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Abstract—In the context of a real electrical distribution
network in Puerto Carreño, Colombia, this paper addresses
the challenge of enhancing power supply reliability through
the strategic integration of Renewable Energy Sources with
Hydrogen Energy Systems. The planning problem is reformulated
as a Mixed-Integer Quadratically Constrained Programming
problem, enabling the use of efficient solvers with global op-
timal solution. Considering the extensive curtailment options
and numerous allocation components, the optimization problem
naturally scales up. To address this computational intensity,
representative scenarios are derived from the original high-
dimensional probability distribution employing the Gaussian
Mixture Model. These scenarios are used in conjunction with
the proposed optimization framework to achieve cost-effective
power grids while reducing fossil fuel dependency.

Index Terms—Hydrogen energy systems, Renewable energy
systems, Optimal allocation, Distribution networks, Reliability
enhancement

I. INTRODUCTION

Distribution networks stand as the backbone of electrical
systems, holding a substantial share in power system invest-
ments. This significance has spurred extensive research on
planning problems in distribution systems, aiming to enhance
various aspects such as providing ancillary services like resid-
ual power to the main grid [1], reactive power control due
to inverters [2], and developing planning frameworks that
consider both short and long terms [3]. Recent studies have
primarily concentrated on optimizing the location and sizing
of Distributed Energy Resources (DERs), including Renewable
Energy Sources (RESs) and Battery Energy Storage Systems
(BESSs) for grid [4] or island mode [5]. Amid the growing
focus on decarbonization goals [6], the integration of RESs
is paramount. Despite their potential, the existing BESSs
grapple with limitations in energy storage capacity, proving
them suitable for short-duration cycles but not for prolonged
power supply interruptions [7]. This limitation underscores the
necessity to explore new storage mechanisms [8].

In the field of power systems, especially those with signifi-
cant integration of RESs, addressing uncertainties is a common

challenge [9]. These uncertainties, arising from unpredictable
weather patterns [10], increasing load growth [11], and contin-
gencies of power system components, have been traditionally
tackled using stochastic programming. This method, widely
used in the operation and planning of power grids [12],
often requires a large number of samples for the optimization
framework, leading to a substantial computational burden.
Additionally, managing non-linear equations coupled with
a multitude of integer variables significantly increases the
computational burden.

Moreover, the concept of a weak distribution network, illus-
trated by Puerto Carreño’s power grid, introduces additional
complexity. These networks face challenges with insufficient
generator capacities to meet peak demands, especially dur-
ing contingencies. Puerto Carreño’s situation is particularly
challenging due to its reliance on an unstable connection to
the external grid, which is its link to neighboring Venezuela,
rather than a direct connection to Colombia’s transmission
grid. The endeavor to enhance the power system’s robustness
and reliability significantly adds to the computational burden,
especially when considering numerous potential scenarios and
contingencies.

Meta-heuristic techniques, which are state-of-the-art in nav-
igating these complexities, offer an advantage with their ease
of implementation. For instance, recent studies, such as one
introduced by [13], have showcased a microgrid planning
model that integrates wind turbines, photovoltaics (PV), fuel
cells, and combined heat and power units. This model, aimed
at ensuring the microgrid’s generation meets both electrical
and thermal demands, is optimized using an enhanced par-
ticle swarm optimization algorithm. Despite the adaptability
of meta-heuristic methods, their limitations in guaranteeing
globally optimal solutions become more evident as the scale
of the problem increases.

However, our novel application of Mixed-Integer Quadrati-
cally Constrained Programming (MIQCP) with an innovative
scenario generation technique effectively addresses this chal-
lenge. Our approach not only offers a cost-effective solution
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but also increases the system’s robustness, making it particu-
larly suitable for situations like that in Puerto Carreño.

