable sources along with the
fast increase of the electricity demand due to the electrification
of energy needs such as mobility and heating induce high lev-
els of uncertainty. In this context, more flexibility sources are
required by the system to dampen the potential consequences
of uncertainty factors. Covering this need in a cost-optimal
way is crucial if we wish not to dampen the efforts towards
the actual transition of electricity systems.

In European balancing markets, frequency restoration re-
serves (FRR) are the principal mean for transmission system
operators (traded through the PICASSO and MARI platforms)
to restore the frequency [2]. Two types of FRR coexist, i.e.,
i) the automatic FRR (aFRR), which is continuously activated
via controllers following a merit-order dispatch signal based
on a real-time frequency error, and ii) the manual FRR
(mFRR) characterized by a longer activation time (typically
12.5 minutes) and whose activation are subject to operator
decisions!.

Among the European transmission sytem operators (TSOs)
there are several different policies for the activation of bal-
ancing energy [3]. Some countries, such as France, mainly
rely on mFRR units with their large nuclear plants while
others, such as Germany, activate aFRR units most of the time.
Unfortunately, these policies might not be cost-efficient in all
cases. In Belgium, for instance, expensive aFRR products may
be activated while cheaper mFRR products remain available.
Following a higher need for flexibility, the impact of cost-
inefficient activation of aFRR and mFRR on society increases
significantly, balancing costs being passed on the balancing
responsible parties who themselves passed them on end-users.
The activation of aFRR are automatic and based on control
errors, widely accepted. Whereas, the activation of mFRR are

IThis work focus on the aFRR and mFRR considering the preliminary
action of frequency containment reserve (FCR) in the balancing of the system.
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more fuzzy, partly because the product is at the crossroad
between reactive and proactive scheme.

Depending on the relative price differences between both
products, a proactive activation of mFRR may result in po-
tential cost savings for offsetting foreseen grid imbalances
[4]. With respect to a reactive TSO’s activation policy, the
proactive activation of manual reserves necessitates to forecast
the future needs in balancing services, and not only rely on
the real-time control error signal [3].

In this line, this paper presents a stochastic model using
probabilistic predictions of system imbalance for scheduling
optimally early activation of mFRR minimising expected
balancing costs. The proactive activation of manual reserves
has already been addressed in the litterature. Particularly in
[5], the authors propose a method to activate replacement
reserves (RR) and manual reserves (mFRR) through sequen-
tially cleared balancing markets based on a imbalance forecast.
However, this paper does not quantify the potential savings
for a TSO and it does not address the effects of forecast
uncertainty on the benefits of the proposed method. In [6],
regulation reserves (i.e., quick-start reserves, tertiary reserves
- or mFRR, etc.) are optimally scheduled through a multi-
objective optimisation problem with a cost function aiming
at maintaining the power balance at a minimal cost. They
perform the optimisation on a rolling horizon with a deter-
ministic system imbalance scenario. Although they observed
balancing costs savings, they highlight the impact of the
prediction error on the amount of activated aFRR which can
be a more dynamic but expensive product in some countries.
Reference [7] significantly improves the aforementioned works
as it proposed a stochastic optimisation problem to schedule
aFRR and mFRR products in a cost optimal way taking into
account forecast errors, but the use case definition miss the
potential savings behind the proactive activation of mFRR as
the bid prices are set lower for mFRR products than aFRR
ones.

The methods for the activation of FRR reserves, proposed
in the aforementioned works, either include the system imbal-
ance forecast or a stochastic formulation of the optimisation
problem but never both at once. In this paper, we go beyond
by proposing a full probabilistic prediction - scenario-based
decision chain to address the problem of proactive activation
of mFRR reserves and validating this results with real data to
quantify the benefits of the method. The main contributions
of this paper are the following:

« we derive a tool that generates a probabilistic forecast of
the future system imbalance over one quarter of an hour,

« we formulate the proactive activation of mFRR products
through a stochastic optimization methodology.

We perform a cost-benefit analysis, based on real Belgian data,
and investigate the dependence of the attainable cost reduction
on the accuracy of the system imbalance forecast.

