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Abstract—The building sector has historically accounted for 

around 50% of the energy-related carbon dioxide (CO2) 

emissions on a global scale. As a result, it attracts significant 

attention as part of the worldwide effort to decarbonize the 

energy system. This paper presents and compares a variety of 

Machine Learning (ML)-based approaches for long-term 

predictions of CO2 emissions from buildings until the year 2050. 

These approaches include Linear Regression, ARIMA 

(Autoregressive Integrated Moving Average), Shallow Neural 

Networks, and Deep Neural Networks, all conducted using both 

univariate and multivariate modelling and with different 

approaches for the Features Extraction process; namely, the 

lagged values approach and the polynomial transformation. The 

analysis is conducted for different regions of the world including 

Brazil, India, China, South Africa, the United States, Great 

Britain, the World-average and the European Union. A variety 

of tests are conducted to evaluate and compare the predictive 

performance of the different ML approaches. 

Index Terms—ARIMA, CO2 emissions, Linear Regression, 

Machine Learning, Time Series Forecasting, Neural Networks 

I. INTRODUCTION 

The prospect of extreme weather events due to climate 
change has motivated a worldwide effort to limit greenhouse 
gas emissions from various energy sectors [1]-[3]. 
Particularly, the emissions related to the building sector -
industrial, commercial, and residential - originate from 
burning fossil fuels (oil, coal, and natural gas) for the 
generation of heat and electricity consumed by this sector [4]. 
This process significantly contributes to global warming, 
according to which, when sunlight reaches the Earth, only 
some of it is able to escape back into space, while the rest is 
absorbed by the greenhouse gases (such as carbon dioxide, 
methane, and nitrous oxide), thereby leading to a gradual 
warming of the Earth’s surface. Over time, this effect has the 

potential to cause the melting of ice caps, and the rising of sea 
levels, among other impacts [5]. 

Hence, it is imperative to reduce greenhouse gas emissions 
in general and specifically those related to the building sector. 
This may require the adoption of a wide range of measures 
such as increasing the buildings’ energy efficiency (e.g., by 
increasing insulation and optimizing HVAC systems), 
enhancing their potential to be producers of renewable 
electricity (e.g., using solar Photovoltaic panels and wind 
turbines for electricity and heating), installing smart 
technologies (e.g., automation for temperature and lights 
control and energy storage appliances), and implementing 
more efficient building design (e.g., using natural ventilation 
and lighting, as well as sustainable building materials) [6]. 
New policies addressing the next frontier of energy and 
emission reductions are needed [7]. 

In this context, various countries have adopted legally 
binding measures for the reduction of CO2 emissions related 
to the building sector [8]. Brazil has adopted the AQUA green 
building certification that incentivizes developers to adopt 
environmentally friendly practices in the building construction 
process. India has established guidelines for energy-efficient 
building construction as well. China has set out the Green 
Building Action Plan that includes mandatory requirements 
for the construction of green buildings in government-funded 
projects. South Africa has adopted the SANS 10400-XA 
energy efficiency standards that all new buildings must 
comply with. The United States has adopted the LEED 
Certification (Leadership in Energy and Environmental 
Design), which is a green-building standard. The United 
Kingdom has committed to net zero by 2050, which influences 
building regulations to be more environmentally stringent over 
time. The European Union has adopted the Energy 
Performance of Buildings Directive (EPBD) that aims for all 
new buildings to achieve net zero by 2050. On a global scale, 
the United Nations has developed UNEP (United Nations 
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Environmental Program), which includes several initiatives 
for sustainable buildings including the Building and 
Construction Climate Initiative and the Global Alliance for 
Buildings and Construction (Global ABC) network. 

All these initiatives are based on time-series forecasting of 
CO2 emissions [9], which can help identify which regions are 
expected to be the most significant contributors to CO2 
emissions in the future. This information can allow 
policymakers to target interventions more effectively and 
design policies to reduce CO2 emissions, such as through 
carbon taxes, renewable energy mandates and emissions 
standards. In this context, Machine Learning (ML) can play an 
instrumental role in generating forecasts of CO2 emissions for 
the buildings sector [10]. Its ability to handle data and learn 
from data patterns can make it a valuable tool for predictive 
modelling in climate change and power systems in general 
[11] –[13].  

