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Abstract—This paper proposes a novel data-based adaptive
predictive frequency control method for multi-area power sys-
tems with unknown and time-varying inertia. Firstly, a data-
based representation is built and updated at each instant based
on behavioural system theory by using historical input-output
data, where a moving horizon estimation method is used to deal
with the unknown time-varying inertia issue adaptively. Then,
the optimal frequency control signal is computed by solving
an optimization problem under the framework of data-based
predictive control. Simulation results on a power system with
three control areas demonstrate the effectiveness of the proposed
method.

Index Terms—Data-driven adaptive predictive frequency con-
trol, time-varying inertia, behavioural system theory, moving
horizon estimation.

I. INTRODUCTION

Load frequency control (LFC) is aimed to maintain the

frequency of a power system with multiple control areas

at its nominal value (50 Hz or 60 Hz) and the tie-line

powers between connected areas at their scheduled values [1].

Traditionally, automatic generation control (AGC) is used to

achieve these two objectives. But the increasing penetration of

renewables in terms of converter-interfaced generators (CIGs)

poses new challenges to power system frequency control.

For one thing, the intermittence and limited predictability of

renewables limit the control capability of AGC. For another

thing, CIGs usually do not provide inertia to power systems

[2]. As more synchronous generators are replaced with CIGs,

the system inertia reduces dramatically and even becomes

time-varying, which makes the system more fragile to dis-

turbances and hard to control [3].
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Model predictive control (MPC) offers a possible solution to

deal with the fast fluctuations of renewable generation outputs

[4]. It calculates a sequence of optimal control signals at each

sampling instant by solving an optimization problem over a

receding finite time horizon, in which various constraints are

considered. Then, usually only the first step of the obtained

control sequence is used to control the system. The process is

repeated at next sampling instant. Uncertainties of renewables

are handled in this receding horizon control (RHC) framework.

However, MPC strongly depends on the system model, which

is usually costly and even hard to be obtained. Many MPC-

based LFC methods do not consider the time-varying inertia

caused by CIGs and use a fixed system model, which may

degenerate the control performance and even cause stability

issues.

To improve the LFC performance under time-varying iner-

tia, a modulated power balance control loop is developed to

augment AGC in [5]. In all scenarios under different inertias,

the proposed method exhibits better frequency regulation per-

formance than AGC with reduced frequency oscillations and

overshoots. In [6], a controller depending on the derivative of

the frequency is used as a virtual inertia resource to combine

with the linear-quadratic regulator controller to stabilize the

system when the inertia decreases rapidly. These works only

focus on stabilization of the systems with time-varying inertia,

and their control signals may be suboptimal.

In view of the aforementioned issues, we propose a data-

driven adaptive predictive frequency control (DAPFC) ap-

proach. The basic idea is to solve a RHC optimization

problem to get the control signals based on a data-based

system representation, which is updated at each sampling

instant to allow for the power system having time-varying

inertia. To build and adaptively update the data-based system

representation, the behavioural system theory [7] and moving

horizon estimation (MHE) scheme [8] are adopted, where

the discrepancy between the latest measurement trajectories

of input-output (IO) data and those generated by the data-
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based system representation is minimized. Then, the optimal

frequency control signal is calculated by solving a quadratic

programming (QP) problem under the framework of data-

based predictive control. Simulation results on a power system

with three control areas demonstrate the effectiveness of the

proposed method.

In the rest of this paper, Section II presents the problem

formulation. Section III proposes the DAPFC method. Section

IV shows the case study and Section V gives the conclusion.

Notation: Let R≥0, R>0, Rm and Rm×n represent the

set of non-negative real numbers, positive real numbers, m-

dimensional real column vectors, and (m × n)-dimensional

real matrices, respectively. Denote N+ as the set of pos-

itive integers. For a set of vectors u1, u2, . . . , un, let

col(u1, u2, . . . , un) := (u�
1 , u

�
2 , . . . , u

�
n )

�. For a matrix A,

A† denotes its Moore-Penrose inverse. Let 0m×n denote the

(m × n)-dimensional zero matrix and Im denote the m-

dimensional identity matrix. Let |p| denote the absolute value

of scalar p. The notation ‖x‖Q denotes the quadratic form

x�Qx where x ∈ Rm is a vector and Q ∈ Rm×m is a weight

matrix.

