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Abstract—Optimal power flow (OPF) is a crucial task in power
system management and control; accurate and time-efficient
solutions for OPF are necessary to ensure cost-efficient and
reliable power system operation. We introduce a novel solution
to solving alternating current OPF (ACOPF), a nonlinear and
nonconvex optimization problem, by combining the speed of a
trained deep learning model with the accuracy of iterative solvers.
The proposed framework uses a graph neural network (GNN) to
exploit the graph structure of a power system in conjunction with
proximal policy optimization, a deep reinforcement learning algo-
rithm, to compute initial guesses for an interior point solver (IPS),
providing a warm start, allowing the solver to converge in fewer
iterations. Existing literature that explores warm start ACOPF
solutions using machine learning choose to compute initial guesses
that are trained to be feasible and cost-minimizing. Our approach
trains the GNN-based reinforcement learning agent to produce
an output that minimizes IPS convergence time by designing
a reward function that is a function of the IPS convergence
time. We evaluate the proposed framework using IEEE test case
environments, using PyPower’s IPS-based ACOPF solver and a
GNN-based framework that computes ACOPF solutions directly
as baselines, demonstrating significantly improved convergence
times.

Index Terms—AC optimal power flow, graph neural networks,
initial estimate, proximal policy approximation

I. INTRODUCTION

Optimal power flow (OPF) is a fundamental task in power
system management that aims to minimize power generation
costs under the physical constraints of the power system.
OPF is an NP-Hard problem in its original form due to the
nonlinear and nonconvex properties of alternating current OPF
(ACOPF). In the last two decades, finding direct solutions for
ACOPF has become a popular area of research [1]. Proposed
solutions often fall short because they cannot consistently
produce feasible solutions, achieve global optimum, or address
space-time complexity1 issues related to solving a nonconvex
optimization problem. The alternative to solving ACOPF is to
apply a direct current (DC) approximation using a relaxation
that negates the reactive component(s) of the power system
— thus making the optimization problem linear and convex.
DCOPF is a common approach for solving OPF due to the
lack of computational complexity associated with solving

1Space-time complexity refers to an algorithm’s efficiency in computation
time and required memory.

it. Nonetheless, the approximation of OPF’s true form will
incur significant monetary losses due to suboptimal solutions
obtained using DCOPF [2].

Deep learning approaches to solving ACOPF have been well
explored (see, e.g., [3]–[6]). While deep learning has been
shown to compute feasible solutions quickly, they are consis-
tently far from global optimum relative to other methods, such
as iterative solving methods. Iterative solvers, such as gradient
descent, Newton-Raphson’s method, or quasi-Newton meth-
ods, are numerical methods that use an initial value to generate
a sequence of increasingly accurate approximate solutions for
a specific class of problems. In these methods, the n-th approx-
imation is derived from the previous approximations, gradually
refining the solution until it reaches a global optimum. Due
to neural networks’ inherent functionality for generalization,
it would be nearly impossible to generate a truly optimal
output. The only means of consistently producing optimal
solutions would be to create an architecture designed to overfit
and then train it on every possible combination of inputs,
which is infeasible for a continuous, thus infinitely large, input
space. Alternatively, while global optimality is not necessarily
guaranteed every time, iterative solvers alone are generally
capable of consistently producing optimal ACOPF solutions
that are better solutions than other researched methods, such
as deep learning, but this comes at the cost of computation
time; convergence to the optimum can often not be done in
real-time, especially in larger power systems. This problem
can be mitigated if the iterative solvers are informed with an
accurate initial guess or warm-start. Providing a warm-start
can significantly improve the convergence rate and reduce the
number of iterations required to converge [7].

This paper proposes a novel time-efficient solution to
ACOPF using deep reinforcement learning in conjunction with
iterative solving methods, specifically, the interior point solver
(IPS). We do not train the deep reinforcement learning agent
to produce a solution to ACOPF that is feasible or cost-
minimizing; instead, we train the agent to compute an initial
guess that minimizes the time it would take for the IPS to
find a solution. Due to the nonconvex properties of ACOPF,
an initial guess that is nearer to the global optimum in terms
of costs and feasibility may be very far in proximity to the
global optimum. As a result, training an agent to generate
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initial guesses that prioritize feasibility and cost minimization
may actually lead to longer IPS convergence times.

