
23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

An Open-Source Parallel EMT Simulation Framework
Min Xiong1,2, Bin Wang3, Deepthi Vaidhynathan1, Jonathan Maack1, Matthew J. Reynolds1,

Andy Hoke1, Kai Sun2, Deepak Ramasubramanian4, Vishal Verma4, Jin Tan1*
1 National Renewable Energy Laboratory, Golden, CO, 80401, USA

2 University of Tennessee, Knoxville, TN, 37996, USA
3 University of Texas at San Antonio, San Antonio, TX, 78249, USA

4 Electric Power Research Institute, Knoxville, TN, 37932, USA

Abstract—As the integration level of inverter-based resources
(IBRs) increases, ensuring the reliable operation of the bulk
power systems requires the use of electromagnetic transient
(EMT) simulation tools to identify and mitigate system-wide
stability risks. Conducting EMT studies for large-scale, IBR-rich
grids, however, is challenging due to the inherent computational
bottleneck caused by the underlying high-fidelity models and
required small time steps. This paper introduces ParaEMT: an
open-source, generic EMT simulation framework designed to
accelerate simulations by leveraging advanced parallel
computational technologies, such as high-performance
computers. This paper presents a comprehensive exposition of
ParaEMT, covering its modeling library, simulation strategy,
framework structure, operational procedures, and auxiliary
features, alongside its extensible parallel computational
architecture. Notably, ParaEMT is a publicly accessible and
modularized framework written in Python, thereby facilitating
future development and the integration of new models and
algorithms. The accuracy and efficiency of ParaEMT are
demonstrated by rigorous validations via multiple case studies.

Index Terms—EMT; electromagnetic transient simulation;
inverter-based resource; ParaEMT; parallel computation; power
system dynamics.

I. INTRODUCTION
With the increasing integration of inverter-based resources

(IBRs) toward a 100% renewable energy future, the induced
fast dynamics, such as sub/super synchronous resonances,
have emerged as significant threats to the reliability and
stability of power systems [1]-[6]. To tackle this challenge,
power system electromagnetic transient (EMT) simulation
stands out as a powerful tool due to its capability to accurately
capture intricate system-wide dynamics spanning a wide
frequency range, e.g., from DC to hundreds of hertz, owing to
its detailed system and IBR modeling. Therefore, EMT
simulation is playing a progressively more pivotal role in
crucial aspects for renewable integration investigations in
modern power grids, such as control design, stability analysis,
and protection coordination [5]-[8].

Nevertheless, small time steps, typically 50-100 μs, are
needed for the numerical accuracy and stability of EMT
simulations, resulting in substantial computational overhead,
particularly on large-scale systems [9]. Consequently, the
demand to accelerate EMT simulations has garnered

significance for facilitating efficient dynamic security
assessments of large-scale, IBR-rich power grids [10]-[11].

At present, researchers and practitioners in the field heavily
rely on commercial, offline EMT simulation tools, such as
PSCAD and EMTP-RV, which are typically well-tested and
computationally efficient. Those tools, however, are not
flexible for users to experiment with new technical approaches
[12], [13] or integrate innovative algorithms [9], [14], [15] by
modifying the source code.

This reasoning motivates the development of an open-
source EMT simulation framework capable of parallel
computation. This framework caters to the needs of both
industrial and academic entities engaged in power systems
development and research. Additionally, it aims to provide a
transparent platform for students to acquire hands-on
experience with fundamental EMT simulation techniques. In
pursuit of this objective, the authors have successfully
developed a Python-based EMT simulation framework, named
“ParaEMT,” to serve as a flexible and extensible platform for
both educational and research purposes.

During the past decade, Python, a dynamic and versatile
programming language, has gained immense popularity in
various fields, such as machine learning and data science [16]-
[17]. As a high-level interpreted language, Python offers a
multitude of advantages: it is easy to code and read; it is free
and open source; and it has a comprehensive standard library,
strong community support, platform independence, and more
[18]. These attributes make Python particularly well-suited for
developing open-source tools with rapid prototyping. For
example, a Python-based power system phasor domain
simulator, ANDES [19], has amassed an impressive 399,000
downloads. Hence, the authors chose Python as the language
for the EMT simulation framework ParaEMT in this work.

