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Abstract—Critical component outages can lead to widespread 

cascading propagation, which is however typically ignored in ex-

isting investment planning approaches. To address this gap, this 

paper seamlessly integrates advanced cascading failure analysis 

into resilient investment planning. It first deploys a stochastic 

simulator to generate spatiotemporal high-impact low-probabil-

ity (HILP) events, which are then assessed using a cascading fail-

ure model, generating various cascading quantification metrics 

(CQMs). The framework explicitly quantifies tail risks (i.e., HILP 

events) using Conditional Value-at-Risk (CVaR) with a confi-

dence level determined by unsupervised clustering, instead of us-

ing a predetermined confidence level. This enables the more tai-

lored identification of a set of worst-case scenarios for the system 

under investigation, improving its practicality. An optimization 

model then utilizes the outputs of the cascading analysis and the 

defined CVaR confidence level to identify investment portfolios 

that provide a hedge against cascading failures. The proposed 

work is demonstrated on the IEEE 39-bus system, revealing re-

duced cascading propagation. 

Index Terms—Cascading failures, Power system resilience, Power 

system planning, Risk assessment, Unsupervised clustering. 

NOMENCLATURE 

Sets and Indices: 

𝜍, 𝑙 Indices for hazard scenario and lines 

𝑡, 𝑡𝑖 Indices for time and time at which the first 

wind-induced line outage occurs 

𝛾 Indices representing network enhancement 

𝑁𝑅𝑆 Number of reduced scenarios 

Parameters: 

𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 Critical wind gust speed 

𝑤𝑡  Wind gust speed at time 𝑡 

𝑤𝑡𝑖

𝜍,𝑙
 Wind speed at line 𝑙 at time 𝑡𝑖 for scenario 𝜍 

𝐶𝑂𝐻𝐿 Cost of hardening OHL in €/km 

𝐶𝐸𝑆𝑆 Cost of installing ESS in €/kW 

𝑙𝑙𝑂𝐻𝐿  Length of OHL line 𝑙 in km 

𝑃𝐸𝑆𝑆
𝑚𝑎𝑥  Maximum power obtained from an ESS 

𝛼 CVaR confidence level  

𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥 Maximum budget allocated in Euros. 

Variables: 

𝑏𝑂𝐻𝐿
𝑙  Binary decision variable representing harden-

ing of OHL at line 𝑙 
𝑏𝐸𝑆𝑆

𝑛  Binary decision variable representing the in-

stallation of ESS at node 𝑛 

𝑙𝑠𝜍,𝑙 Line status of line 𝑙 for scenario 𝜍 

𝜈 Value-at-risk (VaR) at α ∈ [0,1) of 𝑓𝐶𝐹𝑀(𝛾, 𝜍) 

𝜚𝜍 Excess variable that ensures that CVaRα is cal-

culated only for values beyond VaRα in 𝜍 sce-

narios 

I. INTRODUCTION 

Climate change has increased the frequency, intensity, and 
duration of severe weather events, impacting critical infrastruc-
tures, including power systems. For instance, Hurricane Ian in 
2022 in the USA resulted in widespread power outages affect-
ing over 2.7 million customers and costing an estimated $113 
billion in damages [1]. The outage of critical components due 
to high-impact low-probability (HILP) events, such as natural 
hazards and extreme weather, has the potential to trigger pro-
tection mechanisms, which in turn could lead to a series of cas-
cading failures throughout the power system [2]. Several re-
searchers have proposed various approaches to enhance power 
system resilience through different planning strategies. In [3], a 
resilience-centered approach is proposed for assessing the ben-
efits of different investment options with an application to 
earthquakes, distinguishing the fundamental differences be-
tween reliability- and resilience-driven enhancements. A few 
researchers have proposed resilient planning frameworks that 
integrate the fragility-based event models with stochastic opti-
mization, identifying the location or size of optimal resources 
such as energy storage systems (ESS), distributed generators 
(DGs), hardening of overhead lines (OHLs), etc., to deal with 
earthquakes and windstorms [4], [5]. Similarly, several meth-
odologies are proposed in the literature that follow either a two-
stage or multi-stage approach to enhance the system resilience 
by optimally allocating resources such as energy storage, DG, 

Submitted to the 23rd Power Systems Computation Conference (PSCC 2024). 



23rd Power Systems Computation Conference
     

Paris, France — June 4-7, 2024 

    PSCC 2024 

and line hardening, [6]-[9]. In [10], the authors have introduced 
a framework for enhancing resilience through DG allocation, 
where resilience is assessed using expected energy not served 
(EENS) and conditional value-at-risk (CVaR). Many of these 
approaches assess system resilience by employing metrics such 
as ENS, EENS, or CVaR at a predefined confidence level.  