Training the agent to make initial guesses that minimize
IPS computation time requires a feedback loop to inform the
loss function of the quality of the initial guess based on the
amount of time it takes for the IPS to solve the ACOPF. This
approach should employ reinforcement learning, as it would
not be a practical way to generate a predefined dataset for
traditional machine learning approaches.

Our proposed framework uses proximal policy optimization
(PPO), a type of deep reinforcement learning algorithm, to
train a neural network to compute an initial guess of the
ACOPF solution, allowing IPS to solve it in significantly fewer
iterations, thus decreasing the computation time. Reinforce-
ment learning agents learn via trial and error as they interact
with their environment, take actions, and observe the rewards
earned from making particular actions. PPO is a simple actor-
critic reinforcement learning algorithm that seeks to find an
optimal policy (a function that maps observations to actions)
rather than assigning values to state-action pairs [8]. We
couple this with a graph neural network (GNN) to act as the
agent’s learning mechanism — exploiting the graph structure
of the power grid. GNNs are a specialized type of neural
networks that are well-suited to process graph-structured data.
By analyzing and utilizing the patterns and relationships within
the graph, GNNs can provide more accurate predictions about
the entities involved compared to models that only consider
individual entities in isolation, such as a standard multi-layer
perceptron (MLP). Using a GNN also allows adaptation to
changes in topology with only minor adjustments. In contrast,
an MLP, the standard in deep learning-based ACOPF literature,
would require a complete retrain. Topology adaptability is
essential in real-world scenarios where line and generator
outages or other unexpected changes to topology can occur.
Only one study we know of has used GNN for ACOPF,
[9], which focused on computing ACOPF solutions directly
with the GNN. Although warm-start solutions for iterative
solvers using machine learning and deep learning have been
explored in [7], [10], [11], [12], [13] these methods do not
use reinforcement learning to factor in the convergence time
of the employed iterative solver into the loss function of the
learning algorithm and also do not use GNN to take advantage
of the graph structure of the power system.

With the proposed framework, we aim to demonstrate a
middle-ground solution to ACOPF that combines the speed of
a trained neural network with the accuracy of iterative solvers.
This framework is evaluated on the feasibility of solutions
and the computation time required to compute solutions. We
conduct experiments using standard IEEE test environments.

The contributions of our work are as follows:
1) We create a novel framework for solving ACOPF utiliz-

ing GNN and PPO as learning mechanisms.
2) We introduce a novel deep reinforcement learning re-

ward function for ACOPF that considers the iterative
solver’s convergence time, which has not yet been ex-
plored in ACOPF literature.

3) We demonstrate state-of-the-art results that do not com-
promise accuracy or computation time.

By showcasing this novel solution to ACOPF, we aim to
provide a new direction for future ACOPF research to compute
accurate solutions in real-time.

The structure of this paper is as follows: Section 2 presents
the background material necessary for understanding the
details of the proposed framework; Section 3 outlines the
methodology, including the characteristics of the agent, the
GNN architectures, and the structure of the training algorithm;
Section 4 provides an overview and discussion of the results
obtained from each experiment; and Section 5 provides a brief
conclusion of the paper and description of future work.

II. BACKGROUND

In this section, we review background material that sup-
ports the framework presented in this paper. This includes a
brief outline and formulation of ACOPF, graph convolutional
networks, reinforcement learning, and PPO.

A. AC Optimal Power Flow
Given a power system where N denotes the set of

all buses, G the set of all generators, and L set of all
transmission lines, we formulate the ACOPF as a set of
equality and inequality constraints and an objective function
to be minimized. Formally,

minimize: ∑
i∈G

(C2iP
2
gi + C1iPgi) (1)

Subject to:

Pmin
gi ≤ Pgi ≤ Pmax

gi , ∀i ∈ G , (2)

Qmin
gi ≤ Qgi ≤ Qmax

gi , ∀i ∈ G , (3)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N , (4)

|Sflow,ij | ≤ |Smax
flow,ij |, ∀(i, j) ∈ L , (5)

Pi =
∑

∀j∈N

ViVj(gijcos(θj−θi)+bijsin(θj−θi)), ∀i ∈ N ,

(6)
Qi =

∑
∀j∈N

ViVj(gijsin(θj−θi)−bijcos(θj−θi)), ∀i ∈ N ,

(7)
where C1· and C2· are coefficients related to the costs of power
generation, Pi and Qi are the total real and reactive power at
bus i ∈ N , respectively, Pgi and Qgi are the total real and
reactive generation at generator i ∈ G , Sflow,ij is the apparent
power of line (i, j) ∈ L , Vi and θi are the voltage magnitude
and the phase angle at bus i ∈ N , respectively, gij and bij
are the conductance and susceptance, respectively, of the line
(i, j) ∈ L that connects buses i and j.