Till now, there have been several previous attempts at
developing open-source simulators considering EMT
dynamics, such as the DPsim in [20] based on the dynamic
phasor approach, the developing PyTHTA EMT circuit
program [21], and the MSEMT developed in Modelica
environment [22]. To the best of the authors’ knowledge,
ParaEMT is the first free and open-source Python-based EMT
simulator for large scale systems that is easily compatible with
the distributed memory paradigm, such as multiple computers

Corresponding author: Jin Tan (Jin.Tan@nrel.gov)

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

2

on a transmission control protocol (TCP) network and high-
performance computing (HPC) protocols, through utilization
of the Message Passing Interface (MPI) technology [23].

In light of the need of EMT simulations for large-scale
systems [24] and the swift evolution of heterogeneous
computing architectures, we believe ParaEMT emerges as a
valuable and substantial contribution. It provides a flexible and
transparent framework for exploring advanced efficient EMT
simulations techniques and fosters innovative research
endeavors in the domain of EMT simulations.

The rest of the paper is organized as follows. Section II
outlines the main features of the open-source EMT simulation
framework, ParaEMT. Section III elucidates the implemented
models and algorithms in ParaEMT. Section IV presents a
comprehensive overview of the framework’s structure. To
assess the accuracy and efficacy of the developed framework,
four case studies are elaborated in Section V and Section VI.
Conclusions and future work are drawn up in Section VII.

II. PARAEMT FEATURES
The initial motivation for developing this framework is to

provide a flexible environment for conducting EMT
simulations of large-scale bulk power systems. To achieve this
target, the framework of ParaEMT was developed with the
following main features:

1) Fully open source and transparent: Allows unrestricted
access and modifications to the underlying source code.

2) Cross-platform compatibility: Able to operate on most
prevalent operating systems, including Unix, Linux, Windows,
and macOS X.

3) Automated parallel computation: Provides fully
automated parallel computation for solving network equations.

4) IEEE/Cigre power system dynamic-link library (DLL)
compatibility: Seamlessly incorporates black-box component
dynamic models developed by third parties [25].

5) Harnessing the just-in-time (JIT) compiler, Numba, in
Python: Drastically speeds up the computational loops [26].

6) Results down-sampling capability and snapshot
functionality.

7) Test systems library: Includes common test systems,
such as the Kundur two-area system [27], IEEE 9-bus system
[28], IEEE 39-bus system [28], Western Electricity
Coordinating Council (WECC) 179-bus system [29], and
WECC 240-bus system [30].

8) Intelligent initialization: Automatically builds and
initializes EMT cases from predefined PSSE power flow files
to avoid reaching abnormal operating modes [31].

9) Empowers advanced applications: Allows proficient
users to develop additional models and functions, facilitating
rapid prototyping, modeling, and testing of novel research
ideas leveraging heterogeneous computing architectures, such
as HPC [12] and graphics processing units (GPUs) [13].

In comparison, the widely used commercial software
PSCAD operates exclusively on the Windows platform [32],
which poses certain constraints in exploiting the potential of
HPCs (which typically have a Linux system) or GPUs to

accelerate the simulation from user end, unless vendor support
is provided to deploy it in the Linux system or restructure the
CPU code to be compatible with GPU execution mode [33].

Conversely, commercial software, like PSCAD, has a well-
written user’s manual and help documentation, well-developed
GUIs, excellent help-desk support, extensive device libraries,
and advanced functions, such as switching interpolation.
ParaEMT is still under continuous development and currently
lacks these features.

III. MODELS AND ALGORITHMS UTILIZED IN PARAEMT
This section introduces the network, dynamic, and fault

modeling employed in ParaEMT, along with elucidations of
the algorithms utilized in the process.
A. Network Equation Modeling

Approaches for formulating the EMT network equation are
primarily classified as nodal formulation [34], [35], state-space
formulation [36], and state-space nodal formulation [37].
Given the time-consuming nature of state-space equation
formulation, especially for large-scale systems considering
topology changes [31], [38], the nodal formulation proposed in
[34] is utilized in ParaEMT.

To obtain the network nodal equation through discretizing
the differential equations, various algorithms can be employed,
such as the 2-stage singly diagonally implicit Runge-Kutta
(2S-DIRK) method, the trapezoidal-rule method, polynomial
Gear methods, the backward Euler method, the backward
differentiation formula, the matrix exponential-based method,
and so on [31], [39]. In most cases, the classical trapezoidal
method still retains higher efficiency in achieving comparable
precision with alternative methods [31], and thus it is utilized
in ParaEMT to derive the network companion circuits and to
establish the network conductance matrix G. Finally, the
discretized network nodal equation is formulated as [34], [36]:

() () ()histt t t t= + −∆Gv i i (1)
where v(t) is a vector of the nodal voltages, i(t) is a vector of
the external current sources, and ihist is a vector of the currents
determined by history terms related to conditions in the
previous time step. In addition, to suppress spurious numerical
oscillations, artificial resistors Rp≈40L/(3∆t) and Rs≈3∆t/(40C)
are added in parallel/series with L/C, respectively [40].
B. BBD Technique for Parallelizing the Network Solution

To enable parallel computations for solving the network
equation, a task that typically dominates the total simulation
time cost [9], the bordered-block-diagonal (BBD) matrix-
based approach [14] is employed and automated in ParaEMT
to decompose the sparse network conductance matrix G into
multiple partitions, as shown in (2).