Although several researchers have proposed various ap-
proaches to enhance power system resilience, very few have 
considered the impact of cascading outages in their decision-
making processes. For example, in [11], a transmission expan-
sion planning approach is proposed to improve power system 
resilience by considering cascading outages generated using the 
'N-1' security criterion. However, the outage scenarios gener-
ated using traditional security criterion 'N-1' may not reflect the 
stochastic characteristics of widespread cascading outages ini-
tiated by natural hazards or extreme weather, leading to unreal-
istic solutions. In [12], a framework is introduced to identify the 
vulnerable lines and assess a resilience index against cascading 
failures triggered by windstorm-induced outages. However, 
this methodology does not include mitigation strategies that can 
further enhance the system's resilience. Furthermore, [13] pre-
sents a cost-based optimization model aimed at enhancing sys-
tem resilience against cascading failures by reducing demand 
not served (DNS). Nevertheless, the formulation of contingen-
cies within this model is randomly generated and does not cap-
ture the spatial and temporal characteristics of specific types of 
natural hazards. 

From the literature, it is apparent that most methodologies 
neglect to consider the cascading effect of initiating contingen-
cies in the decision-making on investment portfolios. Further-
more, they quantify resilience primarily based on more reliabil-
ity-oriented metrics like EENS (i.e., averaged across all simu-
lated scenarios), which may not effectively capture the unique 
characteristics of HILP events observed in the tail end of sto-
chastic scenario distributions. Therefore, it becomes vital to 
quantify and reinforce resilience using cascading simulators 
that can output and seamlessly integrate CVaR-based metrics in 
the identification of resilience investment portfolios. The con-
fidence level of CVaR, denoted as α, varies in the range [0, 1], 
where zero represents a risk neutral approach, and α=1 a risk-
averse approach; it is often selected as 0.95 or 0.99 [14]. How-
ever, in the context of tail risk optimization utilizing CVaR, 
there is notable interest from the finance and business sector 
(where mainly the CVaR-driven optimization was originated) 
in investigating and varying the confidence level for finding its 
suitable value as it has a substantial influence on the optimiza-
tion process [15]. This contrasts with existing CVaR-driven op-
timization approaches in power systems where the confidence 
level α is considered fixed and pre-determined. However, de-
termining the value of α proves to be a challenging task, partic-
ularly when dealing with distributions exhibiting heavy tails 
[16]. In a hypothetical scenario, a loss function related to DNS 
within a network is characterized by a value-at-risk (VaR) of 
1000 MW and a CVaR of 1100 MW at α=0.95. The objective 
is to minimize the CVaR of this loss function. During the sto-
chastic optimization process, various scenarios ranging from 
1000 MW up to the worst-case scenario (α=1) are investigated 
for this purpose. There is hence a potential for an event with 
950 MW demand loss (or very close, but smaller than 

VaR=1000 MW) to be overlooked during the optimization pro-
cess. Therefore, it becomes imperative to identify a suitable 
CVaR confidence level to address this issue effectively and 
guarantee the consideration of tail events of high impact in the 
stochastic CVaR optimization process. 

This paper presents a novel investment planning framework 
for enhancing resilience against cascading failures from HILP 
events. Initially, a stochastic event simulator is applied to gen-
erate a wide range of hazard scenarios. In line with maintaining 
generality, this paper addresses scenarios involving critical out-
ages resulting from natural hazards. Subsequently, a cascading 
failure model proposed in [17] assesses the impacts of the event 
scenarios on the network and quantifies cascading quantifica-
tion metrics (CQM). Given the potential computational chal-
lenges stemming from the extensive scenario set, a scenario re-
duction technique employing random sampling is implemented. 
This aims to streamline scenarios while retaining key attributes. 
The study targets cascading failures triggered by over/under 
frequency and line overload protection mechanisms, crucial for 
CQM establishment. The framework optimizes CVaR linked 
with the selected CQM, adhering to a confidence level deter-
mined through an unsupervised clustering algorithm. This algo-
rithm encapsulates a set of worst-case scenarios, yielding opti-
mal investment portfolios. Several case studies were conducted 
on the IEEE 39-bus system to demonstrate the effectiveness of 
the proposed framework.   
The main contributions of this paper include: 

• Coupling a spatial and temporal simulator of extreme 
weather events with cascading failure analysis for the quan-
tification of their impact using various cascading metrics. 

• Seamless integration of the cascading failure analysis into 
investment planning for the identification of resilience en-
hancement portfolios against cascading events initiated by 
natural hazards and extreme weather. 

• Application of a machine learning (ML) algorithm, specifi-
cally an unsupervised clustering algorithm, to determine the 
confidence level of CVaR, providing tailored risk assess-
ment to the system operators and planners. 

The remainder of this paper is organized as follows: Section II 
provides an elaboration of the proposed framework for invest-
ment planning, addressing the mitigation of cascading failures 
caused by natural hazards. Following that, Section III demon-
strates the outcomes from several case studies undertaken and 
offers corresponding discussions. Lastly, Section IV presents 
the conclusions derived from this study.  