The remainder of the paper is organized as follows. Section
2 compares the current activation policy of FRRs products in
Belgium to a simple version of the methodology proposed in

Section 3. This particular section describes the prediction tool
and the formulation of the stochastic optimization problem.
Section 4 presents the main results in terms of economic and
balancing performances. Conclusions are drawn in the final
section.

II. ACTIVATION OF AFRR AND MFRR: CURRENT
BELGIAN REGULATORY FRAMEWORK

In this section, we introduce the current practice for the
activation of FRRs in Belgium, and put it into perspective with
a naive alternative approach (inspired by our proposed method-
ology in Section III) highlighting the benefits of making the
trade-off between aFRR and mFRR bids for the activation of
FRR.

These two types of FRR diverge in terms of time response
and activation procedure as aFRR is continuously activated
via controllers based on a real-time frequency error, and
mFRR is manually activated by the operator with a longer
activation time (typically 12.5 minutes). In Belgium FRR
products are activated based on the following methodology.
After the imbalance netting process (IGCC), the activation of
aFRR is based on a merit order mechanism constituted of the
aFRR energy bids for the concerned quarter of an hour. The
decision is taken every 4 seconds by the aFFR controller that
also calculates the control targets, i.e. volumes requested per
energy bid. The mFRR activation decision is taken based on
the system imbalance of the 10 previous minutes (minimum)
and the level of activated aFRR. The goal of manual reserves
is to avoid out-of-range area control error and to alleviate
the automatic ones. The activated mFRR energy bids are
also activated according to a merit order mechanism that
additionally considers technical properties of the bids. The
requested mFRR volume holds for the entire quarter of an
hour.

A similar simplified activation policy is used as benchmark
for the evaluation of the proposed approach. This policy, called
Actual Policy in Fig.l and in the remaining of the paper,
implies that the system imbalance is firstly covered by aFRR
based on the merit order principle and that mFRR solely
compensates residual imbalance when the automatic reserves
do not compensate it all.

Nowadays, this practice for activating FRRs resources may
not be the most cost-efficient. Indeed, aFRR bid prices tend
to increase fostered by their priority activation. Despite their
high prices, aFRR volumes are activated while cheaper mFRR
volumes could be activated instead. For instance, over the year
2022, during each quarter of an hour, 900 MW of mFRR
bids had a cheaper activation price than 60 MW of aFRR
bids on average in Belgium. In this framework, putting in
perspective aFRR and mFRR bids to decide the balancing
actions could reduce the balancing activation costs. Such
potential cost savings can be observed from the balancing bids
submitted in 2022. Assuming perfect information on the future
system imbalance (SI), Fig.1 shows that identifying the best
interplay between mFRR and aFRR products (similar dynamic
considered for the sake of simplicity) achieves a 35% decrease
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Fig. 1. Average balancing costs per quarter-hour over the year 2022
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Fig. 2. Flowchart of the forecast-driven proactive activation tool of mFRR
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in terms of balancing cost compared to the simplified actual
policy.

Those preliminary results, even though they carry a key
message, are upper cost savings limits. aFRR and mFRR
products do not have the same dynamic behaviour, aFRR
products being able to respond much faster as described
previously. However, with a proactive activation of mFRR
volumes TSOs could anticipate their ramping period and
optimize the balancing action. Hence, the remaining of this
work propose a stochastic Proactive Policy for the activation
of mFRR reserves.

III. FORECAST-DRIVEN PROACTIVE ACTIVATION TOOL

The overall methodology for activating proactively volumes
of mFRR reserves under uncertainty is layout in Fig. 2. This
methodology is divided into two blocks, i.e., one about the
generation of 1-min time trajectories of system imbalances?,
and the other one about the actual proactive provision of
mFRR balancing energy. Accordingly, section III-A details
the first block of the overall methodology, while section III-B
details the proactive balancing cost minimization problem
faced by the TSO.

