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Abstract—As the integration level of inverter-based resources 
(IBRs) increases, ensuring the reliable operation of the bulk 
power systems requires the use of electromagnetic transient 
(EMT) simulation tools to identify and mitigate system-wide 
stability risks. Conducting EMT studies for large-scale, IBR-rich 
grids, however, is challenging due to the inherent computational 
bottleneck caused by the underlying high-fidelity models and 
required small time steps. This paper introduces ParaEMT: an 
open-source, generic EMT simulation framework designed to 
accelerate simulations by leveraging advanced parallel 
computational technologies, such as high-performance 
computers. This paper presents a comprehensive exposition of 
ParaEMT, covering its modeling library, simulation strategy, 
framework structure, operational procedures, and auxiliary 
features, alongside its extensible parallel computational 
architecture. Notably, ParaEMT is a publicly accessible and 
modularized framework written in Python, thereby facilitating 
future development and the integration of new models and 
algorithms. The accuracy and efficiency of ParaEMT are 
demonstrated by rigorous validations via multiple case studies. 

Index Terms—EMT; electromagnetic transient simulation; 
inverter-based resource; ParaEMT; parallel computation; power 
system dynamics. 

I. INTRODUCTION 
With the increasing integration of inverter-based resources 

(IBRs) toward a 100% renewable energy future, the induced 
fast dynamics, such as sub/super synchronous resonances, 
have emerged as significant threats to the reliability and 
stability of power systems [1]-[6]. To tackle this challenge, 
power system electromagnetic transient (EMT) simulation 
stands out as a powerful tool due to its capability to accurately 
capture intricate system-wide dynamics spanning a wide 
frequency range, e.g., from DC to hundreds of hertz, owing to 
its detailed system and IBR modeling. Therefore, EMT 
simulation is playing a progressively more pivotal role in 
crucial aspects for renewable integration investigations in 
modern power grids, such as control design, stability analysis, 
and protection coordination [5]-[8]. 

Nevertheless, small time steps, typically 50-100 μs, are 
needed for the numerical accuracy and stability of EMT 
simulations, resulting in substantial computational overhead, 
particularly on large-scale systems [9]. Consequently, the 
demand to accelerate EMT simulations has garnered 

significance for facilitating efficient dynamic security 
assessments of large-scale, IBR-rich power grids [10]-[11]. 

At present, researchers and practitioners in the field heavily 
rely on commercial, offline EMT simulation tools, such as 
PSCAD and EMTP-RV, which are typically well-tested and 
computationally efficient. Those tools, however, are not 
flexible for users to experiment with new technical approaches 
[12], [13] or integrate innovative algorithms [9], [14], [15] by 
modifying the source code.   

This reasoning motivates the development of an open-
source EMT simulation framework capable of parallel 
computation. This framework caters to the needs of both 
industrial and academic entities engaged in power systems 
development and research. Additionally, it aims to provide a 
transparent platform for students to acquire hands-on 
experience with fundamental EMT simulation techniques. In 
pursuit of this objective, the authors have successfully 
developed a Python-based EMT simulation framework, named 
“ParaEMT,” to serve as a flexible and extensible platform for 
both educational and research purposes. 

During the past decade, Python, a dynamic and versatile 
programming language, has gained immense popularity in 
various fields, such as machine learning and data science [16]-
[17]. As a high-level interpreted language, Python offers a 
multitude of advantages: it is easy to code and read; it is free 
and open source; and it has a comprehensive standard library, 
strong community support, platform independence, and more 
[18]. These attributes make Python particularly well-suited for 
developing open-source tools with rapid prototyping. For 
example, a Python-based power system phasor domain 
simulator, ANDES [19], has amassed an impressive 399,000 
downloads. Hence, the authors chose Python as the language 
for the EMT simulation framework ParaEMT in this work. 

Till now, there have been several previous attempts at 
developing open-source simulators considering EMT 
dynamics, such as the DPsim in [20] based on the dynamic 
phasor approach, the developing PyTHTA EMT circuit 
program [21], and the MSEMT developed in Modelica 
environment [22]. To the best of the authors’ knowledge, 
ParaEMT is the first free and open-source Python-based EMT 
simulator for large scale systems that is easily compatible with 
the distributed memory paradigm, such as multiple computers 
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on a transmission control protocol (TCP) network and high-
performance computing (HPC) protocols, through utilization 
of the Message Passing Interface (MPI) technology [23]. 

