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Abstract—This paper provides insights for cyber defenders of
power systems with high penetration of electric vehicles (EVs)
by proposing a novel consecutive attack model based on load
redistribution for price control in both transmission networks
(TNs) and distribution networks (DNs). The target of the attack
is to induce massive EV users in DNs to charge simultaneously
and cause a spike of loads in the TN at peak hours. The problem
is formulated as a multi-slot bi-level optimization problem, where
the upper level describes the hacker behavior and attacking
constraints. The lower level explains the TN operator and DN
operators’ behaviors and the relationship between the local
marginal price and retail charging price. The bi-level problem
is converted into an equivalent single-level mix-integer linear
problem and is solved based on greedy algorithm. Simulations on
IEEE 30-bus system prove the effectiveness of the attack strategy.

Index Terms—False data injection attack, load redistribution
attack, electric vehicle, bi-level optimization

I. INTRODUCTION

Driven by the increasing environmental pressure, govern-
ments are promoting the development of electric vehicles
(EVs) all over the world. Due to the high individual uncer-
tainty of EV charging behavior, new planning and control
strategies should be considered especially for high EV pen-
etration networks. Generally, power system operators wish
to reduce the number of charging EVs in residential loads
during daily peak hours to reduce the risk of branch overflow
and system costs. Since individual charging behaviors of EVs
are strongly correlated with the local electric price at the EV
station, price control is a general method that is widely adopted
by the operators. When the system residential load is at its
peak hour, the transmission network operators (TNOs) increase
the local marginal prices (LMPs) on congested buses to avoid
branch overflow. The distribution network operators (DNOs)
on these congested buses monitor the wholesale price change,
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and increase the charging price of EV stations accordingly to
maximize their benefits. Thus, the EV charging behaviors are
discouraged by the high charging price [1]. Figure 1 illustrates
the price scheme in a high EV penetrated network.
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Fig. 1: Price scheme in high EV penetrated network

Since LMPs in transmission networks are strongly corre-
lated with branch congestion, if attackers hijack the com-
munication channels and corrupt the measurement data, then
TNOs will have a wrong judgment on the system state and
set false LMPs [2]. Therefore, a stealthy false data injection
attack (FDIA) may disable the whole price control scheme and
trigger a load surge during peak hours [3]. Such a load surge
may cause branch overflow, load shedding, voltage reduction
or frequency instability [4]. Thus, the analysis and modeling
of FDIA in price control of high EV penetration networks is
critical for the secure operation of power systems.

High EV penetration networks can be vulnerable to cyber-
physical threats since the hacker may launch the attack at any
time at any place [5]. The high power demand in EV loads
may destabilize the system under small attacks [6]. FDIA can
disrupt the data market forecasts and impose operating threats
to EV charging stations [7]. Moreover, algorithms for EV
load tracking and management enable the hacker to predict
daily EV demand based on historical communication data.
Jaruwatanachai et al. suggests that there is a strong correlation
between time-of-use price and EV charging demand [8]. A
conditional random field method is proposed by Soltani et al.
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to track the real-time load elasicity based on previous data
[9]. Such preditions may result in privacy exposure of EV
users. FDIAs on high EV penetrated networks pose a serious
threat to the whole national industry. Frequency can sharply
increase or decrease in response to sudden drops or spikes in
EV loads, which may cause the generation output oscillations
and reduce the lifetime of the generators [6]. Simultaneous fast
charging of EVs can also cause system voltage issues, which
may result in voltage limit violation, distribution system asset
over-loading, or even blackouts [10].