II. PROBLEM FORMULATION

Consider a power transmission system with N control areas.

Each control area i, i ∈ N = {1, . . . , N}, is represented by

an equivalent generating unit [18], and the following widely

adopted assumptions [9] for frequency control of transmission

systems are made:

1) The power network is connected and the transmission

lines are lossless.

2) The frequency of the power system is mainly affected by

active power flows.

3) Bus voltage magnitudes are fixed.

Under these assumptions, we study the LFC problem of the

N -control-area power system with time-varying net loads, i.e.,

the load consumption minus power generation of renewables.

The nonlinear power system is assumed to initially operate at

an equilibrium point. If the perfect system model is accessible,

MPC can be adopted for LFC [4]. Specifically, the nonlinear

power system is usually linearized at the initial operating point,

and then the linearized model is discretized with a sampling

period Ts ∈ R>0 to obtain a discrete-time linear prediction

model. A QP problem is formulated based on the prediction

model to calculate the optimal control signals. Nevertheless,

perfect model information is in general costly or even hard to

be obtained. To solve this issue, in this paper we concentrate

on developing a data-driven predictive control method.

We assume that there is a control center above all control

areas and it can access the IO data of the whole system. The

input and output signals of the system at sampling instant k
are denoted by

u(k) = col(u1(k), . . . , uN (k)) ∈ Rm (1a)

y(k) = col(y1(k), . . . , yN (k)) ∈ Rp (1b)

where p, m refer to the dimensions of output and input signals,

respectively, and the input ui(k) and output yi(k) of area i,
i ∈ N , are

ui(k) = (pci(k), pdi(k))
� (2a)

yi(k) = (δi(k), ωi(k))
� (2b)

with pci(k) and pdi(k) being the control input, i.e., generation

command and the external input, i.e., net load, respectively;

δi(k) and ωi(k) being the power angle with respect to the

synchronously rotating reference and frequency deviation from

the nominal value. As mentioned previously, the control targets

are twofold. First, it is to regulate the frequency at its nominal

value, i.e., ωi(k) = 0. Second, it is to maintain the tie-

line powers between connected areas at their scheduled value,

i.e., ptie−ij(k) = p0tie−ij , where j ∈ Ni with Ni being the

index set of areas directly connected to area i, p0tie−ij is the

scheduled tie-line power between area i and j, and

ptie−ij(k) = Bij sin(δi(k)− δj(k)) (3)

where the coefficient Bij is defined as Bij = |Vi||Vj |Yij with

|Vi|, |Vj | being the voltage magnitudes of areas i and j, Yij

being the susceptance of branch (i, j). To control the tie-line

powers, we regulate the power angle difference δij(k) to δ0ij
with δij(k) = δi(k)− δj(k) and δ0ij being the value of δij(k)
at the initial operating point.

High shares of CIGs entering the dispatch process reduces

the aggregated rotational inertia. Moreover, the system inertia

may even become time-varying due to the intermittent penetra-

tion of renewables, which causes the aggregated system inertia

costly to be estimated in real-time. Under this new scenario,

the power system with low inertia may be unstable if it is

controlled by traditional AGC [5]. In addition, the trajectories

prediction of the conventional MPC with a fixed system model

may not be accurate due to the time-varying inertia, which

may deteriorate the LFC performance, and also the real-time

inertia estimation is costly to achieve. To allow for this new

scenario under time-varying and unknown inertia, we focus on

designing an online adaptive LFC method.

III. PROPOSED DATA-DRIVEN ADAPTIVE PREDICTIVE

FREQUENCY CONTROL METHOD

In this section, we propose a novel DAPFC method which

includes: offline data collection, online adaptive system repre-

sentation, and online predictive control.