(1) is the objective function to be minimized, relating to
power generation costs. (2)-(5) are inequality constraints of the
ACOPF related to limits on power generation, voltage limits,
and line flow limits. (6) and (7) are equality constraints related
to power balance.
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B. Graph Convolutional Networks

Given a graph with a set of nodes or vertices V and a set
of edges that denote connections between nodes E, GNNs use
optimizable operations, such as aggregation [14], pooling [15],
attention [16], or convolution [17], that consider entities of a
graph as interconnected rather than independent, taking into
account their relationships with one another. The identity of a
node or edge can be represented by one or more values; for
example, in the context of power systems, nodes can denote
buses and be represented by values such as real power, reactive
power, voltage, etc. In contrast, edges can represent the lines
that connect two buses and be represented by values such
as resistance, conductance, susceptance, current, etc. Graph-
structured data exists in various domains, from street traffic
to molecular biology to social networks. Prediction tasks for
graph-structured data can fall into three categories: graph-
level, node-level, or edge-level. Graph-level tasks involve
computing all properties of an entire graph; node-level tasks
are concerned with predicting values that represent the identity
of a node; and edge-level tasks can involve predicting where
edges in a graph should be or determining the values that
represent that edge’s identity. The ACOPF problem outlined
in this paper will be a node-level task.

Graph convolutional networks, a popular type of GNN,
utilize an operation known as graph convolution, which is
similar to the convolution operation used in a convolutional
neural network for images; the new representation of a node in
a graph becomes an amalgamation of itself and its neighbors.
We compute a transformation of each node using feature infor-
mation from all its neighbors and itself, allowing the network
to consider nodes as interconnected rather than independent
entities. The convolution operation translates well between im-
ages and graphs simply because images are graphs, too, where
each pixel is nodally connected to adjacent pixels. While
the idea of graph convolution is similar to the convolution
operation used in a convolutional neural network for images,
their mathematical formulations differ; also, graphs require an
order-invariant operation, whereas the convolution operation
used for images is not order-invariant. In this study, we adopt
the graph convolution formulation in [18], shown below:

x′
i = W1xi +W2

∑
j∈N (i)

ej,i · xj , (8)

where x(·) is the value(s) of a node, e ∈ R||N ||×||N || is the
adjacency matrix, where ||(·)|| denotes cardinaility of the set,
and W(·) are learned weight matrices.

C. Reinforcement Learning

Reinforcement learning is a collection of optimization al-
gorithms where an agent aims to learn the optimal strategy
for interacting with its environment based on trial-and-error
learning [19]; the environment describes the world with which
the agent interacts. Reinforcement learning algorithms can
be categorized into model-based or model-free algorithms; in
model-based approaches, the agent uses a predictive model

of the environment to determine the possible outcomes of its
actions. Model-free approaches, which don’t use predictive
models of the environment to guide the agent’s decision-
making process, rely more on the expected returns of their
actions to understand their environment. Model-free reinforce-
ment learning can be divided into two main categories: value-
based and policy-based. Value-based approaches aim to learn
or estimate the value or expected return of state-action pairs.
In policy-based approaches, the agent devises a policy such
that the action performed in every state helps the agent gain
maximum future reward.

At each time step t, the agent receives observations from
the environment and takes actions based on those observations.
The environment then responds with a new state and a reward
signal, which the agent uses to update its policy or value
function. This loop continues until the agent reaches its goal
or the environment ends. Using a neural network, the agent
can progressively learn a model of the optimal policy or value
function and eventually be capable of taking actions that would
earn the largest long-term return.