A. Prediction of 1-min time trajectories of System Imbalance

The approach for generating 1-min time trajectories of
system imbalances is composed of two steps, one producing
scenarios of 15-min averaged system imbalances, and a second
step for deriving 1-min time trajectories of system imbalance
for each drawn scenarios. System imbalance prediction is
known to be a hard task already for 15-min average values,
and this difficulty gets worse when inferring its intra quarter
hour dynamic behavior. Hence, predicting directly 1-min time
trajectories of system imbalances might be a too noisy process
to infer, and we thus prefer here decomposing the prediction
task into two steps. Fig. 3 exemplifies this two-step approach,
where three 15-min system imbalance scenarios are randomly

2Note that, in our case, we retrieve the imbalance netting contribution of
neighboring countries from the system imbalance.
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Fig. 3. Prediction example of three 1-min time trajectories of System
Imbalance. On the right-hand side figures, the red lines represent the 15-min
system imbalance scenarios and the blue lines represent the 1-min nearest
neighbour trajectories.

picked from a forecasted cumulative distribution function (f-
CDF) (shown on the left-hand-side of Fig. 3). Each scenario
is then mapped with a 1-min time trajectories via a nearest
neighbor method (as observed in the right-hand-side of Fig. 3).

The forecasted CDF is obtained using a spline cubic inter-
polation between predicted quantiles. The quantile forecasts
are outputted by an advanced neural architecture based on
the Transformer architecture which is trained offline [8],
[9], [10]. This deep learning model emerge as one of the
best approaches for forecasting real-time market variables, as
exemplified by [8] and [11]. More particularly, a set of quantile
prediction (ranging from the I-percentile to the 99-percentile
in steps of 5) are generated at the beginning of each quarter
hour in a rolling window approach. The inputs are time series
observed on previous quarter hours, and future information
available over the next quarter hour. More specifically, times
series observed consist of previously measurements of, e.g.,
system imbalance, activated balancing services, or the netted
physical exchanges of Belgium with neighbouring countries
over a look-ahead horizon, while future information primarily
concerns calendar information, the schedules of power units,
and forecasted wind and photovoltaics powers over the next
quarter hour.

After a uniform random sampling of Ng scenarios from
the f-CDF (being thus of equal probability 7), each 15-min
scenario of system imbalance is mapped with a 1-min time
trajectory of system imbalance. This mapping is performed
via the nearest neighbor approach. Practically, the nearest
neighbor approach ranks all 1-min time trajectories of system
imbalance contained in a historical database based on the
similarity of their average value w.r.t. the 15-min scenario,
and directly forwards the closest one.

B. Proactive Activation of mFRR

The generated scenarios are used by the stochastic opti-
misation model to compute the optimal volume of mFRR
that should proactively be activated to minimise the balancing
activation costs and the area control error. The problem models
the operational behaviour of the aFRR and mFRR products in
the balancing process. The full formulation of the problem is
presented in the following.
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1) Objective Function: Finally the objective is to minimise
the area control error and balance the system at minimum
costs.

U U D D
COStSS = Z(CmFRR,Tmreq,r + CmFRR,rmreq,r)dtm
r
U U D D
+ Z Z(CaFRR,rar,t,s + CaFRR,rar,t,s)dtll (l)
T t

The FRR products are activated according to the prices
of aFRR, C FRR »» and mFRR, C’ FRR ,» bids submitted
on the balancing market via market order mechanism. The
balancing services providers are remunerated on a pay-as-
bid principle considering the requested volume of aFRR and
mFRR. Consequently, (1) defines the balancing costs structure.

The resulting scenario-based proactive activation of mFRR
problem writes as’

manﬂs (Cack Z |ACE, s|dt,) + Costs,)  (2)
s.t. aFRR Constramts H-®
mFRR Constraints (3)- (18)
Balancing Constraint (19)
Costs Constraint (20)
with © = (ol mi Lm0 Am2_ ACE, .
RStDﬁf , tUJ/r]? } the set of decision variables. In (2), Cacgr

represents the cost associated with an area control error. It
is set slightly higher than the most expensive FRR bid such
that every bid could be activated, considering the balancing
task more crucial than economical savings. The absolute
value in (2) is linearized by decomposing the area control
error into its positive and negative component ACE; , =
AC'E;r s — ACE, , and reformulating the absolute value,
|ACE, | = ACE;, + ACE; . Big-M constraints are used
to ensure that the two components are mutually exclusive as
for linearizing the bilinear terms in (5) and (21) [12]. This
problem can therefore be formulated as a mixed-integer linear
program (MILP) problem that can be solved efficiently using
off-the-shelve solver (Gurobi) which implements the branch-
and-bound algorithm.