Consider a signal xd(k) ∈ Rq with q ∈ N+ where the

superscript d denotes that the data is collected offline. The

matrix xd
[k,k+T ] ∈ Rq×(T+1) with T ∈ N+ defined below

refers to a sequence of xd(k) over the time period [k, k + T ]

xd
[k,k+T ] = [xd(k), . . . , xd(k + T )]. (4)
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The associated Hankel matrix for the signal sequence xd
[0,T−1]

is defined as

HL(x
d
[0,T−1]) =

⎡
⎢⎢⎢⎣

xd(0) xd(1) · · · xd(T − L)
xd(1) xd(2) · · · xd(T − L+ 1)

...
...

. . .
...

xd(L− 1) xd(L) · · · xd(T − 1)

⎤
⎥⎥⎥⎦

(5)

where L ∈ N+ with L ≤ T is the depth of the Hankel matrix.

The input xd
[0,T−1] is persistently exciting (PE) of order L if

the Hankel matrix HL(x
d
[0,T−1]) is of full row rank [10].

A. Offline data collection

In the offline process, we collect the IO data under 2N

extreme historical scenarios, where each scenario corresponds

to one of the 2N combinations of the N -area inertia at their

maximum and minimum values, which are detailed as

H(k) = [H1, H2, . . . , HN ]�

H(k) = [H1, H2, . . . , HN ]�

...

H(k) = [H1, H2, . . . , HN ]�

(6)

where H(k) ∈ RN is the set of inertia of all areas at instant

k; Hi and Hi are the maximum and minimum of inertia of

area i, respectively. Since the inertia is unknown, we collect

the data when each area has the lowest and highest share of

renewables to estimate these extreme scenarios.

Under each scenario s, s ∈ {1, . . . , 2N}, we collect IO

data that is rich and long enough. From the perspective of

behavioral system theory, the IO data should be collected with

a PE input ud
[0,T−1] of order (m+p)n+1 where n is the system

order that is assumed to be known [11].

Remark 1: A data informativity check should be conducted

to ensure that the collected data meets the PE condition. If the

data is not rich enough to meet the PE condition, we should

re-collect the IO data.

With these precollected IO data, a data-based system rep-

resentation for each of the abovementioned extreme scenarios

can be built based on the following lemma.

Lemma 1 [11]: For the system with fixed inertia, if the

pre-collected input ud
[0,T−1] is PE of order 4Nn + 1, then

the input and output signal are governed by the data-based

representation (7) where the state X (k) is defined as

X (k) = col(y(k − n), . . . , y(k − 1), u(k − n), . . . , u(k − 1))
(8)

and the system matrices A and B are constructed with histor-

ical IO data, i.e.,

[A B] = X d
[1,T ]

[
X d

[0,T−1]

ud
[0,T−1]

]†
. (9)

Therefore, 2N matrix pairs [As Bs], s ∈ {1, . . . , 2N}, are

built in the offline data collection phase.

B. Online adaptive system representation

Inspired by (7) for system with fixed inertia, in the online

phase, we aim at building a new data-based representation

(10) to describe the system with time-varying inertia. Different

from the constant A in (7), the system matrix A(k) in (10)

is time-varying, which is updated at each sampling instant. In

this subsection, the real-time estimation of A(k) is presented.

Before proceeding, we define a varying parameter ρ(k) =
[ρ1(k), . . . , ρN (k)]� with ρi(k) = 1

Hi(k)
, i ∈ N . It belongs

to the polytope P defined by

P = {ρ(k) ∈ RN : Rρ(k) ≤ Q} (11)

where

Q =
[

1
H1

, . . . , 1
HN

,− 1
H1

, . . . ,− 1
HN

]�
,

R =

[
IN
−IN

]
.

(12)

The following discussion illustrates that the system matrix

A(k) to be estimated is affine with respect to the varying

parameter ρ(k). It should be noted that this analysis is to derive

the analytical expression of A(k) based on the system model

that is assumed to be known. But the proposed online adaptive

estimation of A(k) does not require the model information.