A Markov decision process can be used to model rein-
forcement learning problems. This consists of four elements:
the state space of the environment s, the action space of
the environment a, the reward function r, and the transition
probability p. The state space encompasses any information
from the agent’s environment that can and should be used
to make decisions. The actions space includes the agent’s
decision variables — the set of all possible actions. The reward
function defines the reward given to the agent after an action is
executed and the results of the action are realized. Rewards can
also have zero or negative values, often denoting punishment.
Lastly, the transition probability delineates the stochasticity of
the environment: the probability of a specific state st+1 being
observed when action at is taken at a specific state st. If the
probability is 1, the environment would be deterministic.

D. Proximal Policy Optimization

As a derivative of policy gradient and trust region methods,
PPO is a policy-based reinforcement learning algorithm that
employs elements from each to reach a balance between ease
of implementation, sample complexity, and ease of tuning to
compute an update that minimizes the cost function while
ensuring the deviation from the previous policy is relatively
small [8]. We use PPO because policy-based methods gener-
ally work better in environments with infinitely large state and
action spaces, as value-based cannot reasonably obtain accu-
rate mappings of optimal state-action pairs without significant
training.

Algorithm 1 outlines PPO’s structure. In each episode
of training, for T time steps (where T is a much smaller
value than the length of an episode 2), the agent will use the
same policy; once the number of time steps reaches T , the
agent will undergo a policy update. PPO uses an actor-critic

2An episode refers to a series of agent-environment interactions between
the initial state and the terminal state.
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structure: the actor learns the optimal policy, whereas the
critic estimates the value function, which computes the
potential long-term return. The actor and the critic are both
modeled by a neural network.

Algorithm 1 PPO
for iteration = 1, 2, . . . do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, . . . , ÂT

Optimize surrogate L wrt θ, with K epochs and
minibatch size M ≤ NT
θold ← θ

end for

The objective function to be minimized by the agent is
defined as:

Lt(θ) = Lclip
t (θ)− c1L

V F
t (θ) + c2S [πθ] (st) , (9)

where c1 and c2 are user-defined coefficients to determine the
weight of each component in the objective function, LV F

t (θ)
is the loss of value function (the critic network), Lclip is the
clipped surrogate loss, and S is the entropy of the policy. The
policy, πθ, is defined by a multivariate Gaussian distribution
πθ ∼ Norm (µθ(st),Σπθ). The mean of the distribution,
µθ(st), is the output produced by the actor network, and
Σπθ is the diagonal matrix of the covariance matrix with a
user-defined standard deviation; the standard deviation is set
relatively high for earlier episodes and decays as the episodes
progress, adding small amounts of random noise to the action
and aiding in exploration.

The clipped surrogate loss is defined as

Lclip(θ) = min(Rt(θ)Â
πθ, old
t ,

clip (Rt(θ), 1− ε, 1 + ε) Â
πθ, old
t ), (10)

where θold refers to the policy parameter before the actor is
updated, Ât is the advantage estimate, which is defined as:

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1, (11)

where
δt = Rt + γV (st+1)− V (st) , (12)

and Rt(θ) is the ratio between the new and old policies,
defined as:

Rt(θ) = πθ (at | st) /πθold (at | st) . (13)

The clip function ensures that Rt(θ) is between 1−ε and 1+ε,
where ε is a user-defined parameter to determine the tightness
of the clip boundaries. In (11), variables γ and λ are user-
defined variables that control the reward discount; larger values
allow the agent to consider long-term rewards, while smaller
values enable the agent to consider shorter-term rewards, and
V (·) is the value function modeled by the critic network.

The agent’s training generally concludes when the objective
function (9) reaches a point of convergence, and the loss is no
longer decreasing.

III. METHODOLOGY

Firstly, we will define the reinforcement learning problem
by outlining the state space, reward function, and action space.
The state of the environment s, the agent’s input, includes all
active and reactive load variables for all buses in the network
that belong in N = {1, . . . , N}:

s = [Pl1, · · ·, PlN , Ql1, · · ·, QlN ], (14)

where Pli is the real power demand at bus i and Qli is the
reactive power demand at bus i. The agent will then execute
an action using this state information to inform its decision.
The action space is comprised of variables related to power
generation (for all generators that belong in G = {1, . . . , G}),
voltage magnitude, and voltage angles:

a = [Pg1, ···, PgG, Qg1, ···, QgG, Vi, ···, VN , θi, ···, θN ]. (15)