In light of the need of EMT simulations for large-scale 
systems [24] and the swift evolution of heterogeneous 
computing architectures, we believe ParaEMT emerges as a 
valuable and substantial contribution. It provides a flexible and 
transparent framework for exploring advanced efficient EMT 
simulations techniques and fosters innovative research 
endeavors in the domain of EMT simulations.    

The rest of the paper is organized as follows. Section II 
outlines the main features of the open-source EMT simulation 
framework, ParaEMT. Section III elucidates the implemented 
models and algorithms in ParaEMT. Section IV presents a 
comprehensive overview of the framework’s structure. To 
assess the accuracy and efficacy of the developed framework, 
four case studies are elaborated in Section V and Section VI. 
Conclusions and future work are drawn up in Section VII. 

II. PARAEMT FEATURES 
The initial motivation for developing this framework is to 

provide a flexible environment for conducting EMT 
simulations of large-scale bulk power systems. To achieve this 
target, the framework of ParaEMT was developed with the 
following main features: 

1) Fully open source and transparent: Allows unrestricted 
access and modifications to the underlying source code. 

2) Cross-platform compatibility: Able to operate on most 
prevalent operating systems, including Unix, Linux, Windows, 
and macOS X. 

3) Automated parallel computation: Provides fully 
automated parallel computation for solving network equations. 

4) IEEE/Cigre power system dynamic-link library (DLL) 
compatibility: Seamlessly incorporates black-box component 
dynamic models developed by third parties [25]. 

5) Harnessing the just-in-time (JIT) compiler, Numba, in 
Python: Drastically speeds up the computational loops [26]. 

6) Results down-sampling capability and snapshot 
functionality. 

7) Test systems library: Includes common test systems, 
such as the Kundur two-area system [27], IEEE 9-bus system 
[28], IEEE 39-bus system [28], Western Electricity 
Coordinating Council (WECC) 179-bus system [29], and 
WECC 240-bus system [30].  

8) Intelligent initialization: Automatically builds and 
initializes EMT cases from predefined PSSE power flow files 
to avoid reaching abnormal operating modes [31]. 

9) Empowers advanced applications: Allows proficient 
users to develop additional models and functions, facilitating 
rapid prototyping, modeling, and testing of novel research 
ideas leveraging heterogeneous computing architectures, such 
as HPC [12] and graphics processing units (GPUs) [13]. 

In comparison, the widely used commercial software 
PSCAD operates exclusively on the Windows platform [32], 
which poses certain constraints in exploiting the potential of 
HPCs (which typically have a Linux system) or GPUs to 

accelerate the simulation from user end, unless vendor support 
is provided to deploy it in the Linux system or restructure the 
CPU code to be compatible with GPU execution mode [33]. 

Conversely, commercial software, like PSCAD, has a well-
written user’s manual and help documentation, well-developed 
GUIs, excellent help-desk support, extensive device libraries, 
and advanced functions, such as switching interpolation. 
ParaEMT is still under continuous development and currently 
lacks these features. 

III. MODELS AND ALGORITHMS UTILIZED IN PARAEMT 
This section introduces the network, dynamic, and fault 

modeling employed in ParaEMT, along with elucidations of 
the algorithms utilized in the process. 
A. Network Equation Modeling 

Approaches for formulating the EMT network equation are 
primarily classified as nodal formulation [34], [35], state-space 
formulation [36], and state-space nodal formulation [37]. 
Given the time-consuming nature of state-space equation 
formulation, especially for large-scale systems considering 
topology changes [31], [38], the nodal formulation proposed in 
[34] is utilized in ParaEMT.  

To obtain the network nodal equation through discretizing 
the differential equations, various algorithms can be employed, 
such as the 2-stage singly diagonally implicit Runge-Kutta 
(2S-DIRK) method, the trapezoidal-rule method, polynomial 
Gear methods, the backward Euler method, the backward 
differentiation formula, the matrix exponential-based method, 
and so on [31], [39]. In most cases, the classical trapezoidal 
method still retains higher efficiency in achieving comparable 
precision with alternative methods [31], and thus it is utilized 
in ParaEMT to derive the network companion circuits and to 
establish the network conductance matrix G. Finally, the 
discretized network nodal equation is formulated as [34], [36]: 