To demonstrate the methodology’s effectiveness, PVs, elec-
trolyzers, and fuel cells are optimally allocated in a weak dis-
tribution grid, defined by its intermittent external connection
and lack of adequate backup generation capacity during con-
tingencies. The objective is to strengthen the grid’s robustness,
minimize costs, and achieve decarbonization goals. The main
contributions are:

1) A new planning methodology for the integration of
photovoltaics coupled with electrolyzers and fuel cells
to improve technical and economical aspects of a weak
distribution grid.

2) A novel approach for representing a high-dimensional
probability distribution with highly representative scenar-
ios.

3) Validation of the methodologies on a real distribution
network in Puerto Carreño, Colombia (see Fig. 1).

The organization of this paper is as follows: Section II
introduces the scenario generation methodology. Section III
covers PV and hydrogen component modeling. The mathe-
matical formulation of the optimization problem is presented
in Section IV, followed by insights from a case study in
Puerto Carreño, Colombia in Section V. Section VI showcases
the results, leading to the conclusion in Section VII. For
a comprehensive overview of the variables and constants,
readers are directed to Appendix A.

II. REPRESENTATIVE SCENARIO GENERATION

In this study, timeseries data are given for active power
load PL

jt and reactive power load QL
jt at node j, ambient

air temperature Tt, and solar irradiance Gt, at time point t.
With this data set a high-dimensional probability distribution,
p(PL

j ,Q
L
j ,T,G) is generated. Monte Carlo Sampling, a tradi-

tional method for drawing random samples from a probability
distribution, is commonly used in stochastic programming
within optimization frameworks. Despite its widespread use,
this method frequently faces the challenge of high variance
in the sampled data. Solving this issue requires a substantial
amount of random samples to achieve an accurate representa-
tion of the original high-dimensional probability distribution,
resulting in significant computational overhead for optimiza-
tion tasks.

This work adopts the Gaussian Mixture Model (GMM) as an
alternative for estimating probability distributions. This tech-
nique utilizes multivariate Gaussian distributions, each defined
by a mean µs and a covariance matrix Σs, to approximate the
original distribution. A detail explanation is available in [14].
Unlike robust optimization, which tends toward conservative
outcomes by focusing on worst-case scenarios, GMM enables
a balanced exploration of possible outcomes, enhancing both
the precision and computational efficiency of the planning
methodology. The mean value µs from each cluster s is
decomposed into the original variables PL

js, QL
js, Ts and

Gs, forming a representative scenario with a corresponding
likelihood based on the number of scenarios the Gaussian

distribution represents. The choice of GMM over K-means
clustering [15] is motivated by its adeptness in fitting ellip-
soidal distributions, a critical characteristic for managing cor-
related variables. In summary, the GMM approach estimates
the original high-dimensional probability distribution using
significantly fewer scenarios, ensuring both computational
efficiency and representational accuracy.

Unforeseen events, like power system component outages,
have a substantial impact on the performance and reliability of
a power system. Such contingency scenarios are represented
by the index w. This notation is used in Section IV to indicate
and manage the components experiencing an outage, by setting
their operating ranges to zero.

III. MODELS

A. RES production (PV generators)

At a specific scenario s, the PV production is influenced by
various factors such as solar irradiance Gs, ambient air tem-
perature Ts, and the type of PV cell model [16]. The PV cell
temperature TPV is determined by (1). The nominal operating
cell temperature (NOCT) is provided by the manufacturer and
is set to 45oC in this study.

TPV = Ts +
NOCT− 20oC

800 W
m2

·Gs (1)

The temperature correction factor, denoted as γTs, is deter-
mined in (2). It depends on the the power variation coefficient
pcoef and the PV cell cell temperature TPV. In this study, pcoef
is assigned a value of −3.5 ·10−3(1/◦C) [17]. This coefficient
causes the term pcoef · (TPV − 25oC ) to be negative when
the cell temperature exceeds the reference cell temperature of
25oC, leading to a reduction in γTs.

γTs = (1 + pcoef · (TPV − 25oC)) (2)

Under standard test condition, the solar irradiance correction
factor, denoted as λGs, is determined using a linear relation-
ship as illustrated in (3) and referenced in [18].