Note that the agent’s goal is not necessarily to produce a set
of actions that result in a feasible and cost-minimizing solution
to the ACOPF, so the reward function must reflect the agent’s
true goal to compute a set of actions that minimizes the amount
of time required for the IPS to converge to a solution. Thus,
we designed the following reward function:

r =

{
−rnc, IPS could not converge given at

−rc, IPS converges given at
, (16)

where rnc is a fixed value denoting the value given to a
non-convergence, and rc is the amount of time, in seconds,
it takes for the IPS solver to converge given a. While non-
convergence can often result from a truly unsolvable state,
they are very likely to result from a poor initial guess as
IPS can be very sensitive to the given initial guess. Thus,
we must give the agent a punishment if the IPS does not
converge given a. This punishment is not arbitrarily selected;
it must be determined carefully as it should not overpower the
convergence rewards; otherwise, the agent may not learn to
minimize IPS time and too heavily prioritize minimizing non-
convergence. Also, it cannot be too small since some more
difficult states may take up to a few seconds to solve, and the
punishment for non-convergence should always be a lesser
value than a convergence reward.

A. Environmental Set-Up

The environment is constructed using PyPower, the official
Python port of MATPOWER. Experiments are conducted
using Python 3.7. computations are conducted on an NVIDIA
A100 40GB GPU.

The proposed framework is trained and evaluated on the
IEEE 14-bus, IEEE 118-bus, and IEEE 300-bus systems. As a
baseline, we will compare results to PyPower’s ACOPF solver,
which computes initial guesses as an average of the minimum
and maximum values of each variable in the action space.
PyPower’s IPS is used for all experiments. We also compare
two deep learning methods to compute initial guesses: a
GNN trained to produce feasible and cost-minimizing ACOPF
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solutions and a multi-layer perceptron in conjunction with PPO
trained to produce solutions that minimize IPS convergence
time. These baselines can also act as an ablation study to
validate the claims that, for the purpose of computing a warm-
start:

1) A loss function designed to minimize IPS convergence
time will be more effective than a loss function designed
to produce a feasible and cost-minimizing solution.

2) A neural network architecture that can exploit the graph
structure of a power system by accounting for relations
between nodes will be more effective than a neural
network architecture that treats nodes as independent
entities.

The baseline GNN will have the same architecture as the
GNN in the proposed PPO-GNN framework, but it will instead
use a mean-squared error loss function and will be trained
on a dataset with 20,000 unique states, where the labels are
generated by the PyPower IPS solver. As for the PPO-MLP
baseline, the loss function will be the same as that in the PPO-
GNN implementation, but the neural network architectures
will differ.

The structure of the training algorithm is as follows3: first,
the load at each load bus is adjusted. This adjustment is done
by randomly generating a value between 10% and 80% of the
system generation limits for the total load across all load buses
and then assigning a portion of that total load to each load bus
using a Dirichlet distribution, which is defined as:

f(z,α) =
1

B(α)

D∏
i=1

zαi−1
i , (17)

B(α) =

∏D
i=1 Γ (αi)

Γ
(∑D

i=1 αi

) , (18)

where α ∈ RD is a vector of concentration parameters for each
load bus, and D is the number of loads in the power network.
The Dirichlet distribution is a distribution over a vector z ∈
RD such that each zi > 0 and:

D∑
i=1

zi = 1. (19)

The vector returned by Dirichlet distribution denotes the share
of the total real power demand each load bus will be delegated.
The reactive power demand at each load bus is calculated via
a randomly generated power factor between 0.8 and 1.

Given the new state of the environment, the agent will use
these values to compute an initial guess. Then, a timer is
started, and the initial guess is given to the PyPower IPS as a
starting point. When the IPS converges, the timer is stopped.
If it converges, the negative of the elapsed time is given as
a reward. If it does not converge, a large negative reward is
given. After 1,000 iterations of this process, the agent will
undergo a policy update and then continue from the first step.

3github.com/AzadDeihim/ACOPF-PPO-GNN

Statistics regarding average reward, IPS convergence time,
and the number of IPS non-convergences are recorded during
each 1,000 time step period. The total number of iterations
is not predefined; training will end once the agent’s reward
converges and is no longer improving. A flowchart diagram
of the training algorithm is shown in Figure 1.

Start

Initialize power
network

Agent 
computes
at given st

Run IPS using
at as an initial

guess

Calculate rt and
advantage
estimates

Have 1000
iterations
passed?