II. PROPOSED FRAMEWORK 

The proposed framework, as illustrated in Fig. 1, seamlessly 

integrates advanced spatiotemporal event and cascading simu-

lators with ML-driven risk-informed investment decision-

making optimizer. In this framework, a fragility-based event 

simulator initially generates spatiotemporal hazard scenarios 

for a defined time horizon. Subsequently, the initiating events 

are derived from these scenarios, reflecting the time at which 

the first hazard-induced cascading outage occurs in the net-

work. Furthermore, the network is subjected to these initiating 

events to perform cascading failure analysis, resulting in the
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Figure 1. Overview of the Proposed Framework.

derivation of CQMs. A key component within CQM comprises 

metrics related to DNS resulting from frequency and line ac-

tive power limit breaches, collectively referred to as 'total 

DNS' (TDNS) when summed together. Additionally, CQM in-

cludes metrics that reflect topological impacts, encompassing 

quantities such as the number of active islands (𝑁𝐴𝐼), number 

of passive islands (𝑁𝑃𝐼), and number of tripped assets (𝑁𝑇𝐴). 

With these CQMs, an unsupervised clustering algorithm deter-

mines 𝛼𝑀𝐿 to group scenarios with similar impact. Then, con-

strained optimization minimizes TDNS's CVaR based on α, 

identifying optimal asset portfolios. This paper focuses on 

windstorms to reflect extreme events; however, the proposed 

framework has the potential to expand to different types of ex-

treme weather events. 

A. Stochastic Event Simulator and Fragility-driven System 

Impact Assessment 

The input data for this event simulator includes the network 

topology and fragility curves, which depict the relationship be-

tween the hazard intensity and the probability of damage to 

network assets. In the case of transmission lines, wind fragility 

curves are deployed, as explained in [5], which ultimately pro-

vide the time- and wind-dependent outage probabilities of the 

assets exposed to the generated wind scenarios. To simulate 

realistic windstorm events, this model derives windstorm char-

acteristics from a historical database [18], specifically the lev-

els of wind gust speed, windstorm radius, and windstorm di-

rections. The spatial modeling of windstorms is performed by 

randomly selecting the starting coordinates of the windstorm 

within the region of study and simulating its movement via 

spatiotemporal modeling based on parameters such as wind-

storm direction, storm duration, and windstorm radius. Further, 

a large set of windstorm scenarios is generated to encompass 

both known (historical) and unknown, potential future wind-

storm patterns within a defined time horizon. For the sake of 

simplicity, this paper adopts a 24-hour time horizon. Further-

more, the spatial intersection between the windstorm trajecto-

ries and the transmission lines is analyzed to determine the sta-

tus of affected lines based on their wind-dependent failure 

probability derived by the wind fragility curves. In this paper, 

the decision regarding tripped lines within this overlap is made 

using (1). This equation demonstrates that if the wind-depend-

ent failure probability, denoted as 𝑃𝐿(𝑤𝑡), surpasses a ran-

domly generated number 𝑟 between 0 and 1, the line will be 

tripped. Conversely, if 𝑃𝐿(𝑤𝑡) is less than 𝑟, the line status re-

mains operational (status 1).  

𝐿𝑆(𝑤𝑡 , 𝑙) = {
1     if 𝑃𝐿(𝑤𝑡) < 𝑟

0     if 𝑃𝐿(𝑤𝑡) > 𝑟
                                              (1) 

where, 𝑤𝑡  is the wind speed at step-time 𝑡. After generating the 
time- and wind-dependent status of the network lines within the 
defined time horizon, the time at which the first wind-induced 
line outage occurs, denoted as 𝑡𝑖, is determined. The line sta-
tuses corresponding to this 𝑡𝑖 are designated as the initiating 

event, i.e., 𝐿𝑆(𝑤𝑡𝑖
, 𝑙). These line statuses, for all the scenarios, 

represent the set of stochastic initiating events. 

B. Cascading Failure Model 

This paper employs the cascading failure model from [17] 
for tailored cascading failure analysis in power network resili-
ence assessment. In this paper, the analysis utilizes DC power 
flow, referred to as DC-CFM, and is implemented using the 
MATPOWER toolkit [19] within MATLAB. As aforemen-
tioned, the protective mechanisms considered in this research 
for cascading analysis encompass over/under frequency and 
line overload. The implementations of these mechanisms are as 
follows: 

1) Over/Under Frequency Protection: With the presence 
of synchronous generators in the network, sudden 
discrepancies or imbalances between electrical and mechanical 
power can result in changes in rotor frequency. Consequently, 
protective schemes such as over-frequency load shedding 
(OFLS) or under-frequency load shedding (UFLS) are 
triggered to restore balance and maintain the frequency within 
acceptable limits. In the event of a power mismatch within the 
allowable change (±) in power generation, the OFLS/UFLS 
follows redistributing slack generation across generation 
proportionally, ensuring that each generator operates within its 
capacity. If the generation increases (+) by an allowable 
mismatch level but does not exceed the available capacity, 
UFLS activates the load reduction. On the other hand, if the 
generation decreases (−) within the allowable mismatch level, 
the OFLS activates to trip the generation. For a more 
comprehensive understanding, refer to Algorithms 1 and 2 
outlined in [17]. 

2) Line Overload Protection: In the case of line overload, 
the overload protection (OLP) initiates the tripping of lines that 
surpass their predefined ratings. This proactive measure 
prevents lines from sustaining damage due to overheating, 
thereby ensuring safe network operation once the issues are 
resolved. 