For simplicity, we analyse the case with a two-control-area

aggregated system in [18], where each area is represented by

a second-order equivalent generating unit. The N -control-area

power system with higher order can be analysed in a similar

X (k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p×p Ip · · · 0p×p 0p×m 0p×m · · · 0p×m

...
...

. . .
...

...
...

. . .
...

0p×p 0p×p · · · Ip 0p×m 0p×m · · · 0p×m

−An −An−1 · · · −A1 Bn Bn−1 · · · B1

0m×p 0m×p · · · 0m×p 0m×m Im · · · 0m×m

...
...

. . .
...

...
...

. . .
...

0m×p 0m×p · · · 0m×p 0m×m 0m×m · · · Im
0m×p 0m×p · · · 0m×p 0m×m 0m×m · · · 0m×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

X (k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p×m

...

0p×m

0p×m

0m×m

...

0m×m

Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u(k)
(7)
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X (k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p×p Ip · · · 0p×p 0p×m 0p×m · · · 0p×m

...
...

. . .
...

...
...

. . .
...

0p×p 0p×p · · · Ip 0p×m 0p×m · · · 0p×m

−An(k) −An−1(k) · · · −A1(k) Bn(k) Bn−1(k) · · · B1(k)
0m×p 0m×p · · · 0m×p 0m×m Im · · · 0m×m

...
...

. . .
...

...
...

. . .
...

0m×p 0m×p · · · 0m×p 0m×m 0m×m · · · Im
0m×p 0m×p · · · 0m×p 0m×m 0m×m · · · 0m×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A(k)

X (k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p×m

...

0p×m

0p×m

0m×m

...

0m×m

Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u(k)
(10)

(z4 + (k1ρ1 + k2ρ2)z
3 + (k3ρ1 + k4ρ2)z

2 + (k5ρ1 + k6ρ2)z + k7ρ1 + k8ρ2)Y (z) =⎡
⎢⎢⎣

k9ρ1z
2 + k10ρ1z + k11 k12ρ1z

2 + k13ρ1z + k14 0 0
k15ρ1z

3 + k16ρ1z
2 + k17z k18ρ1z

3 + k19ρ1z
2 + k20z 0 0

0 0 k21ρ2z
2 + k22ρ2z k23ρ2z

2 + k24ρ2z
0 0 k25ρ2z

3 + k26ρ2z
2 + k27ρ2z k28ρ2z

3 + k29ρ2z
2 + k30ρ2z

⎤
⎥⎥⎦U(z)

(15)

way. The discrete-time state-space model that is obtained by

the Euler discretization is

x(k + 1) = C(ρ(k))x(k) +D(ρ(k))u(k)

y(k) = Ex(k)
(13)

where x(k) = [δ1(k), ω1(k), δ2(k), ω2(k)]
�; the IO signals

u(k) and y(k) are defined in (1); and matrices C(ρ(k)),
D(ρ(k)) and E are detailed in [13]. Then, the transfer function

is written as

G(z) = E(zI − C(ρ(k)))−1D(ρ(k)). (14)

The sampling period Ts is assumed to be chosen around 0.5
s and ρi(k) varies around 0.2 (the system inertia usually

fluctuates around 5 [12]), thus the terms with T 3
s ρ1(k)ρ2(k)

in G(z) are near 10−3, which is close to zero. Omitting

the terms with T 3
s ρ1(k)ρ2(k), we can obtain an approximate

formula (15), where U(z) and Y (z) are the Z-transform

of u(k) and y(k), respectively; ρi(k) is denoted by ρi for

notational simplicity; and k1, . . . , k30 are constants, which are

not detailed due to the space limitation. Applying the inverse

Z-transform on (15), we can obtain that the relation between

the input u(k) and output y(k) obeys

y(k) = −
n∑

h=1

Ah(k)y(k − h) +

n∑
h=1

Bh(k)u(k − h) (16)

where the matrices Ah(k) and Bh(k) with h ∈ {1, . . . , n}
satisfy (17). It is seen that the system matrix A composed

of Ah(k) and Bh(k) with h ∈ {1, . . . , n} in (10) is approxi-

mately affine with respect to the varying parameter ρ(k). We

further assume this condition is satisfied in power systems with

more than two control areas and rigorous theoretical proof will

be studied in future work.