λGs =
Gs

1000 W
m2

(3)

For solar irradiance values Gs exceeding 1000W/m
2, λGs

is capped at 1. The overall efficiency ηPV
s is a product of the

temperature correction factor, solar irradiance correction factor
and the inverter efficiency ηPV

conv, as shown in (4).

ϵPV
s = γTs · λGs · ηPV

conv (4)

The rated power of a PV is then used in conjunction with
the effective power coefficient of the PV, denoted as ϵPV

s , to
determine the true power output for a scenario s. Detailed
values and coefficients used in the PV model are provided in
Section VI under Table (IV).
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B. Power - To - X Technology - PEM Electrolyzer

Several electrolyzer technologies are currently available.
However, according to various authors [18], [19], the Proton
Exchange Membrane (PEM) Electrolyzer stands out as the
most developed and suitable for power system applications
because of the general higher efficiency and the faster response
time. It is important to have a fast response time because of
the dynamic load behaviour and the random power generation
from RESs. Consequently, the model presented in (5) focuses
on this specific technology.

H+
2,jsw =

ηEL

ζH2

· PEL
j,sw = αEL · PEL

j,sw (5)

H+
2,jsw denotes the hydrogen production at a specific node

j, for a given scenario s, and under a particular contingency w,
measured in kilograms (kg). ηEL represents the efficiency of
the electrolyzer. PEL

j,sw is the power input to the electrolyzer.
The time interval is set to 1 hour for this study. ζH2

is the
higher heating value of hydrogen [18].

C. Fuel Cell

The Fuel Cell (FC) is an assembly of individual fuel cells
stacked to a single unit with a higher maximum power output.
For a seamless system integration, the FC in this study will
also adopt the PEM technology. To produce power from the
FC, hydrogen has to be consumed based on (6).

H−
2,jsw =

(
αFC · PFC

j + βFC · pFCjsw
)
· xFCjsw (6)

PFC
j is the FC capacity. The consumption coefficients,

αFC and βFC are derived from the fuel cell’s hydrogen
consumption curve [19]. The variable pFCjsw corresponds to
the FC output power for a node j, scenario s and contingency
w. xFCjsw denotes the operational state of the FC, with a
value of 1 indicating an active state and 0 a deactive state.
The hydrogen consumption, comprises of two components.
The first is a constant value determined by the size of PFC

j ,
the second component increases linearly depending on the
required power output pFCjsw.

IV. OPTIMAL ALLOCATION OF HYDROGEN COMPONENTS
AND PV SYSTEMS

1) Extended Relaxation of Power Flow: Traditionally,
power flow equations are nonlinear. However, by employing
the methodology presented in [20], these equations can be
transformed into a Second Order Cone Programming (SOCP)
framework. This is achieved by squaring the original branch
flow equations, thereby converting the problem into a convex
optimization format.

Given a current Iijsw flowing through a conductor ij and
a voltage Vj at node j, these variables are squared to derive
the new variables lijws and vjsw, as depicted in (7).

lijsw = |Iijsw|2 (7a)

vjsw = |Vjsw|2 (7b)

The relaxed branch flow equations are derived from [20]
and presented in equations (8)–(11).

pGjsw + pFCjsw = PL
jsx

L
jsw + pEL

jsw +
∑

i∈Nfrom(j)

Pjisw

−
∑

i∈Nto(j)

(Pijsw − rij lijsw)
(8)

qGjsw = QL
jsx

L
jsw +

∑
i∈Nfrom(j)

Qjisw

−
∑

i∈Nto(j)

(Qijsw − xij lijsw)
(9)

vjsw = visw − 2(rijPijsw + xijQijsw) + (r2ij + x2ij)lijsw
(10)

lijswvisw ≥ P2
ijsw +Q2

ijsw (11)

The power balancing equations, (8) and (9), have been
expanded to incorporate the power generation from the fuel
cell pFCjs , power consumption of the electrolyzer pEL

js , the
true active and reactive power generation of the PV pGjsw
and qGjsw and the curtailment possibility xLjsw for the active
and reactive load. The equations (8), (9) are defined for all
j ∈ N and equations (10), (11) are defined for all i, j ∈ E.
pGjsw = xGjswx

G
j P

G
j ϵ

PV
s , which combines curtailment xGjsw,

placement decision xGj , capacity PG
j and the effective power

coefficient ϵPV
s of the PV, defined in III-A. The reactive power

has a similar definition with qGjsw = xGjswx
G
j Q

G
jsw.