11 1

22 2

1 2

n

n

mm mn

n n nm nn

=

G G
G G

G
G G

G G G G

 (2)

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

3

Subsequently, all but one of the backward and forward
substitutions for solving the network solution are parallelized
for speedup. Interested readers may refer to [14] for details.

Besides, due to the flexibility of this framework, other
potential techniques and algorithms can also be developed or
explored to improve simulation efficiency in the future.
C. System Component Modeling

At present, the implemented models in ParaEMT are
concisely summarized in Fig. 1, which includes several
dynamic models and a network model formulated by the nodal
approach [41]-[43].

Figure 1. Developed models in ParaEMT

ParaEMT offers a Euler integration routine and includes all
relevant limits for computation regarding synchronous
machines, machine controls, and IBRs. Meanwhile, ParaEMT
is currently undergoing continuous development to incorporate
more models, such as other types of machines [44], distributed
transmission lines [45], dynamic loads, transformers with
saturation, and new EMT-type grid-following/forming
inverters, thus enhancing its versatility and applicability.
D. Fault Modeling

In its current state, ParaEMT supports control reference
step changes and generator trips through embedded functions
while allowing step perturbations of any parameters or
variables. Development efforts are currently underway to
include balanced and unbalanced line faults.

IV. FRAMEWORK STRUCTURE OF PARAEMT
Fig. 2 on the next page illustrates the main structure of the

simulation framework, along with the corresponding files or
code snippets for users to better comprehend the detailed
implementations. Further elaborations and additional details
are provided next.
A. File Formats

As presented in Fig. 2, ParaEMT loads system power flow
from a pre-established PSSE raw file and then converts it into
a three-phase network representation, along with the three-
phase instantaneous voltages and currents, during the
initialization process. The dynamic data are imported from a
predefined XLS file that has a straightforward data layout.

Such a manner facilitates the efficient establishment of EMT
models of systems, especially for large-scale cases.
B. Main Functions and Subfunction Libraries

As displayed in Fig. 2, the ParaEMT framework comprises
three main functions. Among them, the first function,
main_step0_CreateLargeCases, serves the dual purpose
of executing and storing the power flow solution and,
optionally, generating synthetic large-scale systems. The
second function, main_step1_sim, is responsible for
initializing and simulating the system dynamics. The third
function, main_step2_save, saves the simulation results.

Further, the main functions are supported by multiple
subfunctions sourced from three distinct libraries. Notably,
lib_numba incorporates time domain simulation functions
compiled through Numba. Additionally, psutils
predominantly encompasses functions related to system
initialization, whereas other functions are in Lib_BW. Four
numerical arrays, pfd, dyd, ini, and emt, are designated to
hold power flow data, dynamic data, initial state data, and
EMT simulation data, respectively.
C. Simulation Initialization

Proper initialization plays an important role in attaining a
normal operation condition before executing the time domain
simulation [31]. To achieve this, ParaEMT starts the
initialization from a converged power flow and then initializes
the rest of the variables for dynamic routines following an
automatic process, as illustrated in Fig. 3.
D. Time Domain Simulation

As the crux of the EMT simulation, the time domain
simulation involves mainly updating the dynamic states,
updating the currents, and solving the network nodal equation.
The time loop framework in ParaEMT that considers
reinitialization following any disturbances is detailed in Fig. 4.
Meanwhile, the down-sampling function allows for saving the
results at every customized DS time steps.
E. Run From a Snapshot

To run ParaEMT from a simulation snapshot, typically a
well-converged steady state, the first step is to simulate and
save a snapshot when setting SimMod=0 in main_step1_sim.

After that, by setting SimMod=1, the simulations thereafter
concerning different contingencies start directly and
automatically from the saved snapshot, facilitated by the
subfunction initialize_from_snp.
F. Parallel Computation for Solving the Network Equation

ParaEMT supports three different network solvers, which
are based on the direct inverse, LU decomposition, and BBD
decomposition. Among them, the BBD technique supported by
the function library bbd_matrix.py is used for parallel
computing of the network solution.