Each initiating event from the stochastic event simulator (those 

with 𝐿𝑆(𝑤𝑡𝑖
, 𝑙)) can trigger the operation of these protection 
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measures. These can then create cascading isolated network 

segments, potentially causing DNS, quantified with CQM. 

C. Scenario Reduction 

The CQM is calculated for all initiating events within a 

large scenario set (𝐿𝑆). It is crucial to note that utilizing all 

these scenarios in the optimization process could lead to a com-

putational slowdown. Therefore, this paper employs a scenario 

reduction technique based on random sampling method like 

[10], as shown in Fig. 2. While metrics other than TDNS pro-

vide insights into initiating event consequences, it is essential 

to recognize that the primary impact is predominantly influ-

enced by the demand-based metric, TDNS derived by the cas-

cading simulator. For example, a non-zero 𝑁𝑇𝐴 with zero 

TDNS indicates no cascading propagation, while a non-zero 

TDNS corresponds to cascading propagation, reflected in ac-

tive/passive islands and non-zero 𝑁𝑇𝐴. Due to its significance, 

TDNS is evaluated for all the original scenarios and used in the 

scenario reduction process. During scenario reduction, an ini-

tial desired number of reduced scenarios (e.g., 𝑟𝑖 = 50) is es-

tablished. Subsequently, 𝑟 = 𝑟𝑖 scenarios are randomly se-

lected from 𝐿𝑆 to form a reduced scenario set (𝑅𝑆). Compari-

son between the mean and standard deviation of the original 

large scenario set (𝐿𝑆µ, 𝐿𝑆𝜎) and the randomly sampled re-

duced set (𝑅𝑆µ, 𝑅𝑆𝜎) is performed. If their means' and standard 

deviations' percentage error is within a predefined tolerance 

(𝑡𝑜𝑙 = 0.1%), the reduced set is acceptable. Otherwise, an-

other set of 𝑟 reduced scenarios are sampled with 𝑟 = 𝑟 + 𝑟𝑖 . 

This process continues until the error is within tolerance. This 

iterative approach ensures that reduced scenarios retain their 

original hazard scenario characteristics. 

D. Application of ML to derive ‘α’ 

In the application of unsupervised clustering to determine α 
representing scenarios with similar impacts, all four CQMs are 
employed. TDNS addresses demand impact, while 𝑁𝐴𝐼 , 𝑁𝑃𝐼 , 
and 𝑁𝑇𝐴 represent topological impact.  

    
Figure 2. Flowchart of Proposed Scenario Reduction Technique. 

These metrics enrich the ML analysis, providing a comprehen-
sive view of initiating event scenarios covering both demand 
and network topological impact. Considering the substantial 
scale of data involved and the advantage of not needing a pre-
determined cluster count, this study employs a hierarchical 
clustering algorithm [20]. The actual count of scenarios consti-
tuting the identified set of worst-case scenarios is a guiding fac-
tor in determining the value of α. In this paper, the cophenetic 
correlation coefficient (𝑐) is applied to measure the quality of 
hierarchical clustering, which assesses how well the clustering 
preserves the original pairwise distances between data points. 
A 𝑐 value close to 1 indicates a high correlation, signifying 
meaningful clustering [20]. The study involves experimenting 
with various linkage methods, including 'single', 'ward,' 'aver-
age,' and 'complete,' in combination with the Euclidean distance 
metric. Subsequently, the value of 𝑐 is used to evaluate the qual-
ity of these clustering approaches. Following this procedure 
with the CQMs derived for all the scenarios, a set of similar 
impact scenarios with a count 𝜀 is derived. Now, the value of 
𝛼 = 𝛼𝑀𝐿 is calculated using 𝜀 and the number of reduced sce-
narios (𝑁𝑅𝑆) as shown in (2). 

𝛼𝑀𝐿  = (1 −
𝜀

𝑁𝑅𝑆
)                                                                   (2) 

The 𝛼𝑀𝐿 plays a pivotal role in steering the risk aversion 
level of the system planner, and hence the optimal asset portfo-
lios obtained from the optimizer. This systematic and compre-
hensive approach ensures the coverage of a wide array of po-
tential scenarios to reveal the most critical scenarios of similar 
behavior lying within the reduced set. 

E. The Optimizer 

The mathematical formulation of the optimizer, encom-

passing the objective function and its associated constraints, is 

detailed in this section. The primary goal is to mitigate the de-

mand curtailment caused by cascading failure propagation. To 

achieve this, the TDNS obtained from the cascading simulator 

is utilized in the objective function, rather than considering all 

CQMs. The objective function formulated will identify the op-

timal assets that lead to a reduction in the CVaR of TDNS as 

shown in (3). 

min 𝐶𝑉𝑎𝑅𝛼(𝑓𝐶𝐹𝑀(𝛾, 𝜍))                                                       (3) 