( ) ( ) ( )histt t t t= + −∆Gv i i                         (1) 
where v(t) is a vector of the nodal voltages, i(t) is a vector of 
the external current sources, and ihist is a vector of the currents 
determined by history terms related to conditions in the 
previous time step. In addition, to suppress spurious numerical 
oscillations, artificial resistors Rp≈40L/(3∆t) and Rs≈3∆t/(40C) 
are added in parallel/series with L/C, respectively [40].  
B. BBD Technique for Parallelizing the Network Solution 

To enable parallel computations for solving the network 
equation, a task that typically dominates the total simulation 
time cost [9], the bordered-block-diagonal (BBD) matrix-
based approach [14] is employed and automated in ParaEMT 
to decompose the sparse network conductance matrix G into 
multiple partitions, as shown in (2).  
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Subsequently, all but one of the backward and forward 
substitutions for solving the network solution are parallelized 
for speedup. Interested readers may refer to [14] for details.  

Besides, due to the flexibility of this framework, other 
potential techniques and algorithms can also be developed or 
explored to improve simulation efficiency in the future. 
C. System Component Modeling 

At present, the implemented models in ParaEMT are 
concisely summarized in Fig. 1, which includes several 
dynamic models and a network model formulated by the nodal 
approach [41]-[43]. 

 
Figure 1. Developed models in ParaEMT 

ParaEMT offers a Euler integration routine and includes all 
relevant limits for computation regarding synchronous 
machines, machine controls, and IBRs. Meanwhile, ParaEMT 
is currently undergoing continuous development to incorporate 
more models, such as other types of machines [44], distributed 
transmission lines [45], dynamic loads, transformers with 
saturation, and new EMT-type grid-following/forming 
inverters, thus enhancing its versatility and applicability. 
D. Fault Modeling 

In its current state, ParaEMT supports control reference 
step changes and generator trips through embedded functions 
while allowing step perturbations of any parameters or 
variables. Development efforts are currently underway to 
include balanced and unbalanced line faults. 

IV. FRAMEWORK STRUCTURE OF PARAEMT 
Fig. 2 on the next page illustrates the main structure of the 

simulation framework, along with the corresponding files or 
code snippets for users to better comprehend the detailed 
implementations. Further elaborations and additional details 
are provided next. 
A. File Formats 

As presented in Fig. 2, ParaEMT loads system power flow 
from a pre-established PSSE raw file and then converts it into 
a three-phase network representation, along with the three-
phase instantaneous voltages and currents, during the 
initialization process. The dynamic data are imported from a 
predefined XLS file that has a straightforward data layout. 

Such a manner facilitates the efficient establishment of EMT 
models of systems, especially for large-scale cases. 
B. Main Functions and Subfunction Libraries  

As displayed in Fig. 2, the ParaEMT framework comprises 
three main functions. Among them, the first function, 
main_step0_CreateLargeCases, serves the dual purpose 
of executing and storing the power flow solution and, 
optionally, generating synthetic large-scale systems. The 
second function, main_step1_sim, is responsible for 
initializing and simulating the system dynamics. The third 
function, main_step2_save, saves the simulation results. 

Further, the main functions are supported by multiple 
subfunctions sourced from three distinct libraries. Notably, 
lib_numba incorporates time domain simulation functions 
compiled through Numba. Additionally, psutils 
predominantly encompasses functions related to system 
initialization, whereas other functions are in Lib_BW. Four 
numerical arrays, pfd, dyd, ini, and emt, are designated to 
hold power flow data, dynamic data, initial state data, and 
EMT simulation data, respectively. 
C. Simulation Initialization  

Proper initialization plays an important role in attaining a 
normal operation condition before executing the time domain 
simulation [31]. To achieve this, ParaEMT starts the 
initialization from a converged power flow and then initializes 
the rest of the variables for dynamic routines following an 
automatic process, as illustrated in Fig. 3.  
D. Time Domain Simulation 

As the crux of the EMT simulation, the time domain 
simulation involves mainly updating the dynamic states, 
updating the currents, and solving the network nodal equation. 
The time loop framework in ParaEMT that considers 
reinitialization following any disturbances is detailed in Fig. 4. 
Meanwhile, the down-sampling function allows for saving the 
results at every customized DS time steps. 
E. Run From a Snapshot  

To run ParaEMT from a simulation snapshot, typically a 
well-converged steady state, the first step is to simulate and 
save a snapshot when setting SimMod=0 in main_step1_sim. 