Hence, the matrix A(k) varies inside a polytope Ω [14],

[15], which is defined by a convex hull of 2N matrices As, s ∈
{1, . . . , 2N}, i.e.,

Ω = Co{A1, . . . ,A2N } (18)

where the notation Co{·} denotes a convex hull; the matrices

As obtained in the offline process are the vertices of the convex

hull Ω.

Remark 2: In the case study part, the proposed DAPFC

method shows robustness to inexact vertices, i.e., the IO data is

collected when the inertia is not exactly at its maximum or the

minimum. This robustness ensures that the proposed DAPFC

still exhibits satisfying performance in practice even with

inexact vertices captured by the 2N data-based representations.

As the matrix A(k) varies inside a polytope Ω, it can be

estimated as a convex combination of the vertices as follows

Aest(k) =

s=2N∑
s=1

μs(k)As (19)

where μs(k) ∈ R≥0 is the combination factor to be calculated.

The set of the combination factors denoted by

μ(k) = [μ1(k), . . . , μ2N (k)]� ∈ R2N (20)

belongs to a probability simplex defined as

{μ(k)|
s=2N∑
s=1

μs(k) = 1, μs(k) ≥ 0}. (21)

At each time k, A(k) is updated by calculating the combi-

nation factor μ(k). To achieve this goal, we leverage the MHE

idea in [16] and extend it to a data-driven fashion. The MHE

scheme aims at minimizing the discrepancy between the latest

measurement IO data trajectories and those generated by the

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



A1(k) =

⎡
⎢⎣
k1ρ1 + k2ρ2 0 0 0

0 k1ρ1 + k2ρ2 0 0
0 0 k1ρ1 + k2ρ2 0
0 0 0 k1ρ1 + k2ρ2

⎤
⎥⎦ , A2(k) =

⎡
⎢⎣
k3ρ1 + k4ρ2 0 0 0

0 k3ρ1 + k4ρ2 0 0
0 0 k3ρ1 + k4ρ2 0
0 0 0 k3ρ1 + k4ρ2

⎤
⎥⎦ ,

A3(k) =

⎡
⎢⎣
k5ρ1 + k6ρ2 0 0 0

0 k5ρ1 + k6ρ2 0 0
0 0 k5ρ1 + k6ρ2 0
0 0 0 k5ρ1 + k6ρ2

⎤
⎥⎦ , A4(k) =

⎡
⎢⎣
k7ρ1 + k8ρ2 0 0 0

0 k7ρ1 + k8ρ2 0 0
0 0 k7ρ1 + k8ρ2 0
0 0 0 k7ρ1 + k8ρ2

⎤
⎥⎦ ,

B1(k) =

⎡
⎢⎣

0 0 0 0
k15ρ1 k18ρ1 0 0

0 0 0 0
0 0 k25ρ2 k28ρ2

⎤
⎥⎦ , B2(k) =

⎡
⎢⎣
k9ρ1 k12ρ1 0 0
k16ρ1 k19ρ1 0 0

0 0 k21ρ2 k23ρ2
0 0 k26ρ2 k29ρ2

⎤
⎥⎦ ,

B3(k) =

⎡
⎢⎣
k10ρ1 k13ρ1 0 0
k17 k20 0 0
0 0 k22ρ2 k24ρ2
0 0 k27ρ2 k30ρ2

⎤
⎥⎦ , B4(k) =

⎡
⎢⎣
k11 k14 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ ,

(17)

data-based representation (10). Specifically, the following QP

is solved to calculate μ(k)

min
μ(k)

k−1∑
l=k−Nb

(‖e(l)‖Qe
+ ‖v(k)‖Qv

)

s.t. e(l + 1) = X (l + 1)−Xest(l + 1),

Xest(l + 1) = Aest(k)X (l) + Bu(l),

(22)

where v(k) = μ(k) − μ(k − 1); Qe ∈ R2Nn×2Nn and

Qv ∈ R2N×2N are two weight matrices; Nb ∈ N+ is the

backward time horizon; Aest(k) is defined by (19). In the

objective function, the minimization of e(l) is to reduce the

gap between IO trajectories generated by the estimated system

representation and those of the real system over a backward

horizon [k−Nb, k−1]; the penalty on v(k) is to moderate the

variance of μ(k) to avoid wildly fluctuating of the data-based

representation as the system inertia is under slow change [17].