To make the best use of quadratic programming solvers,
these cubic terms are transformed into quadratic terms. Specif-
ically the product of the generator placement variable xGj
and the generator curtailment xGjsw is substituted by the new
variable wG

jsw, as detailed in [21]. The new relationships are
shown in equation (12), with additional constraints provided
in equations (13)–(15) to ensure valid representation.

pGjs = wG
jswP

G
j ϵ

PV
s (12a)

qGjs = wG
jswQ

G
jsw (12b)

wG
js ≤ xGjs (13)

wG
js ≤ xGj (14)

xGjs + xj − 1 ≤ wG
js (15)

Equations (8) through (15) comprehensively describe the
extended power flow equations.

2) Mixed Integer Quadratically Constrained Programming
Model for Optimal Allocation of Hydrogen and PV Com-
ponents: The objective of the MIQCP problem for optimal
allocation of hydrogen and PV systems is to minimize the
total present value cost of the power system, as depicted in
(16). This total cost encompasses the investment cost (17), the
present value of operation and maintenance (O&M) cost (18),
and a scenario-contingency cost Csw (19), which is weighted
by its probability of occurrence psw. Including present value
cost is vital, as it translates future costs to current values,
aiding in the precise economic assessment of power system
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investments over the project’s lifespan. The discount rate is
set to r = 3%, and the lifespan of all devices is determined to
be Nyears = 20. The detailed breakdown of Csw is provided
from (20)–(22), which includes costs associated with external
grid utilization, diesel fuel consumption, and load curtailment
cost. As shown in equation (20), the distribution grid can
either consume power from the external grid or feed power
back into it at a reduced rate. To ensure the operational logic
of grid interaction is accurately represented, two additional
constraints, designated as equations (23a) and (23b), are
introduced. Alongside the binary variable bsw, which indicates
the direction of power flow, these constraints incorporate PEG,
the maximum power capacity for transactions with the external
grid. This approach is commonly known in operations research
as the big M method.

Equation (16) is minimized subject to the extended power
flow equations (8)–(15) and the constraints (23a)–(34). (25)–
(28) are defined for all nodes. These constraints include current
limits through lines (24) and voltage limits (25). Equations
(26) and (27) detail the hydrogen production and consump-
tion dynamics of the electrolyzer and fuel cell, respectively.
Although our probabilistic approach eliminates the temporal
correlations, it is not directly suitable for optimizing the size
of the hydrogen tanks due to their time-dependent state. While
the tank size can be determined post hoc, it is not the primary
focus of this study. To ensure a balance between hydrogen
production and consumption, (28) is incorporated. Component
size constraints are outlined in (29). Notably, PG

j has a lower
bound PG

min to prevent the allocation of inordinately small
PVs. Such PVs might be used solely for leveraging the in-
verter to control node voltage, thereby influencing the reactive
power flow QG

jsw. Operational constraints for the fuel cell and
electrolyzer are provided in (30). Similarly, operational limits
for the external grid and diesel generators are detailed in (31),
with the matrix (35) dictating the activation or deactivation of
generator functionalities in response to contingencies.

min

Cinv +COM +

Nyears∑
t=1

Nspan

(1 + r)t
·
∑
w∈W

∑
s∈S

pswCsw


(16)

Cinv = cGinv
∑
j∈NG

xjP
G
j + cFCinv

∑
j∈NH2

PFC
j + cEL

inv

∑
j∈NH2

PEL
j (17)