Based on diverse attacking resources, attacks on electric
price can be various [11]. To manipulate the electric market,
the hackers can directly jam the price control signal from
the control center and cease the jamming when the price
is significantly changed [12]. In order to bypass the BDD
test, hackers make use of measurement units on loads and
branches to transmit fake data to the control center [13].
Different attacking objectives decide the damage that can be
caused by the attack. Xie et al. focus on creating profitable
financial misconduct such as virtual bidding at certain buses
[14]. Jia et al. proposes a method to maximize profits for
certain generator buses [13]. Furthermore, with a specially
designed attacking vector, hackers are able to launch the attack
under limited measurement data [15] and manipulate LMPs
on tagged buses [16]. However, the state-of-the-art methods
only focus on LMPs in transmission networks, which is not
applicable to EV charging prices in distribution networks.

Instead of directly manipulating the price control signal or
the EV station communication infrastructure, we propose a
novel attack method that can mislead the DNOs to set the
wrong electrical prices for EV stations and therefore cause
EVs to charge at the same time during peak hours. The
method is based on a special type of FDIA, load redistribution
attack (LRA) model, and it only manipulates the residential
load bus signals in the transmission network. Rather than
focusing on increase the system cost like traditional LRA
method, our algorithm aims to affect the LMP on certain
EV buses. A lower level optimization problem representing
the correlation between LMP and charging price is attached
to the original model. Both instant attacks and consecutive
attacks are considered to address the potential damage they
may cause to the system.

The rest of the paper is organized as follows. Section II
gives a brief review of the LRA model and formulates the
attack problem. Section III introduces the attack model. The
effectiveness of the proposed method is tested on the IEEE
30-bus system in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

Since EV stations are generally located in a distribution
network and the FDIA is launched in the transmission network,
we will introduce the electric price scheme in a connected
transmission and distribution network. In this paper, we as-
sume that there is only one aggregated distribution network
under a transmission EV bus. We will explain the procedure
of LRA and its affect on LMP in the transmission network.

A. Electrical Price Scheme in Transmission Network

We consider a power system with /V; transmission lines and
N buses, including N, generator buses, Ny residential load
buses, and Ngy EV buses. Here, an EV bus is a load bus in
transmission network that its aggregated distribution network
has 100% EV loads. We use the notations £, A/, G, D and V to
represent the index sets of transmission lines, buses, generator
buses, residential load buses and EV load buses. The bus index
is arranged with generator buses at the beginning, followed
by residential load buses, and EV load buses afterward. For a
connecting bus that has no generator or load, we treat it as a
load bus with its load equal to zero.

In a real-time electricity market, TNOs minimize the system
cost by predicting the load and solving the following optimal
power flow (OPF) problem to determine the LMPs

N,
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where P} , PE, Py, are generation outputs, residential
loads, and EV loads on bus i, Vi € N at time t. Pf is
the net power output on bus i, Vi € N at time ¢. ¢} is the
unit power cost on generator bus i, Vi € G at time t. T}
is the power transfer distribution factor (PTDF) of branch <,
Vi € L to bus k, Vk € N. PJi%"; is the branch flow limit on
transmission line 7, Vi € L. P””fb_m and Pg’** are minimum and
maximum generation output on bus i, VZ € G. Objective (la)
indicates that the TNO plan to minimize the system cost during
operation. Constraint (1c) and (1d) calculates the branch power
flow and bounds it by branch capacity. Constraint (1b) is the
power balance equation and (le) is the generation constraint.
The LMP at bus k, Vk € A can be calculated through the

following equation [13]:
= 2 Tkl = )

where Al is the LMP at bus k, Vi € N at time . A, 7r+t and
Vj € L are dual variables corresponding to the power

N =X -

2

75, t’
balance equation (1c) and line flow constraints (1d). A is the
least incremental cost in the system and is globally identical
for all the system buses. The term Tj,k(wjt — ;) in (2)
defines the congestion cost of bus & at time t.