Calculate L,
update

actor/critic

Y Change load
settings

N

End

Y

N

t + 1

Have rewards
converged?

Figure 1. A flowchart of the training algorithm.

Separate GNNs model the actor and critic, and their archi-
tecture only varies slightly. While they are both given the same
input, they will output different values: the actor will output
a ∈ R2G+2N , the action, whereas the critic will output the
value or expected reward of state transition. In both the 14-bus
experiment and the 118-bus experiment, the actor and critic
will have three graph convolution layers, where each layer
performs the node-wise transformation described in (8). The
output for all nodes of the final graph convolution is flattened
into a vector and then linearly transformed via:

a = WX + b, (20)

where W is the weight matrix and b is the bias vector. We use a
hyperbolic tangent activation function between all layers of the
GNNs. The optimization algorithm used in backpropagation is
the Adam optimizer.

Details regarding hyperparameter settings for each experi-
ment, including the architecture of the actors and critics, can
be found in Tables I and II. The action standard deviation is
initially set to 0.5 and decays by 0.01 every 250 time steps
until it reaches 0. We chose discount factors of 0.0 because
actions in different time steps are completely independent, and
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TABLE I
LAYER SIZES FOR EACH NEURAL NETWORK ARCHITECTURE. THESE

VALUES DENOTE THE DIMENSIONALITY OF THE OUTPUT OF EACH LAYER,
DETERMINED BY THE SHAPE OF THE WEIGHT MATRICES BETWEEN EACH

LAYER.

14-Bus 118-Bus 300-Bus
GNN Layer Actor Critic Actor Critic Actor Critic
Layer 1 Size 128 128 256 256 512 512
Layer 2 Size 256 256 512 512 1024 1024
Layer 3 Size 128 128 256 256 512 512

14-Bus 118-Bus 300-Bus
MLP Layer Actor Critic Actor Critic Actor Critic

Layer 1 Size 128 128 256 256 512 512
Layer 2 Size 256 256 512 512 1024 1024
Layer 3 Size 128 128 256 256 512 512

state transitions are entirely stochastic; thus, long-term rewards
should not matter to the agent.

TABLE II
COEFFICIENT SETTINGS FOR THE OBJECTIVE FUNCTION OF PPO,

LEARNING RATE SETTINGS FOR ACTOR AND CRITIC NETWORKS, AND
DISCOUNT FACTOR SETTINGS.

14-bus 118-bus 300-bus
c1 0.5 0.5 0.5
c2 0.01 0.01 0.01
γ 0.0 0.0 0.0
λ 0.0 0.0 0.0
rnc 12 12 15

Learning rate 0.0005 0.0005 0.0005

IV. RESULTS

This section presents results from the experiments outlined
in Section III-A. PPO-GNN and the baseline are evaluated on
the same 5000 randomly generated states for all experiments.
During testing, the critic network is discarded as it is only
required for training; all initial guess computation is conducted
by the actor. All models will be evaluated on their ability to
produce initial guesses that can minimize IPS convergence
time and minimize the number of non-convergences.

A. 14-bus

The IEEE 14-bus test case represents a small power system
with 14 buses, five generators, 11 loads, and 20 lines. For
the IEEE 14-bus system, we demonstrate that our proposed
framework can significantly decrease IPS computation time
while minimizing the number of non-convergences. Training
details are provided in Figure 2. Figure 2 shows that after about
9,000 time steps, the agent converges to an average reward of
-0.54 and is able to compute initial guesses that allow the
IPS to solve the ACOPF in under 0.55 seconds while only
causing the IPS to not converge in less than 0.1% of states.
We compare the results to the baselines in Table III. This
shows that the proposed framework outperforms the baselines
significantly in terms of IPS convergence time and the number
of non-convergences. By using the proposed PPO-GNN-based
framework to compute initial guesses for IPS, we observe a

33% speed-up over the PyPower ACOPF solver, a 14% speed-
up over the GNN, and a 13% speed-up over PPO-MLP. The
initial guesses supplied by PPO-GNN resulted in a 100.0%
convergence rate on the test set. On the other hand, initial
guesses provided by the baselines incurred significantly lower
convergence rates. Results in Figure 2 and Table III indicate
that the quality of the initial guess plays an important role in
the IPS’s ability to converge. In the early training time steps,
we observe convergence rates below 75%. We also observe
that over the course of training, the average IPS convergence
time decreases from 0.85 to 0.53 seconds, demonstrating that
even in some of the earlier time steps where PPO-GNN was
undertrained, the initial guesses still resulted in lower IPS
convergence times than the baselines. Additionally, it only
takes the GNN roughly eight milliseconds to compute an initial
guess. The total training time for PPO-GNN in this experiment
was roughly five hours, the majority of which was IPS-solving
time.