After that, by setting SimMod=1, the simulations thereafter 
concerning different contingencies start directly and 
automatically from the saved snapshot, facilitated by the 
subfunction initialize_from_snp. 
F. Parallel Computation for Solving the Network Equation 

ParaEMT supports three different network solvers, which 
are based on the direct inverse, LU decomposition, and BBD 
decomposition. Among them, the BBD technique supported by 
the function library bbd_matrix.py is used for parallel 
computing of the network solution.  

V. CASE STUDIES FOR ACCURACY VALIDATION 
       In this section, two case studies are conducted to validate 
the accuracy of ParaEMT on capturing system transient 
dynamics, along with its compatibility with DLL models.  
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Figure 2. EMT simulation framework in ParaEMT 
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Figure 3. Framework for simulation initialization in ParaEMT 

 
Figure 4. Framework for the time domain simulation in ParaEMT 

A. Case Study on a Modified Kundur Two-Area System 
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Figure 5. A modified Kundur two-area system 

A validation of ParaEMT against PSSE on slow dynamics 
is performed on a modified Kundur two-area system, shown in 
Fig. 5 [27]. The modifications encompass an intentionally 
crafted ensemble of components, including one WECC generic 

IBR, three synchronous generators, four transformers, eight 
lumped transmission lines, two loads, and two fixed shunts. 
Additionally, the SEXS exciter is added to all generators; 
generators G2, G3, and G4 are equipped with TGOV1, 
HYDRO, and GAST governors, respectively; generator G4 is 
equipped with an IEEEST stabilizer. The simulation starts 
from a steady state, and a +0.05-p.u. voltage reference step 
change is added to G3 at t=1 s and then eliminated at t=5 s. 

Figs. 6-8 depict the simulation results of ParaEMT 
compared to PSSE. Evidently, ParaEMT yields results that 
closely align with those from PSSE, and the minor errors are 
acceptable and reasonable due to undisclosed implementation 
specifics of models and numerical solvers in commercial tools. 

 
Figure 6. Frequency comparison on a modified Kundur two-area system 

 
Figure 7. Power comparison on a modified Kundur two-area system 

 
Figure 8. Voltage comparison on a modified Kundur two-area system 

The successful validation of ParaEMT using this modified 
Kundur two-area system confirms the correct implementation 
of all the developed models within ParaEMT, as shown in Fig. 
1, along with the framework shown in Fig. 2. 
B. Case Study of a DLL-Supported IBR Model 

In this case, the framework in ParaEMT is extended to 
incorporate a C-compiled DLL file containing a grid-following 
IBR model from the Electric Power Research Institute (EPRI) 
[46]. The analysis is conducted on a small three-bus test case 
containing an infinite bus and an IBR bus.  

After initialization, two disturbances are added at t=4.0 s 
and t=8.0 s, by increasing Pref and Qref of the IBR by 5 MW 
and 5 Mvar, respectively. The dynamic results of ParaEMT, in 
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red, are well aligned with those provided by PSCAD, in black, 
as shown in Fig. 9.  

 
Figure 9. Results comparison for the EPRI IBR model on a three-bus system 

This case study stands as an exemplary validation of 
ParaEMT’s ability to precisely simulate fast dynamics and its 
compatibility with IBR models in DLL files, thus allowing 
users to efficiently incorporate user-defined models. 

VI. CASE STUDIES ON PARALLEL SIMULATION 
This section presents two case studies to demonstrate the 

efficiency of ParaEMT on medium and large-scale systems 
using the BBD-based parallel computation.  
A. Time Performance on the WECC 240-Bus System  

To evaluate ParaEMT’s time performance on a medium-
sized system, the average time cost of ParaEMT for a 1-second 
simulation using a 50-μs time step is compared with that of 
PSCAD [30]. Because the developed PSCAD model is evenly 
divided into eight zones [47], the tests are conducted using 1 
or 8 processor cores, i.e., with or without parallel computation, 
for fair comparisons. The simulations are carried out on a 
Windows machine equipped with two Intel Xeon(R) Platinum 
8280 2.7-GHz CPUs and 512-GB RAM. Also, Python 3.7.13, 
SciPy 1.7.0, NumPy 1.21.0, and Numba 0.57.1 are employed. 
The final time cost results are summarized in Table I.  