2) Balancing constraint: The aFRR and mFRR reserves are
activated in order to compensate the system imbalance of the
system and consequently, restore the frequency.

ACE =51t Y i Y b,
rerY rerRp
+ mTUeal,t - mf)eal,t vt € T, Vs (S S (3)

The remaining imbalance or area control error (ACE) is the
sum of the system imbalance and the net regulation volume,
i.e. net aFRR and mFRR volumes activated. (3) is defined for
all Ng sampled system imbalance profiles during the quarter
hour of interest, gh. However, for the previous quarter, gh — 1,

3Note that the data used in the numerical study of Section IV is anonymized
and it is therefore not possible to consider network constraints which may
impact the activation decisions to avoid congestion.
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Fig. 4. Example of mFRR units ramping variables states with T = 4. Plain
line are for requested mFRR volumes and dashed/dotted lines are the real
supplied power curve (blue = gh — 1 and red = gh).

a single scenario that is the median of the CDF generated at
the beginning of this particular quarter (i.e., 15 minutes before
the quarter gh) is considered.

3) Manual Frequency Restoration Reserves: In this model,
two mFRR signals are distinguished: the requested mFRR
volumes, mge/q%, and the mFRR power really delivered to the
system, mge/a?T. Indeed, if each requested volume holds for
15 minutes, dt,,, mFRR products have a slower reaction time

and are subject to ramping constraints.
U/D

0<mil <V, g, VrerRY/P 4)
ml,,mb, . =0 VreRY/?P (5)

The mFRR requested volumes, similarly to aFRR ones are
positive and limited by the submitted bids volumes, vyl F RR.m
in (4) and upward and downward reserves can not be activated
during the same quarter of an hour thanks to (5).

The real power delivered by the mFRR reserves, m, al,r
follows the request but transitions between two requested
levels are constrained by a fixed ramping rate, R,,, in both
directions. In the proposed proactive policy, mFRR units can
start ramping during the previous period, gh — 1, as shown
in Fig.4. The real power delivered during this quarter hour,

e., the total mFRR power is considered as all units have a
common ramping rate, is defined over two quarters: the quarter
of an hour for which the optimal mFRR set point is computed,
gh and the previous quarter during which the ramping might
start, gh — 1.

T+1
Z RSP+ RSPV

T+1

> RS7 + RS,
t=1

T+1

> RSP + RSy =1 vteT
t=1

D/U
RSt /=

=1 VteT (6)

=1 VteT 7)

3)
€{0,1} VteT 9

Equation (9) introduces binary variables, RSt + , that take
a value of 1 when the mFRR units start ramping. Equation
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(6) ensures that neither upward nor downward reserves receive
ramping start signals in both directions during the same quarter
hour. Equations (7)-(8) also constraint upward and downward
products to not ramp in the same direction.

t+T
Am" D =R, STRSDY vi=-T+1:0 (10
T=1
U/D _ ,u/D U/D U/D
Myeal,~T+1 = Mprev,1 + Ame+1,+ - AmeJrl,f (11)
u/D _ _U/D U/D U/D
mreal,t - mreal,t—l + Mprev,t — Mprev,t—1 (12)
+AmgiD—AmgiD Vi=—-T+2:0

If mFRR units start ramping during the previous period, (10)
fixes the power variation, Amt’ _, to R,,. This variation
comes on top of the already activated volumes that follow the
control signal sent 15 minutes earlier. The real power delivered
during the previous quarter of an hour is modified as expressed
in (11)-(12), where mg/elg)t is the power that was expected
to be delivered during the previous quarter, gh — 1, when
computing the requested mFRR volume during this particular
quarter.

Ayl > 2P R VE=1:T (13)

Amg-/s-[/)— < ng?_Rm Vi=1:T (14)

U/D U/D L

Zib1 ) — < 2 - Vti=1:T (15)

/ T+1 ,
U/D D/U
20l)- =D RS (16)
t=1

mge/all),t = Ze/all),tfl + AmgiD - Amgé Vi=1:T
17

zgi?_ €{0,1} Vt=0:T (18)

During the quarter of interest, gh, the ramping may continue
until the requested level is reached. (18) introduces other
binary variables defined during the concerned quarter of an
hour, gh, that represents the ramping rate status of upward
and downward reserves. (13)-(16) ensure that as long as the
power varies the ramping rate stays constant. The power really
supplied by mFRR units evolves as expressed in (17).