V. CASE STUDIES FOR ACCURACY VALIDATION
 In this section, two case studies are conducted to validate
the accuracy of ParaEMT on capturing system transient
dynamics, along with its compatibility with DLL models.

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

4

Figure 2. EMT simulation framework in ParaEMT

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

5

Figure 3. Framework for simulation initialization in ParaEMT

Figure 4. Framework for the time domain simulation in ParaEMT

A. Case Study on a Modified Kundur Two-Area System

Area 1 Area 2

1 5 6 7 311108 9

2 4

25 km

Generic
IBR

G2

G3

G4

10 km
11 km 11 km

10 km 25 km

C7 C9

L7 L9

400 MW

Figure 5. A modified Kundur two-area system

A validation of ParaEMT against PSSE on slow dynamics
is performed on a modified Kundur two-area system, shown in
Fig. 5 [27]. The modifications encompass an intentionally
crafted ensemble of components, including one WECC generic

IBR, three synchronous generators, four transformers, eight
lumped transmission lines, two loads, and two fixed shunts.
Additionally, the SEXS exciter is added to all generators;
generators G2, G3, and G4 are equipped with TGOV1,
HYDRO, and GAST governors, respectively; generator G4 is
equipped with an IEEEST stabilizer. The simulation starts
from a steady state, and a +0.05-p.u. voltage reference step
change is added to G3 at t=1 s and then eliminated at t=5 s.

Figs. 6-8 depict the simulation results of ParaEMT
compared to PSSE. Evidently, ParaEMT yields results that
closely align with those from PSSE, and the minor errors are
acceptable and reasonable due to undisclosed implementation
specifics of models and numerical solvers in commercial tools.

Figure 6. Frequency comparison on a modified Kundur two-area system

Figure 7. Power comparison on a modified Kundur two-area system

Figure 8. Voltage comparison on a modified Kundur two-area system

The successful validation of ParaEMT using this modified
Kundur two-area system confirms the correct implementation
of all the developed models within ParaEMT, as shown in Fig.
1, along with the framework shown in Fig. 2.
B. Case Study of a DLL-Supported IBR Model

In this case, the framework in ParaEMT is extended to
incorporate a C-compiled DLL file containing a grid-following
IBR model from the Electric Power Research Institute (EPRI)
[46]. The analysis is conducted on a small three-bus test case
containing an infinite bus and an IBR bus.

After initialization, two disturbances are added at t=4.0 s
and t=8.0 s, by increasing Pref and Qref of the IBR by 5 MW
and 5 Mvar, respectively. The dynamic results of ParaEMT, in

0 5 10 15 20 25 30

Time (s)

59.85

59.9

59.95

60

60.05

Fr
eq

ue
nc

y
(H

z)

 IBR ParaEMT
 IBR PSSE

 G3 ParaEMT
 G3 PSSE

0 5 10 15 20 25 30

Time (s)

670

680

690

700

710

720

730

A
ct

iv
e

po
w

er
 o

ut
pu

t (
M

W
)

 P IBR ParaEMT
 P IBR PSSE

 P G3 ParaEMT
 P G3 PSSE

0 5 10 15 20 25 30

Time (s)

0.98

1

1.02

1.04

1.06

B
us

 v
ol

ta
ge

 (p
.u

.)

 V Bus3 ParaEMT
 V Bus3 PSSE

 V Bus9 ParaEMT
 V Bus9 PSSE

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

6

red, are well aligned with those provided by PSCAD, in black,
as shown in Fig. 9.

Figure 9. Results comparison for the EPRI IBR model on a three-bus system

This case study stands as an exemplary validation of
ParaEMT’s ability to precisely simulate fast dynamics and its
compatibility with IBR models in DLL files, thus allowing
users to efficiently incorporate user-defined models.

VI. CASE STUDIES ON PARALLEL SIMULATION
This section presents two case studies to demonstrate the

efficiency of ParaEMT on medium and large-scale systems
using the BBD-based parallel computation.
A. Time Performance on the WECC 240-Bus System

To evaluate ParaEMT’s time performance on a medium-
sized system, the average time cost of ParaEMT for a 1-second
simulation using a 50-μs time step is compared with that of
PSCAD [30]. Because the developed PSCAD model is evenly
divided into eight zones [47], the tests are conducted using 1
or 8 processor cores, i.e., with or without parallel computation,
for fair comparisons. The simulations are carried out on a
Windows machine equipped with two Intel Xeon(R) Platinum
8280 2.7-GHz CPUs and 512-GB RAM. Also, Python 3.7.13,
SciPy 1.7.0, NumPy 1.21.0, and Numba 0.57.1 are employed.
The final time cost results are summarized in Table I.