The weight assigned to e(l) should be much larger than that

to v(k) as we mainly focus on getting a data-based system

representation that is capable of best describing the power

system dynamics.

Remark 3: The backward time horizon Nb is chosen experi-

mentally. A trade-off between the complexity of the optimiza-

tion problem and the accuracy of the data-based representation

estimation should be considered in choosing Nb. For the three-

control-area test system in the case study, we adopt Nb = 3.

C. Online predictive control

With the data-based system representation obtained in Sec-

tion III-B, we conduct the online predictive control by solving

the QP below at instant k to obtain the optimal control

sequence

min
u(l)

k+Nf−1∑
l=k

(
∑
i∈N

(‖ωi(l)‖Qω
+

∑
j∈Ni

‖δi(l)− δj(l)‖Qδ
)

+ ‖u(l)‖Qu
)

s.t. X (l + 1) = Aest(k)X (l) + Bu(l),
pcimin

≤ pci(l) ≤ pcimax
, i ∈ N ,

pdi(l) = ppre
di (l), i ∈ N ,

(23)

where pcimin
and pcimax

are the minimum and maximum control

inputs of area i, respectively; Nf ∈ N+ is the prediction

horizon; ppre
di (l) is the net load prediction obtained from the

load and wind power forecasting system; Qω , Qδ and Qu

are weighting matrices. For simplicity, we assume the data-

based representation during the prediction horizon in (23) is

unchanged to avoid heavy online computation burden.

After (23) is solved, we only adopt the first step of the

obtained control sequence derived in (23) to control the power

system. At next sampling instant k + 1, the vector X (k)
consisting of the latest IO data is updated and the system

matrix Aest is reestimated. The aforementioned process of the

proposed DAPFC algorithm is described in Figure 1.

Remark 4: The DAPFC needs to solve two optimization

problems, i.e., (22) and (23), at each sampling instant. The

computation time for each optimization problem on a laptop

for the case study is milliseconds. Therefore, this algorithm

can be solved in real time in actual systems.

IV. CASE STUDY

In this section, we test the proposed DAPFC method on

a power system with three connected areas. The diagram of

the test system is shown in Figure 2. The system model

and its parameters can be referred to in [18] and [19]. The

scheduled tie-line powers between these connected areas are:

ptie−12 = 0.1 p.u., ptie−23 = −0.1 p.u., ptie−31 = 0 p.u..

The maximum and minimum of the control signal are set as

4 p.u. and −4 p.u., respectively. The backward horizon Nb

and forward horizon Nf are set as 3 and 15, respectively. The

sampling period is set as 0.5 s. We use integral squared error
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Fig. 1: Framework of the DAPFC Method.

(ISE) index J in [13] to measure the control performance,

which is defined below

J =

∫ t

0

(

N∑
i=1

(ωi(t) +
∑
j∈Ni

Δptie−ij(t)))dt. (24)

where Δptie−ij(t) = ptie−ij(t)− p0tie−ij .

Area 1 Area 2

Area 3

Fig. 2: Diagram of the three-area test system.

The rotational inertial profile of each area is shown in

Figure 3. To simulate a range of scenarios in real power

systems, we utilize various inertia profiles with distinct time-

varying characteristics. For instance, when the penetration

of renewables increases rapidly, the corresponding scenario

involves a steep decline in the aggregated inertia. On the other

hand, to imitate the intermittent integration of renewables, we

use a scenario where the aggregated inertia declines slowly.