COM =

Nyears∑
t=1

1

(1 + r)t
·

cGOM

∑
j∈NG

xjP
G
j + cFCOM

∑
j∈NH2

PFC
j

+ cEL
OM

∑
j∈NH2

PEL
j


(18)

Csw = CEG,sw +CDiesel,sw +CL
curl,sw (19)

CEG,sw = cEG · pG0sw · bsw + 0.7 · cEG · pG0sw · (1− bsw)
(20)

CDiesel,sw = cDiesel

∑
k∈NDiesel

pGksw (21)

CL
curl,sw = cLcurl

∑
j∈NL

(1− xLjsw)P
L
js (22)

PG
0sw ≤ PEG · b (23a)

PG
0sw > −PEG · (1− b) (23b)

lijsw ≤ lij ∀ (i, j) ∈ E (24)

v ≤ vjsw ≤ v (25)

H+
2,jsw = αEL · pEL

jsw (26)

H−
2,jsw =

(
αFC · PFC

j + βFC · pFCjsw
)
· xFCjsw (27)∑

w∈W

∑
s∈S

psw ·H+
2,jsw =

∑
w∈W

∑
s∈S

psw ·H−
2,jsw (28)

PG
min ≤ PG

j ≤ PG
max ∀j ∈ NG (29a)

0 ≤ PEL
j ≤ PEL

max ∀j ∈ NH2
(29b)

0 ≤ PFC
j ≤ PFC

max ∀j ∈ NH2 (29c)

0 ≤ pFCjsw ≤ PFC
j xGjsw (30a)

0 ≤ pEL
jsw ≤ PEL

j (30b)

−PEG · aw0 ≤ pG0sw ≤ PEG · aw0 (31a)
0 ≤ pG1sw ≤ PG1 · aw1 (31b)
0 ≤ pG2sw ≤ PG2 (31c)
0 ≤ pG3sw ≤ PG3 · aw2 (31d)
0 ≤ pG4sw ≤ PG4 (31e)
0 ≤ pG5sw ≤ PG5 · aw3 (31f)

pGjsw = qGjsw = 0 ∀j ∈ N \ (NG ∩Nslack) (32)

xLjsw = 1 ∀j ∈ N \NL (33)

xGjsw,w
G
jsw, x

G
j ∈ {0, 1} ∀j ∈ NG (34a)

xLjsw ∈ {0, 1} ∀j ∈ NL (34b)
xFCjsw ∈ {0, 1} ∀j ∈ NH2

(34c)

A =

1 1 1 1
0 1 1 1
0 0 1 1
0 1 0 1
0 1 1 0

 (35)

Finally, Table I outlines the sizing limits for PV and
electrolyzers, voltage constraints, and generator capacities.

TABLE I: Limits of decision variables and generator capacities
Variable Limit

PG
min, PG

max[kW] 200, 4000

PEL
max, PFC

max [kW] 2000

v, v [pu] 0.81, 1.21

PEG, PG1 [kW] 4300, 1250

PG2, PG3 [kW] 1000

PG4, PG5 [kW] 600
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Fig. 1: Power grid of Puerto Carreño.

V. CASE STUDY

This case study focuses on a real distribution grid in Puerto
Carreño, a remote city in Colombia near the Venezuelan
border. The city’s connection to the external grid is weak due
to its significant distance from Venezuela and ongoing political
issues. The grid’s transformers are often operating close to
their capacity limits, and the backup Diesel Generators (DGs)
are insufficient to meet peak demand during contingencies.
These challenges highlight the vulnerabilities of the power
system. As depicted in Fig. 1, Puerto Carreño’s power grid
comprises three feeders at the 13.2kV medium voltage level,
dividing the grid into smaller subsystems. While Feeder #1 is
detailed comprehensively, Feeders #2 and #3 are represented
as significant loads. These feeders converge to the main bus
N0, which is connected to the external grid N0.0 and five DGs
(N0.1−N0.4). The grid supports 44 loads across 50 buses.
This study leverages load time series from March and July
2019, representing sunny and rainy seasons respectively, with
data sourced from [22]. Each month includes 744 hourly steps,
extended across corresponding seasons to form an annual load
series, merged with solar irradiance and temperature data to
develop a high-dimensional probability distribution without a
reactive load component (as referenced in Section II). From