T
U/D U/D U/D
> Amyl) = > mFRRD-mFRRYS, ., (19)
t=1-T ’I”GR%/D

The transition between the total previously requested mFRR
volume, mFRRﬂ/qg,rev, and the total requested mFRR vol-
ume, mF RRge/qj?,«, must be finished before the end of the
concerned period. That is to say that the total mFRR power
variation over the two quarters, gh—1 and gh, must be equal to
the difference between the requested mFRR volume of those
two quarters as written in (19).

4) Automatic Frequency Restoration Reserves: The aFRR
products are modelled with a 1 minute resolution, dt,. Al-
though both reserves are subject to ramping time limit, only

mFRR ramping constraints are modelled throughout this paper
given the faster reaction of aFRR controller.

U/D U/D

0<ate <Vilpr, VreRYPVEeT VseS (20)
aTUA’tysafft’S =0 VreRYPvteT,VsecS (1)
The amount of activated aFRR, ag ,{E, is positive and limited

. . U/D
by the available volumes submitted to the TSO, VaFRR’T,

in (20). Simultaneous activation of upward and downward
products, which might occur when some bid prices are neg-
ative (i.e., potential revenues generated by playing in both
directions), via (21).

IV. NUMERICAL SIMULATIONS

Three balancing energy activation strategies are tested and
compared: (1) a reactive balancing energy policy, i.e., mFRR
are actived only in case of saturation of aFRR, (2) an optimal
FRR products trade-off (showcased in section II), and (3)
our proposed forecast-driven proactive activation policy. The
decision to activate mFRR is made at the beginning of the
quarter hour for the approaches (1) and (2), while this decision
is performed 15 min before for the approach (3). Regarding
the forecasts of system imbalance, (1) and (2) employs a
deterministic approach, where the 1-min trajectory is obtained
using the median of the predicted CDF, while (3) considers
a set of 1-min trajectories derived by sampling the predicted
CDFE.

Those three strategies are implemented on a Belgian case
study and compared over each quarter hour of one year.
Notably, data are collected from the Belgian’s TSO (Elia)
website [13]. For the prediction of the 1-min time trajectories
of system imbalance, the data covering the period 2016-2021
is exploited as training and validation sets for the deep learning
model and as historical database for the nearest neighbor
approach. The year 2022 is used as a test set. aFRR and
mFRR bids, volumes and prices, are also gathered via the
Elia website. In practice, the ramping rate has a lower bound
requiring that the bid volume is fully activated in 15 minutes.
However, in the proposed formulation of the problem bids
might be discriminated based on their ramping rate limit as
the area control error has the biggest weight in the objective
function. Bids with faster ramping performances could be
activated by the decision tool even with higher prices while
the method aims at selecting the bids according to the prices.
Therefore, the ramping rate is fixed, for upward and downward
reserves and in both directions, to 250 MW per 15 minutes,
corresponding to the 0.95 quantile of the activated mFRR
volumes without ramping constraints.

The comparison is performed by applying ex-post the opti-
mal activated mFRR volumes to the true system imbalance
realisation, i.e. determine the optimal activation of aFRR
volumes considering the real imbalance while keeping the
value for the mFRR products requested by the prediction-
decision chain. The balancing energy activation strategies are
compared in terms of activation costs, balancing volumes and
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TABLE I
EXAMPLE: BALANCING STRATEGIES RESULTS FOR THE TWO PERIODS
Activation Strategy FRR Costs [€/MWh]  |ACE| [MW]
Actual Policy 97.9/110.2 115/110
Optimal Trade-Off 110.6/116.1 75.5/76
Proactive Policy 99.4/126.6 0.6/0

area control error, i.e., the remaining system imbalance error
after TSO balancing actions.