Furthermore, when the penetration of renewables remains

constant, aggregated inertia is maintained at a steady state. The

minimum and maximum of the inertias are presented in Table

I. Considering the data may be collected when the inertia may

be not at its lower bound or upper bound, i.e., the vertices of

the convex hull Ω in (18) can be inexact, we also collect a set

of data by setting the inertia bounds of the simulation system

different from but close to the real bounds in Table I to test

the DAPFC method. It should be noted that the inexact inertia

bounds are unknown in practice and we select a random set

to collect data as shown in Table II.

The net load profile is presented in Figure 4. The forecasting

horizon is 15 minutes. Based on the results in [20] and [21], we

add a small noise on the net load prediction as the prediction

error. The solid lines represent the predicted net load while the

Fig. 3: Inertia profile of the three-area system.

dashed lines refer to the real net load. The control performance

of the proposed method facing large prediction errors will be

studied in future work.

Fig. 4: Net load profile of the three-area system.

As there are three areas, the convex hull Ω in (18) has eight

vertices. Therefore, we need to calculate eight combination

factors, i.e., μ(k) = [μ1(k), . . . , μ8(k)]
�, to achieve online

adaptive system representation. The initial value of μ(k) can

be chosen randomly without impact on the effectiveness of the

proposed DAPFC method. For simplicity, we initialize μ(0) as

μ1(0) = μ2(0) = · · · = μ8(0) = 0.125.

The control performance of the proposed method is com-

pared with that of AGC, switching MPC with a time-varying

exact system model (SMPC), and conventional MPC with a

fixed system model (CMPC). For the CMPC, the inertias are

set as H1 = 9, H2 = 8, H3 = 6.
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TABLE I: Minimum and maximum of the inertia of each area

Area 1 Area 2 Area 3

Hi 4 2 2

Hi 10 9 6

TABLE II: Inexact minimum and maximum of the inertia of

each area

Area 1 Area 2 Area 3

Hi 5 3 2

Hi 10 8 5

Figure 5 depicts the frequency dynamics of three areas

and the tie-line powers between these connected areas. Some

partially enlarged pictures are added in Figure 5 to present the

control performance of different methods more clearly. In or-

der to display the control performance more comprehensively,

we select different time periods to zoom in. Table III compares

the ISE index of different control methods. As shown in these

figures and Table III, with the proposed DAPFC method, the

frequency deviation is regulated around zero and the tie-line

powers are controlled around the scheduled value during the

whole control process in both low-inertia and high-inertia

scenarios. Furthermore, from these partially enlarged pictures,

it can be found that the control performance of DAPFC is very

close to that under SMPC with an accurate system model,

which means that the proposed method is able to estimate

and update the data-based system representation adaptively

and accurately. While under AGC and CMPC with a fixed

system model, all the frequency and tie-line powers fluctuate

significantly. AGC does not take future net load predictions

into consideration and the fixed AGC controller parameters

setting may be not appropriate for a power system with time-

varying inertia. CMPC calculates the control signal based on

the fixed prediction model, which is inaccurate if the inertia

varies. Therefore, the control performance is also poor.

As mentioned in Section III-B, the DAPFC algorithm with

inexact vertices caused by data collection under scenarios

when the inertia is not at its maximum or minimum is

also tested in simulation. The frequency and tie-line power

dynamics under DAPFC with inexact vertices is shown as the

green dotted lines in Figure 5. It can be observed that the

control performance is much better than those of AGC and

CMPC, and close to that under DAPFC with exact vertices.

Therefore, the proposed DAPFC method has robustness to the

scenario under inexact vertices of the convex hull Ω in (18)

caused by inaccurate offline data collection.

V. CONCLUSION

This paper have proposed a novel data-based adaptive

predictive frequency control method for multi-area power

systems with unknown and time-varying inertia. The proposed

method consists of offline data collection, online data-based

system representation, and online predictive control. In the

offline process, historical input-output data has been collected

under some extreme scenarios. In the online phase, a data-

based system representation has been built and updated at

each sampling instant based on the behavioural system theory

and moving horizon estimation scheme. Then, the optimal

frequency control signals have been calculated under the data-

driven predictive control framework. Simulation results on a

power system with three control areas have demonstrated the

effectiveness of the proposed method.
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