𝐶𝑉𝑎𝑅𝛼(𝑓𝐶𝐹𝑀(𝛾, 𝜍)) = 𝜈 +
1

1−𝛼
∑ 𝜚𝜍𝜍∈𝑟                                     (4) 

where, 𝛾 represents the decision variables linked to network 

enhancements for various assets namely OHLs and ESSs, 𝜍 de-

notes scenarios within the reduced scenario set 𝑅𝑆, 𝑓𝐶𝐹𝑀 rep-

resents the loss function, evaluated using DC-CFM, which 

quantifies the CQM across all scenarios 𝜍 with the prescribed 

network enhancement 𝛾. In (4), 𝜈 refers to value-at-risk (VaR) 

at α ∈ [0,1) of 𝑓𝐶𝐹𝑀(𝛾, 𝜍), 𝜚𝜍 represents an excess variable that 

ensures that CVaRα is calculated only for values beyond VaRα 

in 𝜍 scenarios, and 1 − 𝛼 refers to the scenarios representing 

HILP events. 
1) Constraints: The objective function is constrained with 

power flow equations that apply protection mechanisms as 
explained in Section II.B while evaluating CQM for the given 
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hazard scenario using DC-CFM. Moreover, the objective 
function is subject to asset and budget constraints as follows: 

𝑦𝜍,𝑙 = {
1   𝑖𝑓 𝑤𝑡𝑖

𝜍,𝑙
> 𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙    

0     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
                                                   (5) 

𝑙𝑠𝜍,𝑙 = {
(1 − 𝑦𝜍,𝑙) 𝑖𝑓 𝑏𝑂𝐻𝐿

𝑙 = 1

𝐿𝑆(𝑤𝑡𝑖
, 𝑙) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (6) 

∑ 𝐶𝑂𝐻𝐿 .𝑙 𝑏𝑂𝐻𝐿
𝑙 . 𝑙𝑙𝑂𝐻𝐿 + ∑ 𝐶𝐸𝑆𝑆 .𝑛 𝑏𝐸𝑆𝑆

𝑛 . 𝑃𝐸𝑆𝑆
𝑚𝑎𝑥 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥  (7) 

In the above equations, 𝑏𝑂𝐻𝐿
𝑙 and 𝑏𝐸𝑆𝑆

𝑛  are the binary decision 

variables that represents the hardening of OHL at line 𝑙 and 

installation of ESS at node 𝑛, respectively when equal to 1. 

Notably, despite the hardening of OHL, the possibility of fail-

ure remains when these lines are exposed to wind speeds sur-

passing the critical threshold (𝑤𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). This requirement is 

ensured through (5) and (6), where 𝑙𝑠𝜍,𝑙 signifies the line status 

of line 𝑙 during scenario 𝜍, 𝑦𝜍,𝑙  is a binary variable used to im-

plement the windspeed condition. The total cost of the invest-

ment through OHL hardening and the installation of ESS is 

calculated using the left-hand side of (7), which is constrained 

to be less/equal to the maximum allocated budget. Here, 𝐶𝑂𝐻𝐿 

and 𝐶𝐸𝑆𝑆 represent the cost of OHL in €/km and the cost of ESS 

in €/kW, respectivel . Additionall , 𝑙𝑙𝑂𝐻𝐿  denotes the length 

of the OHL line and 𝑃𝐸𝑆𝑆
𝑚𝑎𝑥 represents the maximum capacity 

of ESS. The updated line status, which considers the line hard-

ening (𝑙𝑠𝜍,𝑙), the location or node where the ESS is installed, 

and its maximum size (𝑃𝐸𝑆𝑆
𝑚𝑎𝑥), is provided as input to the DC-

CFM function (𝑓𝐶𝐹𝑀(𝛾, 𝜍)) for evaluating CQM. 

III. SIMULATION RESULTS AND DISCUSSION 

The effectiveness of the proposed investment planning 
framework, incorporating 𝛼𝑀𝐿, is evaluated using the IEEE 39-
bus system with fictional geographical coordinates. For illus-
trative purposes, this paper applies hazard scenarios corre-
sponding to windstorms, generated based on a range of param-
eters derived from historical data [18]. The investment options 
considered in this work involve hardening OHLs (i.e., making 
them more robust to the windstorm) and installing ESSs to ex-
plore the trade-offs between infrastructure options (OHL) and 
flexibility providers (ESS). The cost of OHL considered is 300 
€/m, as derived from [21], while the maximum capacity of each 
ESS is assumed to be 100  W, with a cost of 150 €/kW [22]. 
Firstly, the outcome of the scenario reduction process, repre-
senting the base case (i.e., without planning), is presented to 
highlight its effectiveness in capturing the characteristics of the 
original scenarios. Furthermore, the importance of cascading 
failures in the context of investment planning is emphasized 
through a comprehensive comparison between the performance 
of the proposed framework, the conventional approach, and the 
base case condition. This analysis serves to underscore the re-
silience of assets identified within both planning methodologies 
when exposed to cascading failures. For the initial illustration, 
a standard CVa  confidence level of α=0.95 is applied. Addi-
tionally, the influence of 𝛼𝑀𝐿 in decision-making and its per-
formance against cascading failures is illustrated. To highlight 
its effectiveness, its performance is compared with the 

outcomes of α=0.95. For demonstration purposes, based on the 
cost of assets, €50 million is assumed for investments in both 
cases. To effectively illustrate these conditions, the following 
case studies are presented below:  

• Case A: Define and compare the investment portfolios for 
CVaR with α=0.95 using the proposed approach consider-
ing the cascading outages as illustrated in (3), and without 
considering the cascading outages (i.e., the conventional 
planning approach). Evaluate the effectiveness of the de-
fined portfolios from the conventional approach when ex-
posed to cascading failures initiated by extreme events. 