In this paper, we present the application of ML algorithms 
such as ARIMA [14]-[16], Linear Regression [17]-[19], and 
Neural Networks [20]-[23] for implementing time-series 
forecasts of CO2 emissions related to the building sector. 
These algorithms all constitute autoregressive models since 
the future values of a time series are predicted using as inputs 
past values of the same time series. They are all data-driven, 
meaning that they rely on historical data to make future 
predictions. In this paper, the performance of these models is 
evaluated using metrics such as the Mean Absolute Percentage 
Error (MAPE), which gives an indication of how well the 
model is likely to perform on unseen datasets.  

In this context, the key contributions of this research are as 
follows: 

• For the first time in the literature, a wide variety of 
ML predictive models are applied to CO2 emission 
datasets related to the building sector. 

• For the first time in the literature, forecasting analysis 
and insights are provided for a number of regions 
across the world regarding CO2 emissions from the 
buildings sector, which can be very beneficial to our 
collective effort to tackle climate change. 

• A comprehensive comparison is made in terms of 
performance metrics for a wide range of algorithms 
and implementations. 

In terms of structure, the first section of this paper includes 
the introduction that sets out the context of the problem and 
the overall objectives of this research. The second section 
presents the forecasting methodology that is used in this paper 
step-by-step. This methodology starts with the Data 
Preprocessing stage and concludes with Model Selection; the 
last step selects the ML models to be used for the long-term 
time-series forecasts of CO2 emissions related to the building 
sector, across various countries and until far into the future 
(specifically, until the year 2050). This is the final validation 

of the selected ML models provided in this section. Finally, 
this paper concludes with a discussion of the results, including 
possible avenues for future work.  

II. METHODOLOGY 

A. Introduction 

This section presents the four-step ML-based 
methodology, which is illustrated in Figure 1 below. Note that 
this methodology is the basis for all types of ML algorithms. 
In this paper, we have focused on the following algorithms: 
Linear Regression (univariate and multivariate), ARIMA 
(univariate and multivariate), as well as Shallow and Deep 
Neural Networks (both univariate and multivariate versions). 
These are very high-performance algorithms for time series 
forecasting; however, they have never been used before in the 
context of forecasting CO2 emissions from the buildings 
sector [24]. According to this methodology, the first step 
includes the Data Preprocessing stage, with the exploration of 
the input data from a reliable source and their further 
processing. Then, the Features Extraction process follows, 
which involves the transformation of the data into input 
features for the ML predictive models [25]. Specifically, for 
Features Extraction, we applied the lagged values approach 
and the 3rd-degree polynomial transformation. The third step 
constitutes the generation of the training and test set 
predictions. This is done through the rolling predictions 
method according to which the predictions are generated 
through an iterative process which gradually increases the size 
of the training dataset. Finally, the Model Selection step 
includes the overfitting analysis, as well as the naïve model 
benchmark test and the determination of which models are 
selected and trained for the final forecasting analysis. 

 

Figure 1.  The four-step Machine Learning Methodology used in this paper 

for the generation of forecasts. 

B. Data Preprocessing  

The first step of the methodology is called Data 
Preprocessing and involves the exploration and processing of 
the data from a reliable source. To the best knowledge of the 
authors, data related to the CO2 emissions from the building 
sector are only available in the World Bank’s database. This 
database includes the annual CO2 emissions from the building 
sector for different countries and regions, expressed as a 
percentage of the total CO2 emissions related to all economic 
sectors of the corresponding country/region. Note that the 
focus of this work is not on the CO2 emissions in general but 
specifically on the CO2 emissions related to the buildings 
sector.   

Specifically, the data obtained from the World Bank’s 
database and used in this paper cover the period between 1971 
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and 2014 and there is a single value for every year, which is 
the annual average. As such, a country-specific dataset 
consists of 44 observations equal to the number of years 
between 1971 and 2014. Note that it was not possible to 
access more recent data, and the World Bank was the only 
source for which we could find reliable data related to CO2 
emissions specifically related to the building sector. 

These values have been obtained for the following regions: 
Brazil, India, China, South Africa, the United States, Great 
Britain, the world average and the European Union. The 
selection of these regions is based on their economic 
development.  