A. Discussion on the results of the three strategies

First, the principle of the different balancing energy acti-
vation strategies is illustrated on two periods in Fig. 6 and
the associated results are presented in Table I. We can see
that the strategy (1) (top graph) mainly activates aFRR units,
but as the aFRR volumes limits are reached some mFRR
volumes are also requested. However, even if the average costs
of the activated units may be lower than for the two other
strategies for the firs period, the average area control error are
significantly higher during the two periods if activated reserves
are selected sequentially. Indeed, strategy (2) improves the
previous one by activating a bit more mFRR reserves con-
sidering the bid prices of both aFRR and mFRR products.
Finally, the proposed forecast-driven proactive strategy (3),
further improves the balancing action by allowing to ramp
during the previous period. For the two periods, the strategy
(3) has the best objective function value.

Statistical information on the performances of the three
balancing energy activation strategies are presented in Fig. 5.
This figure shows the positive effects of considering both
aFRR and mFRR bids a quarter ahead (3) compared to a
reactive balancing policy (1). It avoids high FRR activation
costs when the system imbalance is high and the last aFRR
bids are expensive. It furthermore reduces the area control
error most of the time. This is also the case for the optimal
trade-off strategy (2). An optimal interplay between aFRR and
mFRR products already improves in many aspects the actual
policy benchmark (1) in terms of FRR costs and area control
error. Nevertheless, Fig. 5 allows assessing the impact of
forecast errors on the performances of the proposed activation
policy of FRR. Indeed, forecast made at the beginning of the
quarter of an hour are used in strategy (1) and (2), while
forecast made one quarter hour ahead feeds the strategy (3).
Interestingly, a proactive activation of mFRR reserves further
reduces the FRR activation costs while increasing the amount
of activated reserves. This may be due to the fact that ramping
trajectories of mFRR are not remunerated. As the system
imbalance may exhibits a significant auto-correlation, ramping
mFRR may also help the system for those quarter hours.
However, the additional FRR volumes activated seem to be
more consequent than the reduction of the area control error.
Indeed, forecast errors may have a negative impact on the
proactive activation of the reserves as the ramping decisions
also affect the real activated volumes of the previous quarter
of an hour. This may lead to the activation of more aFRR

to compensate a non-optimal activation of mFRR reserves.
The impacts of forecast errors are discussed in the following
section.

B. Forecast performances and its impacts on the activation of
mFRR

First, we evaluate the performance of the predicted imbal-
ance trajectories (used in strategy (3)) by using the Continuous
Ranked Probability Score (CRPS) [14]. Fig. 7(a) presents the
CRPS values in blue at both 15-minute (dashed line) and 1-
minute (solid line) time resolution. These results are compared
with a naive forecasting approach (showed in black in Fig.
7(a)), which randomly selects system imbalance values based
on the historical system imbalance CDF. As illustrated in
Fig. 7(a), the proposed forecasting tool outperforms the naive
method in both time resolution. More particularly, regarding
the 15-minute resolution forecasts, the transition observed in
the dashed blue line across the two quarter-hour intervals high-
lights the challenge in being accurate for system imbalance
prediction as the prediction horizon extends. This is illustrated
by the performance gap between the proposed forecasting tool
and the naive approach shifting from 13% to 5% across both
quarter hours. In the context of 1-minute resolution forecasts,
we can observe that, for both predicted quarter hours, there is
an increase in uncertainty during the initial minutes compared
to the latter ones. This observed behavior might be due to
the imbalance settlement period’s design, which operates on
a 15-minute time resolution. The transition between imbal-
ance settlement periods can trigger significant ramps in both
power supply and demand, which render the dynamics of the
early minutes of each quarter hour especially unpredictable.
Additionally, we compare the performance of the forecasting
approaches used in strategies (2) and (3). Given that strategy
(2) uses a deterministic forecast, we calculate the absolute
errors (AE) over the year 2022, as it is the equivalent of
CRPS for deterministic forecasts [14]. Fig. 7(b) showcases the
distributions of CRPS and AE throughout the year 2022. On
average, the CRPS score for strategy (3) is at 84 MW, while the
MAE for strategy (2) is at 100 MW. Although the forecasts for
strategy (3) are produced 15 minutes ahead of time compared
to those for strategy (2), the probabilistic approach helps to
mitigate the potential disadvantages of an extended forecasting
horizon. Going a step further into strategy (3), Fig. 7(c) shows
the impact of forecasting errors on the activation of mFRR.
Overall, the global trend is reasonable, showing that mFRR
tend to be activated in opposition with the observed system
imbalance (which are represented by points falling into the
upper left and lower right quadrants). However, the presence of
points in the upper right and lower left quadrants indicates that
mFRR have been inappropriately activated, aggravating rather
than correcting the system imbalance. Such forecast errors,
highlighted by high CRPS values, suggest potential benefits
for exploring risk-aware approaches in the activation of mFRR.