• Case B: Perform the same steps as Case A but with  𝛼𝑀𝐿.  

A. Results from Scenario Reduction: Base Case 

A substantial set of 1000 windstorm scenarios are generated 
by employing the stochastic event simulator over a 24-hour 
time horizon. Each scenario contributes to deriving the initiat-

ing set of line outages (𝐿𝑆(𝑤𝑡𝑖
, 𝑙)), as explained in Section II.A. 

Subsequently, these initiating events are used to assess TDNS 
through cascading failure model. Simultaneously, all tripped 
lines throughout the complete time horizon are determined, and 
their impact is measured in terms of DNS following the con-
ventional approach. Probability distributions for the original 
scenarios leading to TDNS and DNS are illustrated in Fig. 3a 
and Fig. 3c, respectively. The scenario reduction process, as de-
picted in Fig. 2, is employed to identify reduced scenarios for 
both TDNS and DNS. Through this process, 200 reduced sce-
narios (𝑟) are obtained for both TDNS and DNS, with the cor-
responding probability distributions presented in Fig. 3b and 
Fig. 3d, respectively. Notably, Fig. 3 visualizes the mean and 
standard deviation of all distributions, indicating a close simi-
larity between the mean and standard deviation of both TDNS 
and DNS. It is worth mentioning that these reduced scenarios 
of TDNS and DNS are applied in the optimization and used to 
derive 𝛼𝑀𝐿 for both proposed and conventional approach. 

B. Case A: Comparing investment porftolios and CQMs with 

and without considering cascading outages    

In this case, optimization of (3) while considering cascad-

ing outages (i.e., the proposed approach) and optimization of 

CVaR while ignoring cascading outages (i.e., the conventional  

  
Figure 3. Probability Distribution of (a) LS of TDNS (b) RS of TDNS (c) 

LS of DNS (d) RS of DNS. 
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approach) with α=0.95 are performed. Then, the investment 

portfolios from the latter approach are exposed to the cascad-

ing simulator. The proposed approach resulted in two ESSs 

and six OHLs, while the conventional approach resulted in one 

ESS and eight OHLs. Both these portfolios are exposed to the 

cascading simulator, and the resulting CQMs are tabulated in 

Table I (including the Base Case without any reinforcement). 

The table shows that the optimal assets obtained from the pro-

posed approach significantly improve all CQMs compared to 

the conventional approach from the base case. For instance, the 

conventional approach reduces the mean of TDNS (𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅ ) 

from 1022.1 MW to 945.7 MW with 7.5% reduction from base 

case. In contrast, the proposed approach reduces the 𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅  

from 1022.1 MW to 933.1 MW, signifying an 8.7% reduction 

from the base case.  

Similarly, in the case of CVaR of TDNS, the conventional 

approach reduces it from 4570.9 MW to 4181.3 MW, signify-

ing an 8.5% reduction from the base case and the proposed ap-

proach reduces it from 4570.9 MW to 4103.2 MW, signifying 

a 10.2% reduction from the base case. This shows that the pro-

posed approach effectively reduces 𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅  and CVaR of TDNS 

further by 1.3% and 1.9%, respectively. In the case of number 

of active islands, the average active islands (𝑁𝐴𝐼
̅̅ ̅̅ ) and the CVaR 

of active islands (𝐶𝑉𝑎𝑅(𝑁𝐴𝐼)) is significantly improved from 

2.1 to 2.2 and 5.0 to 5.3 by conventional approach and from 

2.2 to 2.3 and 5.0 to 6.0 by proposed approach, respectively. 

Further, in the case of number of passive islands, the average 

passive islands (𝑁𝑃𝐼
̅̅ ̅̅̅) and the CVaR of active islands 

(𝐶𝑉𝑎𝑅(𝑁𝑃𝐼)) is significantly reduced from 2.2 to 1.9 and 10.9 

to 8.9 by conventional approach and from 2.2 to 1.6 and 10.9 

to 7.7 by proposed approach, respectively. This demonstrates 

that the proposed approach effectively allocates optimal asset 

portfolios which reduces the blacked-out islands. Furthermore, 

in the case of number of tripped assets, the average tripped as-

sets (𝑁𝑇𝐴
̅̅ ̅̅ ̅) and the CVaR of tripped assets (𝐶𝑉𝑎𝑅(𝑁𝑇𝐴)) is sig-

nificantly reduced from 8.6 to 7.7 and 38.7 to 33.8 by conven-

tional approach and from 8.6 to 6.9 and 38.7 to 27.1 by pro-

posed approach, respectively. From these findings, it is evident 

that the proposed approach effectively mitigates cascading 

propagation compared to the conventional approach. 