Generally, TNOs will predict the load level before the
dispatch interval and solve (1) to determine an ex-ante LMP
for each bus. Since the predicted load level might be different
from the real situation, the TNOs will observe the real network
congestion situation from the measurement units to determine
the dual variables 7T]+t, ;. and calculate the ex-post LMPs
through (2) after the dispatch interval. From complementary
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slackness in the Karush-Kuhn-Tucker (KKT) condition, it is
clear that when a branch j, Vj € L reaches its maximum limit
at time ¢, 77;& and —W;t, Vj € L will change from zero to
a positive value and thus raise the congestion cost and ex-
post LMPs as shown in (2) [17]. In this paper, we assume
that some branches around certain EV buses will reach its
maximum limit during peak hours and consequently induce a
congestion cost increase on these EV buses.

B. Load Redistribution Attack in Transmission Network

As a practical type of FDIA, LRAs only manipulate mea-
surement units on load buses and branches [18]. Connecting
buses and buses with generators are assumed to be well-
protected and cannot be attacked. Therefore, the total load
of the system should remain unchanged during the attack to
avoid the violation of Kirchhoff’s Current Law. In an LRA,
the hacker fakes the measurement data to disturb the system
state estimation and misleads the operator to design a worse
generation strategy. We use the following bi-level optimization
model to illustrate the traditional LRA method:

N{]
*,1
max ; PG, (3a)
Ng
st. > AP[ =0 VieD (3b)
1=1
Z ThkApkt = Apltine,i Viel (3C)
keN
— TPV < AP <7P;' VieD (3d)
Ny N,
Z 8p.i + Z Sline; < R (3e)
i=1 j=1
N9
P5' = arg min ciPL} Vie 3
el g B {Z; i Pe,} g (31)

(16) - (Le),
where AP} , APltim’ ; 1s the false data injection change on
residential load 4, Vi € D and branch j, Vj € L at time t.
AP! is the net power output change on bus i, Vi € N at
time ¢. 67 ; and dj, . . are binary variables that reflect if the
measurement units on residential load 7, Vi € D or branch
4, Vj € N are changed after the attack at time t. R is the
attack resources limitation and 7 is the attack magnitude limit.
argmin{+} represents the arguments of the minima. The upper
level problem, including (3a)-(3e), stands on the hacker’s
perspective, which wishes to maximize the total system cost
after the attack. Constraint (3b) ensures that the total load
of the system is unchanged during the attack. Constraints (3c)
and (3d) are attacking magnitude limit and attacking resources
limit, respectively. The lower level problem consists of (3f),
(1b)-(1le) and is an OPF problem that represents the TNO’s
perspective during the attack. Pé’f is the optimal generation
strategy after the TNO solves the OPF problem (3f), (1b)-(1e).

Although the LMP is not included in the LRA model
(3), hackers manipulate the branch power flow data during
the attack as shown in constraint (3c). This indicates that

the TNO recieves wrong branch flow data and consequently
make wrong judgments of branch power flow during the LRA.
Recall that in (2), the congestion cost of the LMP is related
to the dual variables of branch flow limits (1d). The wrong
judgment of branch flow after an LRA might cause different
dual variables in calculating the congestion cost of LMP, which
leads to an electrical price change in EV stations.

C. Electrical Price Scheme in Distribution Network

Consider a distribution network with 100% EV loads, DNOs
are supposed to buy electricity from the wholesale market
and sell it to users based on retail market price [19]. Unlike
the price scheme in transmission networks, the charging price
in a retail market is not only related to the load level, but
also depends on historical prices. EV users will compare
the charging price on different time to decide their charging
behaviors. Since we are considering a distribution network
with a large number of EVs, the computational complexity
for modeling every EV is extremely high. Thus, we use an
aggregated EV model [19] to avoid introducing large number
of variables. Assume that the DNO in this network wish to
maximize their profit, the following optimization problem is
applied as an electrical price scheme for the network:

max  (uj, — Ap)Ppy, — O(Pgy,) Vk€V (4a)
P

t
st Phy, =Pgy (1+ > E"(ui/m’ = 1)) VkeV
i=1
(4b)
0 < Ppy, < Pgy,,, YkeV, (4¢)
where pf, M. are the average charging price in the retail
market and the wholesale market price on EV bus k, Vk € V at
time ¢, respectively. Noted that in this paper, we just use the ex-
post LMP A at bus k, Vk € V as the wholesale market price
for DNOs. Pfy, is the total EV load in EV bus &, Vk € V at
time t. O(Pfy, ) = bongk + b1 Py, +bo is the management
and operating cost function of the DNO. By using retail market
income minus the wholesale market cost and operating cost,
objective (4a) reflects the profits of the DNO. Constraint (4b)
explains the relationship between charging price and charging
behavior. Here, we use the elasticity coefficient E% to reflect
the temporal elasticity correlation between the charging price
at time ¢ and time ¢ [20]. With a basic EV charging demand
Pftﬂ?/k and basic EV charging price ui’o, EV users adjust their
charging behavior based on the change of charging price.
Constraint (4c) ensures that the total EV load at bus k, Vk € V
is within its maximum limit.
After modeling the LRA, the electrical price scheme in the
transmission network and distribution network, we still have
the following three problems that need to be solved.

e Although an LRA can mask the congestion scenario in
branch power flow, how to introduce LMP into the LRA?

e To mislead charging behaviors of EV users, how to
introduce the charging price into the LRA model?

¢ Since the electric price in a distribution network has
temporal correlation with the historical data, how to
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combine the price scheme in distribution network (4) with
LRA model (3) and solve them?
We will answer these questions in the next section by
proposing our attack model.

III. PROPOSED MODEL

Before introducing our attack model, two assumptions
should be introduced. Since there are many FDIA methods
such as blind attack [21], regional attack [22] for attacks
without network parameters and the focus of this paper is
to explore the LRA in system with high EV penetration,
we assume that hackers have full knowledge of transmission
network parameters. Moreover, hackers also have the EV load
elasticity coefficient matrix E*?, basic charging demand P]tjg,k
and basic charging price u}i’o from historical EV data [20].

Distribution network

---------- Low wholesale price

Predict price-demand
curve

Transmission network

Measurement unit

LRA

TNO control center

Reduce charging price

buses simultaneousl
Fig. 2: Attack procedure

The goal of our model is to mislead the EV users to charge
simultaneously at peak hours under the logical assumption
that the TNO will minimize system costs and DNOs wish to
maximize their own benefits. The attack procedure is shown
in Fig. 2. During peak hours, the hacker launches an LRA on
measurement units in the transmission network and misleads
the TNO to get a wrong state estimation. Based on this wrong
state estimation, TNO will design a new generation strategy
and reduce the LMP on all EV buses. The DNOs in these
EV buses monitor the wholesale price change and predict the
price-demand curve to design new charge price. In order to
maximize their benefits like (4), DNOs decrease the charging
price in the retail market. The EV users observe the charging
price reduction and start to charge their EVs at the same time
resulting in a spike of loads. We use a multi-slot, bi-level
optimization model to illustrate our new attack method:

Wrong state
estimation

tm NEV
max Y Y Phy Vi€V (5a)
APLi t=to =1
st (36) — (3¢), (1b), (1d) — (1¢)
Ny Ny Ngv
D Phi=) P+ ) Pph (5b)
=1 j=1 k=1
U:ta”i_,tvﬂ;ftaﬂj_,t >0 VieG VjeLl (5¢)
O—’Zi:t(PGi - PE*)=0 Vieg, (5d)
O—’Zt(PGi - Pam) =0 Vieg (5e)
(D TPl — Plt) =0 Vi€ L (56)

keN

T (Y TikPi+ Pl) =0 Vi€l (52)
keN
cE—At+U;ft—a;t+T?;7Tft —T:?;»ﬂ':t =0 Vieg
(5h)
Ay= M= " Tyl —m;,) VkeV (51)
i,jEL
pj, = arg HE}X{(MZ — N Ppy, — O(Pgy,)} VkeV
k
(5D
st (4b) — (4c). (5k)