Specifically, Brazil is a regional power and part of the 
BRICS group of emerging economies, as well as it is a 
country rich in natural resources, including oil, which can 
have implications for CO2 emissions. Similarly, India is an 
emerging economy, also part of the BRICS group, and is the 
second most populous country in the world, which inherently 
makes the level of its emissions significant on a global scale. 
China is the world’s largest emitter of CO2 emissions and an 
economic powerhouse. South Africa is also an emerging 
economy, part of the BRICS group, and heavily reliant on coal 
for meeting its energy requirements, making it a significant 
emitter on the global stage. The United States being the largest 
economy in the world, can significantly influence international 
climate policies. Similarly, Great Britain a major global 
financial hub and a G7 member, has considerable influence on 
international climate policies. The European Union is one of 
the world’s largest economies and emitters and has set 
ambitious sustainability targets. Finally, the world average can 
serve as a baseline for comparing individual countries’ efforts 
to reduce the level of their emissions.  

Following the input data exploration, the Data 
Preprocessing stage involves conducting analysis on the 
stationarity of the datasets. A stationary time series shows 
constant statistical properties over time. This is an important 
concept in time series forecasting analysis, including the 
modelling of CO2 emissions, as the stationarity of the time 
series data ensures that the predictive models can be applied 
more confidently with the expectation that they will perform 
better on new, unseen data. Specifically, detecting stationarity 
is essential for accurately determining correlations between 
datasets of different countries, which is a crucial step in 
evaluating the adequacy of multivariate models. In other 
words, highly correlated time series input data justifies the use 
of multivariate modelling.  

In our analysis, we identified correlations between the 
datasets, which warrant the use of multivariate forecasting 
modelling. In particular, we have used the KPSS statistical test 
to check for stationarity with its results indicating that the 
datasets for all countries, except for Brazil, South Africa and 
Great Britain, are non-stationary. Since only stationary data 
are correlated, and the correlation is crucial to use multivariate 

models, the non-stationary time series were differenced, with 
the resulting ones being stationary.  

Following the stationarity analysis, correlations were 
detected. For example, 68.4% between the datasets of the 
World and the United States, 60.76% between the World and 
the European Union, and 38% between the European Union 
and the United Kingdom. As a result, the presence of 
correlation means that the multivariate modelling will result in 
accurate predictions of future values of a given time series, as 
both the past values of the same time series and the past values 
of other time series correlated to it, are relevant features. 

C. Features Extraction 

The next step of the methodology is the Features 
Extraction process, which is the process of transforming the 
input raw data into numerical input features that the ML 
models require so that they can produce outputs. That is, the 
models receive input features in order to produce output 
features, i.e., predictions or forecasts.  

Several approaches can be used to transform the input raw 
data. In this work, we used the following two approaches: the 
lagged values approach, and the polynomial transformation. 
Both these models take the original data as input and generate 
as outputs the training and the test components of the features 
matrix, as well as the training component of the target 
variables. Note that these transformations can be used with 
both univariate and multivariate forecasting models. In this 
paper, we used a lag equal to 3 years, meaning that we used 
the previous 3 years to forecast the next year. This number is a 
hyperparameter appropriately selected by minimizing the 
model’s error on an independent validation set.  

Note that the former approach (i.e., the lagged values 
approach) requires the data to be stationary. For this reason, 
the time series of the original data that are non-stationary are 
differenced to become stationary and are then used in the 
analysis. This means that in the next stage in which 
predictions are performed, inversion of the differencing 
operation has to take place to obtain the actual predictions.  

In contrast, the polynomial transformation does not 
involve the requirement for the time series to be stationary. 
For this reason, the original data were transformed using a 
third-degree polynomial.  

D. Predictions and Errors 

In this stage, the input time series data are split into 
training and testing sets through the process of rolling 
predictions. According to this process, the model is fitted 
iteratively to a different portion of the training data up to some 
year T, and then the fitted model is used to generate the 
predictions for the testing set for year T+1. In each of the 
iterations, the Features Extraction process is implemented 
either via the lagged values approach or via the polynomial 
transformation.  
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The predictive performance was evaluated using the 
MAPE as a metric. Such a metric expresses the average 
percentage difference between the actual data corresponding 
to the testing set (which covers the time period between 2005 
and 2014 i.e., the last 10 years of the dataset) and the predicted 
values for the same time period. Note that the errors between 
actual and predicted values of the testing set, also known as 
test errors, constitute proxies of the overall forecasting error of 
the models. In other words, the test errors (MAPE) reflect the 
model’s performance on new unseen datasets. Both the testing 
dataset (2005-2014) and the forecasting dataset (2015-2050) 
are unseen to the models since these have been trained (i.e., 
have “seen”) using the training dataset exclusively. 