C. Case B: Application of 𝛼𝑀𝐿  in investment decision-making 

In this case, optimization of (3) while considering cascad-

ing outages (i.e., the proposed approach) and optimization of 

CVaR while ignoring cascading outages (i.e., the conventional 

approach) is performed with 𝛼 =  𝛼𝑀𝐿. In the proposed ap-

proach, the 200 scenarios corresponding to TDNS, as shown 

in Fig. 3b, are utilized to derive CQMs representing various 

scenarios. Employing these CQMs as input for the hierarchical 

clustering algorithm results in the identification of 23 worst-

case scenarios, with 𝛼𝑀𝐿 = 0.885 derived for optimizing equa-

tion (3) using (2). Similarly, for optimizing the CVaR of DNS, 

the clustering algorithm is applied to the 200 DNS scenarios 

shown in Fig. 3d, leading to the identification of 19 worst-case 

scenarios, with 𝛼𝑀𝐿 = 0.905 obtained for optimization. 

TABLE I. COMPARISON OF MEAN AND CVAR VALUES OF CQMS: CASE – A 

CQM Base 
case 

Conventional 
Approach 

Proposed 
Approach 

𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅  (MW) 1022.1 945.7 933.1 
𝐶𝑉𝑎𝑅(𝑇𝐷𝑁𝑆) (MW) 4570.9 4181.3 4103.2 

𝑁𝐴𝐼
̅̅ ̅̅  2.1 2.2 2.3 

𝐶𝑉𝑎𝑅(𝑁𝐴𝐼) 5.0 5.3 6.0 
𝑁𝑃𝐼
̅̅ ̅̅  2.2 1.9 1.6 

𝐶𝑉𝑎𝑅(𝑁𝑃𝐼) 10.9 8.9 7.7 
𝑁𝑇𝐴
̅̅ ̅̅ ̅ 8.6 7.7 6.9 

𝐶𝑉𝑎𝑅(𝑁𝑇𝐴) 38.7 33.8 27.1 

 

The proposed approach yielded two ESSs and five OHLs, 

whereas the conventional approach resulted in one ESS and 

nine OHLs. Like Case A, the impact of these optimal assets 

against cascading failures is evaluated using mean and CVaR 

values of CQMs calculated across all reduced scenarios. As 

Case A clearly demonstrates improvement over the base case, 

a comparison of CQMs for this case is conducted between the 

conventional and proposed approaches, presented in Table II. 

This table shows that the optimal assets obtained from the pro-

posed approach with 𝛼𝑀𝐿 significantly improved most CQMs 

compared to the conventional approach with 𝛼𝑀𝐿. For in-

stance, 𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅  is reduced to 891.7 MW with the proposed ap-

proach, compared to 965.8 MW with the conventional ap-

proach, representing a 7.7% improvement. Likewise, for 

CVaR of TDNS, the proposed approach achieves a reduction 

to 3718.5 MW. In contrast, the conventional approach reduces 

it to 3990.1 MW, demonstrating a 6.8% performance ad-

vantage. While both approaches perform similarly in active is-

lands, there is a significant improvement from the proposed 

approach in other CQMs reflecting the network topology's im-

pact. For example, the average number of passive islands (𝑁𝑃𝐼
̅̅ ̅̅̅) 

is reduced to 1.8 using the proposed approach, in contrast to 

2.1 under the conventional approach, indicating a 14.3% en-

hancement. Similarly, the CVaR of passive islands 

(𝐶𝑉𝑎𝑅(𝑁𝑃𝐼)) is reduced to 8.2 by the proposed approach, com-

pared to 9.1 with the conventional approach, demonstrating a 

9.9% improvement. Additionally, regarding the number of 

tripped assets, both the average number of tripped assets (𝑁𝑇𝐴
̅̅ ̅̅ ̅) 

and the CVaR of tripped assets (𝐶𝑉𝑎𝑅(𝑁𝑇𝐴)) show notable re-

ductions. Specifically, the proposed approach achieves reduc-

tions to 7.6 and 30.1, compared to 8.3 and 32.9 observed with 

the conventional approach. 

TABLE II. COMPARISON OF MEAN AND CVAR VALUES OF CQMS: CASE – B 

CQM Conventional  

Approach 

Proposed  

Approach 

𝑻𝑫𝑵𝑺̅̅ ̅̅ ̅̅ ̅̅  (MW) 965.8 891.7 

𝑪𝑽𝒂𝑹(𝑻𝑫𝑵𝑺) (MW) 3990.1 3718.5 

𝑵𝑨𝑰
̅̅ ̅̅ ̅ 2.3 2.3 

𝑪𝑽𝒂𝑹(𝑵𝑨𝑰) 5 5 

𝑵𝑷𝑰
̅̅ ̅̅ ̅ 2.1 1.8 

𝑪𝑽𝒂𝑹(𝑵𝑷𝑰) 9.1 8.2 

𝑵𝑻𝑨
̅̅ ̅̅ ̅ 8.3 7.6 

𝑪𝑽𝒂𝑹(𝑵𝑻𝑨) 32.9 30.1 
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These findings emphasize the proposed approach's ability to 

significantly mitigate cascading failures compared to the con-

ventional approach. 