Simulator 1 processor core 
No parallelization 

8 processor cores 
Parallelization 

PSCAD 90 s 15 s 
ParaEMT 29 s 28 s 

Table I. Time cost on the WECC 240-bus system for a 1-second simulation 

As presented in Table I, ParaEMT can simulate this 
medium-size 240-bus system with a superior time performance 
than that of PSCAD under series simulation using 1 core, 
primarily attributed to implementation of the JIT Numba 
compiler within ParaEMT. However, ParaEMT does not show 
speedup for parallel simulation on this 240-bus system, mainly 
because the utilized BBD technique cannot fully decouple the 
network, and the system size is not sufficiently large to exploit 
the advantages of the BBD technique, and the required 
synchronization process slows down the simulation, especially 
when more than 8 partitions are utilized. Instead, PSCAD uses 
time delay induced by distributed model-based long 
transmission lines to fully decouple the network and greatly 
reduce the time cost through parallel simulations [30]. Thus, in 
our future work, the authors are also interested in incorporating 

the distributed line model and developing corresponding 
parallel simulation capabilities, especially for medium size 
systems. To notice, including a distributed line model that 
considers frequency dependency [48] will certainly increase 
the computation burden for formulating the network G matrix 
and updating historical currents, determined by the number of 
long-distance lines in the system. Nevertheless, the time cost 
for simulating large-scale systems is still dominated by solving 
the network nodal equation, which is not straightforward to 
parallelize.   

Notice that the distributed line-based parallel simulation 
technique used in PSCAD requires a manual process to 
decouple the system. In comparison, although the BBD-based 
parallelization does not speed up simulation on the 240-bus 
system, it is fully automatic and does not require any manual 
process, making it well-suitable for large-scale systems. 
B.  Parallel Simulation on a Synthetic 10,024-Bus System  

To substantiate ParaEMT’s capability and high efficiency 
of simulating large-scale systems with the BBD-based parallel 
simulation, a test is conducted on a synthetic 10,024-bus 
system constructed by interlinking 7×8 replications of the 
WECC 179-bus system using the LargeSysGenerator 
function [9], [14]. Leveraging parallelization on the HPC 
Eagle at the National Renewable Energy Laboratory (NREL) 
[49], the performance is depicted in Figs. 10 and 11. 

 
Figure 10. Speedup performance when leveraging HPC parallelization 

relative to a serial (single-core) simulation 

 
Figure 11. Time cost for a 1-second simulation using a 50-μs time step 

As shown in Fig. 10, with the number of HPC Message 
Passing Interface (MPI) ranks [23], [50] and network BBD 
partitions both varying from 1 to 84, the simulation achieves a 
peak speedup of approximately 15-18 times, with a 
corresponding minimum time cost of 90-110 seconds for a 1-
second simulation using a 50-μs time step, as shown in Fig. 11. 
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In addition, as the number of partitions increases, the size 
of the BBD corner block and the number of nonzero elements 
in the LU submatrices increases, which results in reducing the 
amount of work that benefits from parallelization. As per 
Amdahl’s law [51], this limits the maximum speed up of the 
BBD Schur complement solve. As a result, increasing the 
number of partitions increases the execution time on the 240-
bus system. In contrast, this problem is less apparent on the 
10,024-bus system, mainly because the network G matrix can 
be partitioned into more pieces before the corner size and 
number of nonzeros become problematic.  

Importantly, the scalability presented here is not limited to 
HPC systems. ParaEMT uses MPI, which is a distributed 
memory parallelization paradigm, and can run on many 
network communication protocols; thus, it can be deployed on 
multiple compute nodes of an HPC system, multiple computers 
on a TCP network, or simply a multi-core machine. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper introduces an open-source EMT simulation 

framework, ParaEMT, for efficient simulations of large-scale, 
IBR-rich grids leveraging parallel computations. The structure 
of the framework is presented in detail with code snippets. The 
accuracy, extension, and efficiency of ParaEMT are validated 
with case studies. The simulation framework is extensible to 
add user-defined models, different numerical approaches, and 
different modeling techniques. The framework can be further 
extended for simulating ultra-large-scale systems, acceleration 
via heterogeneous computing architectures, and EMT-phasor 
hybrid simulations. 

Meanwhile, to improve the capability and flexibility of 
ParaEMT, the authors are working on developing power flow 
and result plotting functions in Python within the framework, 
and future efforts will be directed toward developing a user 
manual, a help document, additional dynamic models, 
interfaces with commercial tools, and compatibility with 
systems described in various data formats.  

CODE AVAILABILITY 
The open-source parallel EMT simulation framework, 

ParaEMT, is available in:  
http://github.com/NREL/ParaEMT_public 
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