Table I shows the predictive performance in terms of 
MAPE for the different regions when using Linear Regression 
models.  By observing the mean, standard deviation and 
maximum errors in the last three rows, it can be concluded 
that the multivariate models performed much better than the 
univariate ones. Similarly, Tables II-III-IV show the same 
performance analysis when using ARIMA models, Shallow 
and Deep Neural Networks, respectively, concluding that the 
multivariate approach was superior to the univariate one for all 
the used models. 

 

TABLE I.  TEST SET ERRORS (MAPE) FOR LINEAR REGRESSION 

UNIVARIATE/MULTIVARIATE MODELS USING LAGS VALUES / 
POLYNOMIAL TRANSFORM (FEATURES EXTRACTION PROCESS). 

 

TABLE II.  TEST SET ERRORS (MAPE) FOR ARIMA 

UNIVARIATE/MULTIVARIATE MODELS USING LAGS VALUES / 
POLYNOMIAL TRANSFORM (FEATURES EXTRACTION PROCESS). 

 

TABLE III.  TEST SET ERRORS (MAPE) FOR SHALLOW NEURAL 

NETWORK (SNN)  UNIVARIATE/MULTIVARIATE MODELS USING 

LAGS VALUES / POLYNOMIAL TRANSFORM (FEATURES EXTRACTION 

PROCESS). 

. 

Dataset LR Univariate  
LR Multivariate 

(Lags)  

LR Multivariate 

(Polynomials) 

Brazil 93.01 6.09 21.03 

India 15.68 9.69 4.15 

China 74.74 15.81 17.22 

South Africa 25.48 33.14 29.44 

USA 8.52 5.22 5.70 

Great Britain 10.53 5.77 6.77 

World 

Average 
3.79 5.06 2.63 

European 

Union 
11.02 4.73 6.33 

Mean 30.34 10.69 11.66 

Standard 
Deviation 

33.98 9.81 9.71 

Max 93.01 33.14 29.44 

Dataset 
ARIMA 

Univariate  

ARIMA 

Multivariate 

(Lags)  

ARIMA 

Multivariate 

(Polynomials) 

Brazil  2.17 6.09 8.18 

India 10.07 9.69 11.17 

China 89.69 15.81 20.50 

South 

Africa 
38.84 33.14 32.79 

USA 8.36 5.22 5.07 

Great 

Britain 
5.73 5.77 7.76 

World 

Average 
4.20 5.06 7.33 

European 
Union 

4.36 4.73 7.76 

Mean 20.43 10.69 12.56 

Standard 

Deviation 
30.38 9.81 9.43 

Max 89.69 33.14 32.79 

Dataset 
SNN 

Univariate  

SNN 

Multivariate 

(Lags)  

SNN Multivariate 

(Polynomials) 

Brazil 4.49 10.83  10.57  

India 13.72 5.10  5.61 

China 44.35  4.43  28.07 

South 

Africa 
24.22  26.78  28.68 

USA 8.67  5.62  6.53 

Great 
Britain 

5.50  7.85 6.49  

World 

Average 
2.38  2.02  2.44 

European 

Union 
4.87  7.19  5.02 

Mean 13.52  8.73   11.68 

Standard 

Deviation 
 14.31  7.74  10.55 

Max  44.35 26.78  28.68  
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TABLE IV.  TEST SET ERRORS (MAPE) FOR DEEP NEURAL NETWORK 

(DNN)  UNIVARIATE/MULTIVARIATE MODELS USING LAGS VALUES / 
POLYNOMIAL TRANSFORM (FEATURES EXTRACTION PROCESS). 

The following paragraph includes the last step of the 
methodology, namely the selection of the models for 
generating the final forecasts for the validation dataset. 