this, 20 representative samples are extracted for optimization,
detailed in Section IV. Fig. 2 illustrates a segment of this
distribution, focusing on temperature and solar radiation, and
incorporates these 20 representative scenarios with their oc-
currence probabilities. Fig. 3 shows the distribution of ϵPV ,
highlighting lower solar radiation probabilities at night and a
wider spread of positive values in daylight, demonstrating the
influence of solar altitude and cloud cover on solar energy
availability.
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Fig. 2: Temperature and Solar Radiation Distribution.
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Fig. 3: Probability Distribution of total PV System Efficiency
including weather conditions.

A. Contingency Scenarios
The study considers three distinct contingency scenarios:
1) Scenario 1: Normal Operation Mode: Both the external

grid and all DGs are active and interconnected.
2) Scenario 2: External Grid Omission (N-1 criteria):

While the external grid is disconnected, all DGs remain
operational. Historical data determines the probability of an
external grid contingency. On average, outages last about 84h
each month, which translates to a 11.29% downtime.

3) Scenario 3: External Grid and Single Diesel Generator
Omission (N-2 criteria): This scenario contemplates a situa-
tion where there is an external grid failure, and concurrently,
a DG is undergoing maintenance (labeled as G1-G5 in Fig.
1). Each DG undergoes maintenance for one week every six
months, resulting in a maintenance probability of 3.84%. It
is worth noting that generators G2 and G3, as well as G4
and G5, have the same capacity. Including all five potential
outages would expand the optimization problem excessively.
Therefore, only generators G1, G3, and G5 are considered
for outages, with G3 and G5 having a doubled outage prob-
ability. The cumulative probability of an external grid failure
occurring simultaneously with a DG maintenance is 0.434%.
Despite the low likelihood of this contingency distribution-
scenario, the operational DGs would be insufficient to meet
demand, leading to expensive load curtailments. The costs
associated with investment and O&M for each technology
are detailed in Table II. Additional cost data can be found
in Table III. Comprehensive technical parameters for every
component are provided in Table IV. Given the significant
water requirements of electrolyzers, certain nodes illustrated
in Fig. 1 have been identified as potential candidate nodes for
hydrogen components due to their closeness to water sources
such as rivers or flood zones. Additionally, ten loads are
designated as critical, meaning load curtailment is not possible
for them. A summary of these candidate nodes are provided in
Table V. To verify the correctness of the methodology and to
evaluate the benefits of integrating PVs with hydrogen, three
different configurations were examined:

1) No components installed.
2) Installation of PVs only.
3) Installation of PVs, electrolyzers and fuel cells.

TABLE II: Investment, Operative (O) and Maintenance cost
[18], [23]