In (5h), T.; is the i — th column of matrix T. 7, =
(7 7o ﬂ';:t, ...WIJ{,M) is a column variable consists of dual
variables w;% with j € £. ()7 refers to the transpose of a
matrix or vector. Model (5) consists of two levels. (5a)-(51) are
the upper-level problem that illustrates the attack in the trans-
mission network and (5j)-(5k) are the lower-level problem that
represents the distribution network pricing scheme in (4). The
hacker aims to maximize system EV loads during peak hour
period from time step ty to time step ¢,,, i.e. objective (5a).
Since the traditional LRA model (3) is a bi-level optimization
problem, we apply KKT conditions on (la)-(le) to get its
dual problem. KKT conditions consists of four constraints:
primal constraints, dual constrgints, complementary slackness,
and the stationary equation. A?, J;f 4 0; 4 W;ft, ’/T;t are dual
variables with respect to constraint (lc), (le) and (1d) at
time t. Constraints (5b), (1b) and (1d)-(le) are the primary
feasibility in the exact OPF problem. Note that since it takes
time for EV users to react to the charging price change, in (5b)
we use historical EV data to maintain consistency with the
LRA model. Constraint (5c) is the dual feasibility to ensures
that the dual variables with respect to inequalities are larger
than zero. (5d)-(5g) are the complementary slackness form
of (1d)-(1e). (5h) is the stationarity equation for (1). After
the KKT condition transformation, the dual variable in (2) is
successfully introduced. Therefore, we introduce the LMP to
the LRA model just as shown in (5i).

By introducing optimization model (4) as the lower level
problem in (5), a relationship between charging price and the
LMP is built. We can infer from (4) that when the LMP on
EV bus is decreased, the DNO will evaluate the price-demand
constraint (4b) and determine the new charging price p! and
charging demand PfEVk. Therefore, LMP serves as the bridge
between LRA and charging price to ensure that the attack
can stimulate a EV demands increase. More parallel lower-
level problem such as (5j)-(5k) can be attached to (5) if more
distribution network is considered during the attack.

Solving the bi-level optimization model (5) is complicated
since it has parameters related to the previous time step, such
as constraint (5b) and (4b). Also, considering that the attack
might be exposed at any time, a greedy algorithm is applied to
determine the best-attacking vector AP}Z@_. Instead of solving
(3) between time range t( to t,, at once, we iteratively solve
the problem in only one time step to find its current local
optimal solution. During time step t, the hacker set ¢ty = ¢ and
tm = to + 1 in (5a) and solve the optimization problem (3).
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Therefore, the multi-slot problem is decompose into a single-
step optimization problem. Since the DNO’s operating cost
O(Ppgy, ) in (5j) is a convex quadratic function with respect
to EV load demand [19], the lower legel problem (51)-(5j) is
convex. Assume that O(Ppy, ) = boPfy, + b1 Py, + b with
bo > 1 /ng",zEt‘“tO uzo’o, by solving the quadratic optimiza-
tion problem (5j)-(5k), we can have the linear expression of
(5k) under greedy algorithm:
Py =Py (1+ B (i /10 — 1)) (62)
= Py, B0 (N — 1) /2(1 4 bo Py B ).
(6b)
If the condition by > 1/ P]?\’/g Etosto uZ"’O fails, then the
solution of quadratic optimization (5j)-(5k) must be at the
boundary condition of Ppy, . It is clear that when Pf, =0,
the profit of the DNO is zero. Therefore, the optimal solution
can only be Py, = Pgv,,,, .