D. Discussion on CVaR Confidence Level ‘α’ 

The comparison in cases A and B as illustrated in Tables I 

and II highlights the advantage of integrating the cascading 

failure model into the resilience planning framework. To de-

termine a suitable α value for resilience investment planning, 

this section examines results from the proposed approach using 

both traditional α=0.95 and 𝛼𝑀𝐿 (i.e., comparing Tables I and 

II). The analysis employs the mean and CVaR values of CQMs 

presented in both cases related to the proposed approach. 

In terms of active islands, both α=0.95 and 𝛼𝑀𝐿 result in an 

average of 2.3 active islands (𝑁𝐴𝐼
̅̅ ̅̅ ). However, when it comes to 

the CVaR of active islands (𝐶𝑉𝑎𝑅(𝑁𝐴𝐼)), α=0.95 improves it 

to 6, while 𝛼𝑀𝐿 achieves 5. For passive islands, α=0.95 ele-

vates the average passive islands (𝑁𝑃𝐼
̅̅ ̅̅̅) to 1.6 and the CVaR of 

passive islands (𝐶𝑉𝑎𝑅(𝑁𝑃𝐼)) to 7.7. In contrast, 𝛼𝑀𝐿 results in 

1.8 and 8.2, respectivel . Similarl , α=0.95 enhances the num-

ber of tripped assets compared to 𝛼𝑀𝐿. However, the key CQM 

component, TDNS, significantly improves with 𝛼𝑀𝐿, reducing 

(𝑇𝐷𝑁𝑆̅̅ ̅̅ ̅̅ ̅̅ ) to 891.7  W compared to 933.1  W with α=0.95, 

signifying a 4.4% improvement. Likewise, the CVaR of TDNS 

reduces to 3718.5 MW with 𝛼𝑀𝐿, in contrast to 4103.2 MW 

with α=0.95, signifying a 9.4% improvement. This clearly 

demonstrates that the proposed approach with 𝛼𝑀𝐿 offers a sig-

nificant improvement in the mean and CVaR values of CQMs 

compared to the α=0.95 approach. 
To further analyze the tail behavior of the proposed approach 

with both α values, the complementar  cumulative distribution 

function (CCDF) of TDNS is plotted in Fig. 4. This plot dis-

tinctly illustrates that, in most scenarios, the proposed ap-

proach with 𝛼𝑀𝐿 exhibits lower probabilities compared to the 

α=0.95 approach. Specificall , the tail-end probability reveals 

superior performance with the proposed approach using 𝛼𝑀𝐿. 

For example, the probabilit  of a 3900  W loss with α=0.95 

is 3%, reduced to 2% with 𝛼𝑀𝐿. Moreover, it is worth noting 

that the probability of a loss exceeding 4100 MW is less than 

0.6% in the case of the proposed approach with 𝛼𝑀𝐿, while it 

is significant with α=0.95. These findings emphasize that a 

customized α selection approach performs notabl  better, par-

ticularly in handling tail-end events, compared to the tradi-

tional α=0.95 approach. 

IV. CONCLUSION 

This paper presents a novel investment planning frame-

work designed to mitigate cascading failures while maintain-

ing its generality. To illustrate the framework's effectiveness, 

it is tested with failures triggered by initiating events caused 

by natural hazards, with windstorms used as an example. The 

framework identifies optimal assets by minimizing tail-risk, 

specifically the CVaR of the loss function, which effectively 

reduces cascading propagation as quantified by cascading 

quantification metrics.  

 
Figure 4. Comparison of CCDF of TDNS between proposed 

approach with α=0.95 and 𝛼𝑀𝐿 

Initially, the effectiveness of integrating cascading failure 

analysis with the investment planning framework is demon-

strated with α=0.95. The outcomes show that the proposed ap-

proach significantly reduces the mean TDNS by 1.3% and the 

CVaR of TDNS by 1.9% compared to the conventional ap-

proach. Moreover, similar improvements are observed in other 

cascading quantification metrics when comparing the pro-

posed approach to the conventional approach. Furthermore, the 

paper investigates the effectiveness of selecting a customized 

α in the resilient investment planning framework through the 

application of a machine learning algorithm. To ensure a fair 

comparison between the conventional and proposed ap-

proaches with α selection, both methods are examined using α 

derived from the machine learning algorithm. The outcomes 

reveal that the proposed approach outperforms the conven-

tional approach with 𝛼𝑀𝐿. Finally, the performance of the pro-

posed approach with α=0.95 and 𝛼𝑀𝐿 is assessed. The results 

show that the proposed approach with 𝛼𝑀𝐿 effectively man-

ages tail-risk by reducing tail-end loss probability. Addition-

ally, it significantly reduces the mean and CVaR of TDNS by 

4.4% and 9.4%, respectively, compared to the approach with 

α=0.95. These findings suggest that s stem planners should 

consider adopting a customized confidence level for CVaR 

calculations and account for cascading failures in their invest-

ment planning. 
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