Simulator 1 processor core
No parallelization

8 processor cores
Parallelization

PSCAD 90 s 15 s
ParaEMT 29 s 28 s

Table I. Time cost on the WECC 240-bus system for a 1-second simulation

As presented in Table I, ParaEMT can simulate this
medium-size 240-bus system with a superior time performance
than that of PSCAD under series simulation using 1 core,
primarily attributed to implementation of the JIT Numba
compiler within ParaEMT. However, ParaEMT does not show
speedup for parallel simulation on this 240-bus system, mainly
because the utilized BBD technique cannot fully decouple the
network, and the system size is not sufficiently large to exploit
the advantages of the BBD technique, and the required
synchronization process slows down the simulation, especially
when more than 8 partitions are utilized. Instead, PSCAD uses
time delay induced by distributed model-based long
transmission lines to fully decouple the network and greatly
reduce the time cost through parallel simulations [30]. Thus, in
our future work, the authors are also interested in incorporating

the distributed line model and developing corresponding
parallel simulation capabilities, especially for medium size
systems. To notice, including a distributed line model that
considers frequency dependency [48] will certainly increase
the computation burden for formulating the network G matrix
and updating historical currents, determined by the number of
long-distance lines in the system. Nevertheless, the time cost
for simulating large-scale systems is still dominated by solving
the network nodal equation, which is not straightforward to
parallelize.

Notice that the distributed line-based parallel simulation
technique used in PSCAD requires a manual process to
decouple the system. In comparison, although the BBD-based
parallelization does not speed up simulation on the 240-bus
system, it is fully automatic and does not require any manual
process, making it well-suitable for large-scale systems.
B. Parallel Simulation on a Synthetic 10,024-Bus System

To substantiate ParaEMT’s capability and high efficiency
of simulating large-scale systems with the BBD-based parallel
simulation, a test is conducted on a synthetic 10,024-bus
system constructed by interlinking 7×8 replications of the
WECC 179-bus system using the LargeSysGenerator
function [9], [14]. Leveraging parallelization on the HPC
Eagle at the National Renewable Energy Laboratory (NREL)
[49], the performance is depicted in Figs. 10 and 11.

Figure 10. Speedup performance when leveraging HPC parallelization

relative to a serial (single-core) simulation

Figure 11. Time cost for a 1-second simulation using a 50-μs time step

As shown in Fig. 10, with the number of HPC Message
Passing Interface (MPI) ranks [23], [50] and network BBD
partitions both varying from 1 to 84, the simulation achieves a
peak speedup of approximately 15-18 times, with a
corresponding minimum time cost of 90-110 seconds for a 1-
second simulation using a 50-μs time step, as shown in Fig. 11.

15 30 45 60 75 90

Number of HPC MPI ranks

90

120
150

200
250
300

450

600
750
900

1200
1500
1800

Ti
m

e
co

st
 fo

r a
 1

-s
ec

on
d

si
m

ul
at

io
n

(s
)

Number of network partitions 2
4
6
12
28
36
48
60
72
84

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

7

In addition, as the number of partitions increases, the size
of the BBD corner block and the number of nonzero elements
in the LU submatrices increases, which results in reducing the
amount of work that benefits from parallelization. As per
Amdahl’s law [51], this limits the maximum speed up of the
BBD Schur complement solve. As a result, increasing the
number of partitions increases the execution time on the 240-
bus system. In contrast, this problem is less apparent on the
10,024-bus system, mainly because the network G matrix can
be partitioned into more pieces before the corner size and
number of nonzeros become problematic.

Importantly, the scalability presented here is not limited to
HPC systems. ParaEMT uses MPI, which is a distributed
memory parallelization paradigm, and can run on many
network communication protocols; thus, it can be deployed on
multiple compute nodes of an HPC system, multiple computers
on a TCP network, or simply a multi-core machine.

VII. CONCLUSIONS AND FUTURE WORK
This paper introduces an open-source EMT simulation

framework, ParaEMT, for efficient simulations of large-scale,
IBR-rich grids leveraging parallel computations. The structure
of the framework is presented in detail with code snippets. The
accuracy, extension, and efficiency of ParaEMT are validated
with case studies. The simulation framework is extensible to
add user-defined models, different numerical approaches, and
different modeling techniques. The framework can be further
extended for simulating ultra-large-scale systems, acceleration
via heterogeneous computing architectures, and EMT-phasor
hybrid simulations.