TABLE III
COMPARISON OF THE MEAN AND STANDARD DEVIATION OF IPS

CONVERGENCE TIMES AND CONVERGENCE RATE OF IPS BETWEEN
PPO-GNN AND THE BASELINE ON THE 14-BUS TEST CASE.

Mean rc Standard Deviation rc Convergence %
PPO-GNN 0.53 seconds 0.09 seconds 100.0%
PyPower 0.79 seconds 0.19 seconds 96.5%

GNN 0.62 seconds 0.13 seconds 97.9%
PPO-MLP 0.61 seconds 0.09 seconds 96.2%
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Figure 2. PPO-GNN training statistics for 14-bus test case. The three scatter
plots represent the number of non-convergences, average IPS convergence
time, and average reward on the y-axis and the number of time steps on the
x-axis.

B. 118-bus

The IEEE 118-bus test case represents a power system
with 118 buses, 19 generators, 35 synchronous condensers,
177 lines, nine transformers, and 91 loads. Similar to the
14-bus system, our framework delivers improved performance
over the baselines. We compare the results of PPO-GNN with
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the baselines in Table IV, demonstrating a 30% improvement
over the PyPower solver, a 12% improvement over the GNN,
and a 14% improvement over the PPO-MLP in terms of IPS
computation time. Figure 3 shows a detailed visualization of
training statistics. After about 12,000 time steps, the agent
converged to an average reward of -1.19, an average IPS
convergence time of 1.19 seconds, and a 100.0% convergence
rate. Similar to the 14-bus experiment, PPO-GNN is the only
model capable of achieving a 100.0% convergence rate on
the test set. Also, during training, we observed much lower
convergence rates in the early stages of training, often below
60%, as well as IPS convergence times of over 2 seconds,
showing that in this experiment, the outcome of the IPS is
heavily reliant on the quality of an initial guess. Since the
GNN was larger in this test case, it took the GNN about 18
milliseconds on average to compute an initial guess. The total
training time for PPO-GNN in this experiment was roughly
12 hours, the majority of which is IPS solving time.

TABLE IV
COMPARISON OF THE MEAN AND STANDARD DEVIATION OF IPS

CONVERGENCE TIMES AND CONVERGENCE RATE OF IPS BETWEEN PPO
GNN AND THE BASELINE ON THE 118-BUS TEST CASE.

Mean rc Standard Deviation rc Convergence %
PPO-GNN 1.19 seconds 0.19 seconds 100.0%
PyPower 1.70 seconds 0.39 seconds 99.4%

GNN 1.35 seconds 0.23 seconds 99.6%
PPO-MLP 1.39 seconds 0.28 seconds 97.9%
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Figure 3. PPO-GNN training statistics for the 118-bus test case. The
three scatter plots represent the number of non-convergences, average IPS
convergence time, and average reward on the y-axis and the number of time
steps on the x-axis.

C. 300-bus

The IEEE 300-bus system contains 69 generators, 60 load
tap changers, 304 transmission lines, and 195 loads. This
is the largest and most complex of the power systems used
in this study. As shown in Table V, PPO-GNN outperforms
all baselines but only with a marginal improvement over

the PyPower ACOPF solver, which in previous experiments
performed significantly worse than other models. This most
likely indicates that other models performed poorly on this
test case, rather than the PyPower ACOPF solver performing
well. Figure 4 displays the training statistics for PPO-GNN
on the 300-bus test case. In the early stages of training, we
can see that the initial guesses provided resulted in non-
convergence nearly 100% of the time but slowly decreased
to nearly 0% after roughly 20,000 time steps of training.
Similarly, convergence time decreased by a factor of over
three from nearly 11 seconds to under three seconds from the
start of training to the end of training. This indicates that the
300-bus test case is significantly more sensitive to the quality
of an initial guess compared to smaller test cases, and it is
likely that this trend will continue if experiments were to be
conducted on larger, more complex systems. Training time for
PPO-GNN on the 300-bus test case exceeded training time on
other test cases by a substantial margin, requiring nearly 30
hours to fully train. Nonetheless, when fully trained, initial
guess computation only takes about 30 milliseconds.