E. Model Selection 

This step involves the selection of ML models that can be 
used to generate forecasts until the year 2050. This selection 
will be made on the basis of whether each of the models can 
successfully pass the overfitting test (i.e., the models do not 
suffer from overfitting) and the naïve model benchmark test 
(i.e., the models indeed display acceptable test errors). The 
model which passes both tests is selected to generate forecasts 
of the validation dataset.  

In particular, the overfitting analysis is achieved by 
comparing the training errors with the test errors. In this 
context, small differences between them indicate a lack of 
overfitting whereas large differences, i.e., greater than 10%, 
indicate that the models are fitted so well to the training 
datasets that they cannot generalize to unseen datasets, which 
indicates overfitting. Clearly, models that overfit cannot be 
used to generate forecasts. 

In addition, the naive model benchmark test allows the 
detection of unacceptably high-test errors (MAPE). This is 
different from the overfitting test in that while the overfitting 
test focuses on the difference between the training and test 
errors, while the naïve model benchmark test focuses on the 
test errors themselves. It involves comparing the calculated 
test error (MAPE) with the test error of a naïve/simplistic 
model. A naive model is one whose predictions are found by a 

simple shift of the data by one year so that the CO2 emissions 
in year t+1 are equal to those in year t. 

In this context, if the test error of the naïve model is 
smaller than the error of the ML model under study (e.g., 
Linear Regression), then the test error of the studied ML 
model is considered unacceptably high. In other words, the 
naïve model serves the purpose of a benchmark against which 
the test errors can be characterized as unacceptably high or 
not. After performing the aforementioned tests, the results are 
shown in the following tables. 

Table V shows the Linear Regression models (i.e., 
univariate/ multivariate modelling, lagged/ polynomial feature 
extraction) that passed both aforementioned tests, meaning 
that they are the ones that are selected for the generation of 
forecasts, as they are considered to have the highest chance of 
yielding least error forecasts. Notice that none of the 
univariate models has passed both tests, which means that 
none of them can be used for predictions.  

On the other hand, the multivariate models performed 
better with the ones fitted to the datasets of “European Union”, 
“Great Britain”, and “World Average” passing both tests. 

TABLE V.  LINEAR REGRESSION MODELS SELECTED FOR GENERATING 

FORECASTS DEPENDING ON THE TYPE OF MODELLING (UNIVARIATE / 
MULTIVARIATE) AND THE TYPE OF FEATURES EXTRACTION (LAGGED 

VALUES, POLYNOMIAL TRANSFORMATION) 

          Table VI shows the ARIMA models that passed both the 
overfitting test and the naïve model benchmark test. Notice 
that none of the multivariate models where the Polynomial 
transformation was used, has passed both tests. This is 
because multivariate ARIMA models should not use 
polynomials transformation as Features Extraction process 
since it relies on non-stationary data. Rather, such models 
should be used with stationary time series, which can happen 
only with the lagged values approach.  

Therefore, only the univariate ARIMA models fitted to the 
datasets of “European Union”, “Brazil” and “Great Britain” as 
well as the multivariate ARIMA models fitted to “European 
Union” and “Great Britain” datasets, and where the lagged 
values approach was used, were selected for the generation of 
forecasts. 
 

Dataset 
DNN 

Univariate  

DNN 

Multivariate 

(Lags)  

DNN Multivariate 

(Polynomials) 

Brazil 5.59 12.69   6.95 

India 12.75  6.58  3.96 

China 28.47  3.75  11.59 

South 

Africa 
25.85  23.96  29.64 

USA 8.32  5.14  5.58 

Great 

Britain 
9.38  8.29  6.75 

World 

Average 
4.33  1.65  2.70 

European 
Union 

4.45  7.14  5.10 

Mean  12.39  8.65  9.03 

Standard 

Deviation 
 9.56  7.00  8.73 

Max  28.47  23.96  29.64 

LR Univariate 
LR Multivariate 

(Lags) 

LR Multivariate 

(Polynomials) 

             - 

LR fitted to 
“European Union” 

dataset 
LR fitted to “World 

Average” dataset 
LR fitted to “Great 

Britain” dataset  
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TABLE VI.  ARIMA MODELS SELECTED FOR GENERATING FORECASTS 

DEPENDING ON THE TYPE OF MODELLING (UNIVARIATE / MULTIVARIATE) 

AND THE TYPE OF FEATURES EXTRACTION (LAGGED VALUES, POLYNOMIAL 

TRANSFORMATION)  

          Finally, Tables VII-VIII show the Shallow and Deep 
Neural Network models that passed both the overfitting test 
and the naïve model benchmark test.   