Meanwhile, to improve the capability and flexibility of
ParaEMT, the authors are working on developing power flow
and result plotting functions in Python within the framework,
and future efforts will be directed toward developing a user
manual, a help document, additional dynamic models,
interfaces with commercial tools, and compatibility with
systems described in various data formats.

CODE AVAILABILITY
The open-source parallel EMT simulation framework,

ParaEMT, is available in:
http://github.com/NREL/ParaEMT_public

ACKNOWLEDGMENTS
This work was authored in part by the National Renewable

Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under
Contract No. DE-AC36-08GO28308. This work was
supported by the Laboratory Directed Research and
Development (LDRD) Program at NREL and the U.S.
Department of Energy Office of Energy Efficiency and
Renewable Energy Solar Energy Technologies Office Award
Number 38457. The U.S. Government retains and the
publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this work, or allow

others to do so, for U.S. Government purposes. The views
expressed herein do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.

A portion of the research was performed using
computational resources sponsored by the Department of
Energy's Office of Energy Efficiency and Renewable Energy
and located at the National Renewable Energy Laboratory.

The authors would like to thank Dr. Rodrigo Henriquez-
Auba from NREL for his helpful discussions on power system
dynamics and simulations.

REFERENCES
[1] S. Dong, et al., "Analysis of November 21, 2021, Kauai Island power

system 18-20 Hz oscillations," arXiv preprint, arXiv:2301.05781, 2023.
[2] L. Fan, Z. Miao, et al., "Real-world 20-Hz IBR subsynchronous

oscillations: Signatures and mechanism analysis," IEEE Trans. Energy
Conversion, vol. 37, no. 4, pp. 2863-2873, Dec. 2022.

[3] Y. Cheng, et al., "Real-world subsynchronous oscillation events in
power grids with high penetrations of inverter-based resources," IEEE
Trans. Power Syst., vol. 38, no. 1, pp. 316-330, Mar. 2022.

[4] T. Xia, K. Sun, "Time-variant nonlinear participation factors considering
resonances in power systems," in IEEE PES General Meeting, Denver,
CO, Jul. 2022.

[5] NERC, "Reliability guideline: Electromagnetic transient modeling for
BPS-connected inverter-based resources—recommended model
requirements and verification practices," NERC, Atlanta, Mar. 2023.

[6] J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. S.
Callaway, S. Sanders, "Revisiting power systems time-domain
simulation methods and models," IEEE Trans. Power Syst., early access,
2023.

[7] K. Sidwall, F. Paul, "A review of recent best practices in the development
of real-time power system simulators from a simulator manufacturer’s
perspective," Energies, vol. 15, no. 3, 2022.

[8] M. Sajjadi, T. Xia, M. Xiong, et al., "Estimation of participation factors
using the synchrosqueezed wavelet transform," in IEEE PES General
Meeting, Orlando, FL, Jul. 2023.

[9] L. Zhang, B. Wang, X. Zheng, et al., "A hierarchical low-rank
approximation based network solver for EMT simulation," IEEE Trans.
Power Del., vol. 36, no. 1, pp. 280-288, Feb. 2021.

[10] S. Subedi, M. Rauniyar, S. Ishaq, et al., "Review of methods to accelerate
electromagnetic transient simulation of power systems," IEEE Access,
vol. 9, pp. 89714-89731, Jun. 2021.

[11] K. Huang, M. Xiong, Y. Liu, K. Sun, F. Qiu, "A heterogeneous
multiscale method for power system simulation considering
electromagnetic transients," in IEEE PES General Meeting, Orlando, FL,
Jul. 2023.

[12] R. C. Green, L. Wang, M. Alam, "Applications and trends of high
performance computing for electric power systems: Focusing on smart
grid," IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 922-931, Jun. 2013.

[13] J. K. Debnath, A. M. Gole, W. K. Fung, "Graphics-processing-unit-
based acceleration of electromagnetic transients simulation," IEEE
Trans. Power Del., vol. 31, no. 5, pp. 2036-2044, Oct. 2016.

[14] S. Fan, H. Ding, A. Kariyamasam, A. M. Gole, "Parallel electromagnetic
transients simulation with shared memory architecture computers," IEEE
Trans. Power Del., vol. 33, no. 1, pp. 239-247, Jun. 2018.