TABLE V
COMPARISON OF THE MEAN AND STANDARD DEVIATION OF IPS

CONVERGENCE TIMES AND CONVERGENCE RATE OF IPS BETWEEN PPO
GNN AND THE BASELINE ON THE 300-BUS TEST CASE.

Mean rc Standard Deviation rc Convergence %
PPO-GNN 2.79 seconds 0.71 seconds 99.5%
PyPower 2.98 seconds 0.84 seconds 99.3%

GNN 3.35 seconds 0.91 seconds 98.1%
PPO-MLP 3.43 seconds 0.87 seconds 95.9%

0 5000 10000 15000 20000
0

500

1000

No
n-

co
nv

er
ge

nc
es

0 5000 10000 15000 20000

5

10

Co
nv

er
ge

nc
e 

Ti
m

e 
(s

)

0 5000 10000 15000 20000
Time Steps

15

10

5

Re
wa

rd

300-Bus

Figure 4. PPO-GNN training statistics for the 300-bus test case. The
three scatter plots represent the number of non-convergences, average IPS
convergence time, and average reward on the y-axis and the number of time
steps on the x-axis.

D. Supplementary Experimentation

We conduct additional experiments by sampling a wider
range of initial guesses to observe how an initial guess may
affect the quality of the resulting IPS convergence point in
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TABLE VI
CONVERGENCE RATE, CONVERGENCE TIME, AND RESULTING COST OF IPS GIVEN A RANDOM UNIFORM DISTRIBUTION OF INITIAL GUESSES.

Convergence % Min. Cost $ PPO-GNN Cost $ Mean Convergence Time PPO-GNN Convergence Time
14-Bus 76.7% 2.03E+07 2.03E+07 0.82 seconds 0.49 seconds

118-Bus 93.8% 3.63E+08 3.63E+08 1.50 seconds 1.15 seconds
300-Bus 34.2% 2.38E+09 2.38E+09 5.10 seconds 3.02 seconds

terms of cost, the ability to converge, and convergence time.
This experiment also aims to understand if the reward function
presented in (16) may cause the IPS to converge quickly but
to a suboptimal solution. We sample a uniform distribution
within the system’s limits of 2,000 unique initial guesses;
we then record the resulting solution’s costs and the IPS’s
convergence time, given these initial guesses, if it could
converge. This experiment was conducted using the same
random state on each test case. Results of this experiment
are presented in Table VI. In every case, the IPS converged
to the same point regardless of the initial guess, if it could
converge. Still, convergence rates in this experiment were far
lower than in previous experiments as initial guesses were
randomly selected, indicating that IPS may be more sensitive
to the quality of an initial guess than what was suggested
in our previous experiments; the same can be said for IPS
computation time. These results also suggest that the PPO-
GNN can provide an initial guess that produces a fast solution
without compromising the quality of the resulting ACOPF
solution.

V. CONCLUSIONS

In this work, we proposed a novel framework for attaining
quick, optimal solutions to ACOPF using PPO and GNN to
compute initial guesses for an IPS. These initial guesses were
assessed by whether or not the IPS could converge, given that
initial guess and how quickly it could converge to the optimal
solution. This resulted in a trained GNN that produces IPS
initial guesses that minimize the number of non-convergences
and significantly decrease IPS convergence time compared to
three baselines: PyPower’s ACOPF solver, initial guesses com-
puted by a GNN that is trained to calculate ACOPF solutions
directly, and an MLP trained with PPO using the same reward
function as our proposed framework. This was demonstrated
on three different IEEE test environments: the 14-bus test
case, the 118-bus test case, and the 300-bus test case. In
the future, we look to explore the use of this framework on
much larger power system test cases to better understand the
scalability of this solution, as well as instances of topology
changes, such as line outages. Additionally, this work did
not include a comprehensive assessment of alternative GNN
architectures or different reinforcement learning algorithms,
nor did we explore a wide variety of hyperparameter settings.
With that, the solution presented in this paper can be improved
significantly, and we hope that this can provide a new direction
for ACOPF research.
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