In the same context, Fig. 7(d) and Fig. 7(e) shows impact
of suboptimal mFRR activation on the two aspects of the
objective function: the Area Control Error (ACE) and the
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Fig. 6. Balancing energy activation results for the three different strategies
on two periods.

total balancing costs. In Fig. 7(d), the upper right and lower
left display particularly high ACE values. This occurs when
aFRR are insufficient to counteract the badly activated mFRR
driven by inaccurate SI predictions. Fig. 7(f) accentuates
this observation with a heatmap that tracks the activation
of aFRR, which shows an increased use of aFRR in both
quadrants. Additionally, this figure indicates that when the
observed system imbalance is around zero, aFRR products are
typically the most cost-effective and, thus, the preferred choice
for activation. Interestingly, Fig. 7(e) reveals that substantial
activations of mFRR (extreme values in upper left and lower
right) can result in reasonable balancing costs (as indicated
by the shift towards white on the heatmap). These extreme
points illustrate the potential cost-effectiveness of preemp-
tively activating mFRR for balancing the system. Of course,
the cost disparity observed between negative and positive
system imbalance stems primarily from the bid structure of the
balancing offers, rather than from forecasting errors, upward
reserves being typically priced higher than downward reserves.

C. Sensitivity Analysis

For each quarter of an hour, several system imbalance sce-
narios are sampled to represent the future system imbalance.

TABLE I
OPTIMAL TRADE-OFF SCENARIO-BASED METHOD ON THE FIRST DAY OF
2022

Ng=10 Ng=20 Ng=50 Ng=100
Time [s/gh] 0.288 0.575 1313 435
Objective [€] 8790 5569 5223 4583

The number of scenarios must be chosen carefully to unlock
the full potential of the method. In this work, we decided
to take 20 scenarios for each quarter of an hour by making a
trade-off between the best objective value and the computation
time (i.e., a full year being simulated at once). However,
a sensitivity analysis on the number of scenarios (/Ng) has
been carried out on the first day of the year 2022. The 96
quarter-hours of the day has been simulated for 10, 20, 50
and 100 system imbalance scenarios and to mitigate bias in the
results, for each case and each quarter-hour, several scenarios
samplings have been done until convergence of the average
objective value. Obtained results can be seen in Tab. II. We
can observe that, for operational use, increasing the number
of scenarios may have a significant impact on the objective
within an acceptable timeframe.

V. CONCLUSION

This paper develops a full probabilistic prediction -
scenario-based decision chain to address the proactive acti-
vation of mFRR reserves in a cost-efficient balancing strategy.
The chain includes a tool that generates a probabilistic forecast
of the future system imbalance and a stochastic optimization
formulation of proactive activation of mFRR.

Using this model we show that an appropriate trade-off be-
tween aFRR and mFRR products avoid the activation of high
prices aFRR bids when cheapest mFRR units are available in
case of extreme system imbalance. This helps to reduce the av-
erage balancing activation costs which is of major importance
in the current situation where the predictability of generation
and consumption becomes harder and that more balancing
actions are requested. Results also shows the improved benefits
through the proactive activation of mFRR, anticipating the
ramping period and by doing so, further reducing the activation
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Fig. 7. Forecast performances and prediction error impact on the results.

costs while confining the area control error level. However,
the proposed methodology is sensitive to prediction errors and
might therefore request the activation of more FRR volumes,
additional aFRR volumes being used to compensate inefficient
mFRR activation.

Therefore, this work may be improved by using the proba-
bilistic prediction - scenario-based decision chain on a rolling
horizon, updating the decision to start ramping and the re-
quested mFRR volumes over time. We might also be inter-
ested to improve the forecasting tool by taking the k-closest
neighbours to define the 1 minute time step system imbalance
trajectories.
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