Constraint (3e) is hard to solve since the binary variable

6% ,and 4}, . has no mathmatical representation. We use the

following constraints to replace constraint (3e) [18].
APp +7P[7160 ;>0

APp — TP 167, <0

0p i+, ;—2060;<0

AP, + (—TP[ " =€)t , > —TP !
APL +(rPL T+ €0, < TP
0py i+ 0n_ 400 <2

6L i+0_;—0Li>0
521&1’7527,%5&1' €{0,1}

APltme,z' + Mbfipe; >0

AP, — M6, <0

Stineti T Oine—i — 20tines <0
AP, + (—M — 6)5;ine+,i >-M
A‘Pltinei + (M + 6)5;me7,¢ <M

vieD (7)

Vie Ll ®)

t t

5line+,i + 5line—,i + 5line,i <2
t t

6line+,i + 5line—,i - 5line,i > 0
t 1

5line+,z’7 5linef,ia 5line,i S {07 ]-}

Noted that M is a sufficiently large positive number and
€ is a sufficiently small positive number. Binary variables
i 5}51-”6 s 5fme—,i are used to represent whether
the attacking resources have reach their maximum or minimum
limits. The existence of complementary slackness (5d)-(5g)
makes the optimization nonconvex. A linearized expression of

complementary slackness is applied to solve this problem [18].

t t
6L+,i’ oL,

ﬂ;t<Mw7

- Ti,t
Plinei + Pt
7Ti+,t < ij{m

- ]Dltine,i + ‘PlrzT?LzaeI,z < M(l - w;:,,t)

w&t +wl <1

it —

<M(1-w_ )

Ti,t

viel (9

Ui_’t < ch;m

PG, = PE" < M(1-w,, )
O'j:t < Mw;LM

— P4, + PR <M(1—-uwf )
Wo, +wl <1

Oi,t —
+ —

Tt wo"i,t’

Vieg (10)

+
wﬂi‘t’

w wr,, €{0,1}

(11
New binary varibles w; ,w, ,wl ,w;  in equations (9),
(10), (11) are used to fepresént whether the generators or
branches have reached their maximum or minimum limits. By
substituting (9), (10) and (11) to (5d)-(5g), the complementary
slackness constraint become linear. Therefore, the problem
becomes a mixed integer linear problem (MILP) in each step
of the greedy algorithm, which can be solved numerically as
shown in Algorithm 1.

Algorithm 1 Greedy algorithm for attack model
Input: Attack time range to, t,,
Output: Attack vector AP}
1: Initialize ¢t = ¢,
2: while ¢t <t,, do
3: Estimate basic charging demand Pg’?/k

4 Estimate basic charging price ;LZ,’O
5. if by > 1/Pgy B4y then

6: Substitude (6a),(6b) to (5p)-(5r)
7: else

8 PItEVk = PEVmam

9

Replace ty in (5a) with ¢

Replace ¢, in (5a) with ¢ + 1
11: Solve MILP problem (5)
122 Output attack vector AP}
13: if Attack is not exposed then
14: t=t+1
15: else
16: Break loop

17: return Attack vector AP}

IV. CASE STUDY

In this section, we apply our proposed attack method to
the IEEE 30-bus system that consists of 6 generators, 24
load buses and 41 branches [23], [24]. A daily pattern of
aggregated load data on June 21st, 2023 is taken from the Los
Angeles Department of Water and Power electricity overview.
We normalize the above data based on its maximum value
and apply the pattern on the EV load bus. In the transmission
network, bus-self admittance is ignored since we only consider
active power demand. The maximum attack magnitude 7 on
each residential load bus is set to 50% of its original value [23].
The maximum attack resources is set as 80, which is about
75% of the total available measurement units. To simulate the
measurement error and communication noise in reality, all the
measurement data and hacker’s attack vector is contaminated
by independent Gaussian noises with e ~ A (0, 0.05) based on
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Fig. 4: (a) LMP, charging price, (b) load change on bus 12 under consecutive attack

its original value. Noted that the original LMP and charging
price curve in this section is calculated without noise affect.

A. Attack on Single EV Bus

Bus 12 is set as an EV bus with around 10,000 EVs. Our
attack aims to maximize the EV loads in EV buses. Because
in the original LMP and the original charging price, the peak
hours range from 1lam to 11pm. Thus, we consider instant
attacks at 8 pm and consecutive attacks from 11 am to 11 pm.