[15] T. Noda, K. Takenaka, T. Inoue, “Numerical integration by the 2-stage
diagonally implicit Runge-Kutta method for electromagnetic transient
simulations,” IEEE Trans. Power Del., vol. 24, no. 1, pp. 390–399, Jan.
2009.

[16] S. Raschka, J. Patterson, C. Nolet, "Machine learning in python: Main
developments and technology trends in data science, machine learning,
and artificial intelligence," Information, vol. 11, no. 4, Apr. 2020.

[17] A. C. Müller, S. Guido. "Introduction to machine learning with Python:
a guide for data scientists," O'Reilly Media, Inc., 2016.

[18] C. Ozgur, T. Colliau, G. Rogers, Z. Hughes, "MatLab vs. Python vs. R,"
Journal of Data Science, vol. 15, no. 3, pp. 355-371, Jun. 2017.

http://github.com/NREL/ParaEMT_public

23rd Power Systems Computation Conference

Paris, France — June 4-7, 2024

 PSCC 2024

8

[19] H. Cui, F. Li, K. Tomsovic, "Hybrid symbolic-numeric framework for
power system modeling and analysis," IEEE Trans. Power Syst., vol. 36,
no. 2, pp. 1373-1384, Aug. 2020.

[20] M. Mirz, S. Vogel, G. Reinke, A. Monti, “DPsim—A dynamic phasor
real-time simulator for power systems,” SoftwareX, vol. 10, Art. no.
100253, 2019.

[21] H. C. A. Tavante, B. D. Bonatto, M. P.Coutinho, "Open source
implementations of electromagnetic transient algorithms." in IEEE
International Conference on Industry Applications, 2018.

[22] A. Masoom, J. Mahseredjian, T. Ould-Bachir, A. Guironnet, “MSEMT:
An advanced Modelica library for power system electromagnetic
transient studies,” IEEE Trans. on Power Del., vol. 37, no. 4, pp. 2453-
2463, Sep. 2021.

[23] Open MPIv5.0.x, Accessed: Feb. 20, 2024. [Online]. Available:
https://docs.open-mpi.org/en/v5.0.x/index.html

[24] P. Le-Huy, M. Woodacre, S. Guérette, É. Lemieux, "Massively parallel
real-time simulation of very-large-scale power systems." IPST. Vol. 17.
2017.

[25] IEEE/Cigre Power System DLL Models/Standard, Jun. 2019. [Online].
Available: http://www.electranix.com/ieee-pes-tass-realcodewg/

[26] S. K. Lam, A. Pitrou, S. Seibert, "Numba: A llvm-based python jit
compiler," in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, no. 7, pp. 1-6, Nov. 2015.

[27] P. Kundur, Power System Stability and Control. New York, NY, USA:
McGraw-Hill, 1994.

[28] S. Peyghami, P. Davari, M. Fotuhi-Firuzabad, F. Blaabjerg, "Standard
test systems for modern power system analysis: An overview," IEEE
Ind. Electron. Mag., vol. 13, no.4, pp. 86-105, Dec. 2019.

[29] S. Maslennikov, B. Wang, Q. Zhang, et al., "A test cases library for
methods locating the sources of sustained oscillations," in IEEE PES
General Meeting, Boston, MA, Jul. 2016.

[30] B. Wang, R. W. Kenyon, J. Tan, "Developing a PSCAD model of the
reduced 240-bus WECC test system," National Renewable Energy Lab.
(NREL), Golden, CO, Tech. Rep. NREL/CP-6A40-82287, Apr. 2022.

[31] J. Mahseredjian, V. Dinavahi, J. A. Martinez, "Simulation tools for
electromagnetic transients in power systems: overview and challenges,"
IEEE Trans. Power Del., vol. 24, no.3, pp. 1657-1669, Jul. 2009.

[32] Supported operating system of PSCAD. Accessed: 2023. [Online].
Available: https://www.pscad.com/knowledge-base/article/816

[33] J. D. Owens, et al., "GPU computing." Proceedings of the IEEE, vol. 96,
no. 5, pp. 879-899, Apr. 2008.

[34] H. W. Dommel, EMTP Theory Book. Portland, OR: Bonneville Power
Admin., Aug. 1986.

[35] C. W. Ho, A. Ruehli, P. Brennan, "The modified nodal approach to
network analysis," IEEE Trans. Circuits Syst., vol. 22, no. 6, pp. 504-
509, Jun. 1975.

[36] N. Watson, J. Arrillaga, Power Systems Electromagnetic Transients
Simulation. Stevenage, U.K.: IET, 2003.