Component Investment cost O & M

PV system [$/kW] 1002 22.5

Fuel Cell [$/kW] 3000 97.5

Electrolyzer [$/kW] 2000 132.0

TABLE III: Additional cost information [22], [24]
Description Cost

Diesel Fuel [$/kWh] 0.37

Load Curtailment [$/kWh] 3.30

Energy from External Grid [$/kWh] 0.19

TABLE IV: Technical parameters [17], [18], [19]
Component Factor Value

PV system NOCT[oC] 45

PV system ηPV
conv 0.95

PV system pcoef [10
−3/oC] −3.5

Electrolyzer ηEL 0.76

Electrolyzer ζH2
[kWh/kg] 40.27

Fuel Cells αFC[kg/kWh] 0.004

Fuel Cells βFC[kg/kWh] 0.050

DGs (All) Consumption [L/kWh] 0.17

TABLE V: Nodes for critical loads and candidates for elec-
trolyzer allocation

Candidate Node Information

N13, N18 Close to a small river

N20 Close to a flood zone

N37, N38, N39, N40, N41 And N42 Close to a big river

L7, L10, L11, L15, L16, L20, L26, L27, L28, L29 Critical loads

N0, N3, N7, N11, N18, N37, N25, N36, N40, N41 Generator nodes

VI. RESULTS AND DISCUSSIONS

Figure 4 illustrates the costs associated with each of the
three configurations, encompassing both the investment cost
and the O&M costs for the whole power system over a 20-year
period. Notably, the absence of both PVs and hydrogen devices
results in the highest expenses: 11.01M$ for load curtailment,
112.06M$ for external grid power, and 33.66M$ for diesel
fuel consumption.

In contrast the second configuration slashes costs signif-
icantly: 3.35M$ for load curtailment, 57.05M$ for external
grid power, and 17.28M$ for diesel fuel consumption. This
underscores the competitive advantage of PV installation,
attributed to its low investment and O&M costs, leading to
not only cost savings but also a reduction in CO2 emissions.
Incorporating both PVs and hydrogen components into the
system achieves the most cost-effective outcome. The expenses
for load curtailment, external grid power, and diesel fuel con-
sumption were reduced to 0.12M$, 56.76M$, and 15.05M$,
respectively.

It is important to highlight that the proposed planning
methodology offers benefits extending beyond just cost re-
duction. Even though the optimization does not account for
hydrogen infrastructure such as hydrogen tanks or networks,
which may potentially lead to unforeseen additional costs, the
integration of electrolyzers and fuel cells still shows significant
advantages. For example, while a PV-only configuration deliv-
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Fig. 4: Various costs of the three configurations.

ers respectable cost-related outcomes, incorporating hydrogen
components enables a more extensive penetration of renewable
energy sources. Furthermore, integrating PVs with hydrogen
components enhances the resilience of the weak distribution
grid, diminishing load curtailments. This improvement is
clearly demonstrated by the reduced load curtailment costs
shown in Fig. 5. The figure illustrates the third contingency
scenario, depicting the simultaneous outage of an external grid
and one diesel generator across different configurations.
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Fig. 5: Load curtailment costs for different contingency cases.

The PV-hydrogen configuration consistently assures the
most minimal load curtailment costs, hitting a low of 0.0M$
for outages involving diesel generators of 1MW and 0.6MW.
Only in the case of the largest generator outage of 1.25MW,
a minor curtailment cost of 0.15k$/h occur, marking a
substantial 96% reduction compared to the no-installation
configuration.

In conclusion, Table VI enumerates the locations and sizes
of the PVs for both the PV-only and PV-hydrogen config-
urations. It is noteworthy that the planning approach, when
dependent exclusively on PVs, tends to allocate larger units
near the external grid. Concurrently, Table VII provides de-
tailed information about the fuel cells and electrolyzers for
the third configuration. This data underscores the strategic and
distributed placement in the combined PV-hydrogen configu-
ration, where PVs, electrolyzers, and fuel cells are not only
closely positioned but also scattered throughout the power
grid, enhancing the grid’s resilience and efficiency.

VII. CONCLUSION

In the evolving landscape of power grid planning, the inte-
gration of RESs and Hydrogen Energy Systems (HESs) offers

TABLE VI: Optimal Power and placement of PVs
Node P[kW] - Only with PV P[kW] - PV and H2