Fig. 3 gives the LMP, charging price, and EV load with and
without the instant attack. As shown in Fig. 3(a), at 8 pm, the
hacker successfully mislead the TNO to reduce the LMP on
EV bus 12 and consequently cause a decrease in the charging
price. EV users observe a sudden price decrease and all rush
into charging at the same time, which results in a load increase
from 37MW to 66MW as shown in Fig. 3(b). This indicates
that our model works for an instant attack during peak hours.

Next, we expand the attacking period from 11 am to 11 pm,
and launch the attack. Fig. 4 gives the LMP, charging price,
and EV load with and without the consecutive attacks. It can
be observed that the LMP almost remains unchanged under
the attack during the peak hours. This indicates that the hacker
successfully masks the congestion scenario in the transmission
network and misleads the TNO about the LMP setting strategy.
Since the LMP is almost unchanged, the DNO do not increase
the charging price since it will reduce their profits as shown
in Fig. 4(a). The EV load on bus 12 is therefore increased
during the peak hour as shown in Fig. 4(b). Compared to the
normal operation, the attack successfully increased the peak
load from 40 MW to 68 MW, which indicates that our attack

model effectively disturbs the price control scheme and create
a load spike during peak hours.

B. Attack on Multiple EV Buses

In this section, we monitor the effectiveness of attacks
on multiple EV buses. We set bus 12 as an EV bus with
around 10,000 EVs and 1000 EVs on bus 27 since the original
residential load on bus 27 is about 10% of the residential load
on bus 12 in IEEE 30-bus model. We launch the consecutive
attacks on both buses from 11 am to 11 pm. Fig. 5(a) shows
the load change with and without attacks. We can observe
that both EV loads on bus 12 and bus 27 increase during peak
hours. EV load on bus 12 increased from 40MW to 60MW
and EV load on bus 27 increased from 4MW to 8 MW. This
indicates that our attack model also works on two EV buses.

To better testify the effectiveness of our model, we set bus
25 as an EV bus with 2500 EVs and monitored the load change
among the whole system. The result of the EV load change is
shown in Fig. 5(b). We can infer from Fig. 5(b) that the attack
still works for three EV buses. The maximum load increment
on bus 25 is 2.1MW, which is about 20% of its base value.
The load on bus 12 is increased from 40MW to 62MW and
the load on bus 27 is also increased by 80%.

As illustrated in the greedy algorithm, the hacker solves
MILP problem (5) at each time interval. Therefore, the com-
putational complexity of the proposed attack is determined by
the total attacking time %, — top and the number of variables
and constraints in (5). It is worth pointing out that only two
linear constraints (5i) and (6) are added into the traditional
LRA model [18]. The number of constraints in (5i) and (6) are
the same as the number of EV buses. Therefore, the number
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Fig. 5: load change on (a) bus 12 and 27 (b) bus 12,25 and 27 under consecutive attack

of constraints in (5) is linear to the number of EV buses in
the system, which indicates that our algorithms can be easily
extended to large systems with high EV penetration.

V. CONCLUSION AND FUTURE CHALLENGE

In this paper, we have proposed a novel attack method that
can trigger an EV load spike during peak hours. We apply
the LRA in the transmission network to veil the congestion
scenario and mislead the TNO to set the wrong LMP at EV
buses. Consequently, the DNOs on EV buses do not increase
the charging price in the retail market to get maximum profits.
Therefore, the EV users charge simultaneously during peak
hours and cause an EV load spike in the system. The case
study in the IEEE 30-bus system proves the effectiveness of
our attack model. We have carried out both an instant attack
and consecutive attacks during the peak hour. Our simulations
have shown that the proposed algorithm still performs effec-
tively under multiple EV buses case. Considering that both
residential and EV loads exist in practical distribution load
buses, future research may be carried out in the optimization
of different load combinations. Other multi-slot optimization
algorithms can also be explored to reach a more stealthy and
powerful attack in a high EV penetration network.
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