TABLE VII.  SHALLOW NEURAL NETWORK MODELS SELECTED FOR 

GENERATING FORECASTS DEPENDING ON THE TYPE OF MODELLING 

(UNIVARIATE / MULTIVARIATE) AND THE TYPE OF FEATURES EXTRACTION 

(LAGGED VALUES, POLYNOMIAL TRANSFORMATION)  

TABLE VIII.  DEEP NEURAL NETWORK MODELS SELECTED FOR 

GENERATING FORECASTS DEPENDING ON THE TYPE OF MODELLING 

(UNIVARIATE / MULTIVARIATE) AND THE TYPE OF FEATURES EXTRACTION 

(LAGGED VALUES, POLYNOMIAL TRANSFORMATION)  

     Figure 2. and Figure 3.  show examples of forecasts 
produced for the validation dataset using the selected ML 
models against non-selected models, respectively. A 
comparison of these figures emphasizes the improved quality 
of the former forecasts; observe that the latter contained 
negative values (which are physically infeasible for CO2 
emissions) and abrupt non-realistic movements.   

 

Figure 2.  Forecasts of the CO2 emissions from the building sector using 

selected models, namely multivariate Deep Neural Network (DNN) and 

Shallow Neural Network (SNN) models fitted to the “European Union” and 

“World Average” datasets. 

 

Figure 3.  Forecasts of the CO2 emissions from the building sector using 

non-selected models. 

III. CONCLUSIONS 

This paper presents for the first time in the literature the 
application of a wide range of ML models to the forecasting 
analysis of CO2 emissions from the building sector across 
various regions in the world. The models that are used include 
Linear Regression, ARIMA, Shallow and Deep Neural 
Networks. Both univariate and multivariate modelling 
approaches have been used while considering different types 
of the Features Extraction process, namely the lagged values 
approach and the polynomial transformation.   

According to the presented methodology, the analysis 
starts with the Data Preprocessing stage, followed by 
Features Extraction, the calculation of Predictions and 
Errors, and finally the Selection of those models that will be 
used for generating forecasts, based on their performance on 
the overfitting and the naïve model benchmark tests. The 
selected models are considered highly likely to generate 
forecasts of high accuracy given that the test errors (MAPE) 
are considered to be proxies of the forecasting errors. 

Future work includes focusing on optimizing the value of 
hyperparameters using methodologies such as Backwards 
Induction and least-worst regret [27] as well as uncertainty 
analysis methods based on artificial neural networks [28]. The 
authors are also interested in evaluating the effect of external 
and contextual factors, such as the level of technological 
development and of GDP, on the forecasts of CO2 emissions 
in the various regions around the world [29]. Finally, the use 

ARIMA Univariate 
ARIMA Multivariate 

(Lags) 

ARIMA Multivariate 

(Polynomials) 

LR fitted to 

“European Union” 

dataset 

LR fitted to “European 

Union” dataset 

- LR fitted to 

“Brazil” dataset LR fitted to “Great 
Britain” dataset  LR fitted to “Great 

Britain” dataset 

SNN Univariate 

SNN 

Multivariate 

(Lags) 

SNN Multivariate 

(Polynomials) 

SNN fitted to “World 

Average” dataset 

SNN fitted to 

“World 
Average” 

dataset 

SNN fitted to “World 

Average” dataset 

SNN fitted to “European 

Union” dataset 

SNN fitted to “European 

Union” dataset 

SNN fitted to “Brazil” 

dataset 

SNN fitted to “Great 

Britain” dataset. 

DNN 

Univariate 

DNN Multivariate 

(Lags) 

DNN Multivariate (Polynomials) 

DNN fitted 

to the 
“European 

Union” 

dataset 

 

DNN fitted to the 

“China” dataset 

DNN fitted to the “World 

Average” dataset 

DNN fitted to the 

“World Average” 

dataset 

DNN fitted to the “European 

Union” dataset 
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of advanced decomposition methodologies applied to large-
scale mathematical optimization problems [30]-[31] can offer 
significant insights into possible future pathways of CO2 
emissions across different regions.  
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