[37] C. Dufour, J. Mahseredjian, J. Bélanger, "A combined state-space nodal
method for the simulation of power system transients," IEEE Trans.
Power Del., vol. 26, no. 2, pp. 928-935, Dec. 2010.

[38] A. Sinkar, H. Zhao, B. Qu, A. M. Gole, "A comparative study of
electromagnetic transient simulations using companion circuits, and
descriptor state-space equations," Electr. Power Syst. Res., 198, p.
107360, Sep. 2021.

[39] X. Fu, S. M. Seye, J. Mahseredjian, M. Cai, C. Dufour, "A comparison
of numerical integration methods and discontinuity treatment for EMT
simulations," in Proc. Power Syst. Comput. Conf (PSCC), Dublin,
Ireland, Jun. 2018.

[40] F. Alvarado, "Eliminating numerical oscillations in trapezoidal
integration," EMTP Newsletter, vol. 2, no. 3, pp. 20-32, Feb. 1982.

[41] SIEMENS, PSSE 34.4 Model Library, 2018.
[42] P. Pourbeik, "Model user guide for generic renewable energy system

models," Elect. Power Res. Inst., Palo Alto, CA, USA, Tech. Rep. EPRI
3002006525, 2015.

[43] Z. Hu, M. Xiong, H. Shang, A. Deng, "Anti-interference measurement
methods of the coupled transmission-line capacitance parameters based
on the harmonic components," IEEE Trans. Power Del., vol. 31, no. 6,
pp. 2464-2472, Dec. 2016.

[44] U. Karaagac, J. Mahseredjian, O. Saad, "An efficient synchronous
machine model for electromagnetic transients," IEEE Trans. Power Del.,
vol. 26, no. 4, pp. 2456-2465, Oct. 2011.

[45] Z. Hu, M. Xiong, C. Li, P. Tang, "New approach for precisely measuring
the zero-sequence parameters of long-distance double-circuit
transmission lines," IEEE Trans. Power Del., vol. 31, no. 4, pp. 1627-
1635, Oct. 2015.

[46] W. Baker， D. Ramasubramanian. Generic photovoltaic inverter model
in an electromagnetic transients simulator for transmission connected
plants. Jun. 2022. [Online]. Available: https://www.epri.com/research
/products/000000003002025889

[47] Parallel and high performance computing of PSCAD. Accessed: 2023.
[Online]. Available: https://www.pscad.com/webhelp/PSCAD/Features
_and_Operations/Parallel_and_High_Performance_Computing.htm

[48] A. Masoom, T. Ould-Bachir, J. Mahseredjian, A. Guironnet, N. Ding,
"Simulation of electromagnetic transients with Modelica, accuracy and
performance assessment for transmission line models," Electric Power
Syst. Res., vol. 189, Art. no. 106799, Dec. 2020.

[49] Eagle computing system. Accessed: Aug. 8, 2023. [Online]. Available:
https://www.nrel.gov/hpc/eagle-system.html

[50] F. Nielsen, Introduction to HPC with MPI for Data Science, Springer,
2016.

[51] J. L. Gustafson, "Reevaluating Amdahl's law," Communications of the
ACM, vol. 31, no. 5, pp. 532-533, May 1988.

https://docs.open-mpi.org/en/v5.0.x/index.html
https://www.pscad.com/knowledge-base/article/816
https://scholar.google.com/citations?user=rzun3gQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=jMFbO1YAAAAJ&hl=en&oi=sra
https://www.epri.com/research%20/products/000000003002025889
https://www.epri.com/research%20/products/000000003002025889
https://www.pscad.com/webhelp/PSCAD/Features
https://www.nrel.gov/hpc/eagle-system.html

	I. Introduction
	II. ParaEMT Features
	III. Models and Algorithms Utilized in ParaEMT
	A. Network Equation Modeling
	B. BBD Technique for Parallelizing the Network Solution
	C. System Component Modeling
	D. Fault Modeling

	IV. Framework Structure of ParaEMT
	A. File Formats
	B. Main Functions and Subfunction Libraries
	C. Simulation Initialization
	D. Time Domain Simulation
	E. Run From a Snapshot
	F. Parallel Computation for Solving the Network Equation

	V. Case Studies for Accuracy Validation
	A. Case Study on a Modified Kundur Two-Area System
	B. Case Study of a DLL-Supported IBR Model

	VI. Case Studies on Parallel Simulation
	A. Time Performance on the WECC 240-Bus System
	B. Parallel Simulation on a Synthetic 10,024-Bus System

	VII. Conclusions and Future Work
	Code Availability
	Acknowledgments
	References