N0 2305 2586

N3 3601 0

N7 0 0

N11 1453 0

N18 0 2991

N37 200 1578

N25 0 0

N36 1077 0

N40 0 1638

N41 0 200

TABLE VII: Optimal Power and placement of H2

Node P[kW] - Electrolyzer P[kW] - Fuel Cell

N13 0 0

N18 95 186

N20 0 0

N37 0 0

N38 162 340

N39 0 0

N40 0 0

N41 97 131

N42 0 0

a promising avenue for enhancing grid reliability, especially
in weak distribution networks. Our study in Puerto Carreño,
Colombia, underscores the potential of RESs and HESs in-
tegration to overcome power supply issues. By incorporating
our representative scenario generation, which utilizes Gaussian
Mixture Model, the high-dimensional probability distribution
was represented by a small number of highly representative
scenarios. This represent both, computational efficiency and
representational accuracy for the solution of the planning
problem. Subsequently, a novel planning methodology was
introduced in which the optimal allocation problem, coupled
with curtailment options, was reformulated into a MIQCP
model and solved global optimal. Our findings reveal that
load curtailment costs can be significantly reduced through
strategic placement of PV alone and when PV is combined
with elecrolyzer and fuel cell. Notably, while the combination
of PV and hydrogen components yielded the lowest cost, the
optimization of hydrogen storage was not addressed, indicating
potential cost increase that future research should address.
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APPENDIX

A. Symbols
Sets:

E,N, S,W Respectively, sets of connections, nodes, scenarios
and contingencies

NL,NG,NH2 Sets of load curtailment candidates, generator can-
didate nodes, and hydrogen candidate nodes

Constants:
Nspan,Nyears Number of time points in one year (8760 = 365·24),

and number of years for O&M (20 years)
αFC, βFC Consumption coefficients of fuel cell (kg/kW)
αEL Production coefficient of electrolyzer (kg/kW)
ϵPV
s Effective power coefficient of PV
cGinv, c

FC
inv, c

EL
inv Investment costs of PV, FC, and EL ($/kW)

cGOM, cFC
OM, cEL

OM O&M costs of PV, FC, and EL ($/kW)
cDiesel, c

L
curl Diesel fuel cost and load curtailment cost ($/kW)

Gs,Ts Solar irradiance [W/m2], and temperature [°C]
rij , xij Resistance, and reactance of circuit ij [Ω]
PL

js,Q
L
js Active and reactive power load [kW, kVar]

ηEL, ζH2 Electrolyzer conversion efficiency, and higher heat-
ing value of hydrogen.

v, v Min/max voltage squared magnitude [p.u.]
lij Maximum squared current through line ij [kA2]
PG

min,P
G
max Minimum and maximum sizes of PV [kW]

PEL
max,P

FC
max Maximum sizes of EL and FC [kW]

r Discount rate

Variables:
H+

2,jsw,H
−
2,jsw Hydrogen production and consumption

Pij ,Qij , lij Active power flow, reactive power flow, and squared
current flow in ij [kW, kVar, kA2]

PG
j ,P

FC
j ,PEL

j Sizes of PV, fuel cell, and electrolyzer [kW]
pEL
jsw, p

FC
jsw EL consumption and FC production [kW]

pG
jsw, q

G
jsw Active and reactive power of PV injected at node j

at node j [kW, kVar]
QG

jsw Reactive power of PV [kVar]
xL
jsw, x

G
jsw Binary variables for load and PV curtailment

xFC
jsw Binary variable for fuel cell activation

wG
jsw Ancillary variable for PV curtailment

xG
j Binary variable for PV placement

bjsw Binary variable for external grid power direction
ϵPV Random variable for the effective power coefficient

of the PV

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

https://doi.org/10.1109/ACCESS.2021.3101419
https://doi.org/10.1109/ACCESS.2021.3101419
https://doi.org/10.1016/j.apenergy.2021.117108
https://doi.org/10.1007/s42979-023-02003-9
https://doi.org/10.1007/s42979-023-02003-9
https://doi.org/10.1109/TSG.2021.3084935
https://doi.org/10.1109/TSG.2021.3084935
https://doi.org/10.1016/j.rser.2021.111730
https://doi.org/10.1016/j.rser.2021.111730
https://doi.org/10.1007/s12667-021-00464-6
https://www.mdpi.com/1996-1073/14/20/6594
https://www.mdpi.com/1996-1073/14/20/6594
10.3390/en14206594
https://doi.org/10.1016/j.apenergy.2019.114188
https://doi.org/10.1016/j.apenergy.2019.114188
https://doi.org/10.1016/j.apenergy.2023.120787
https://doi.org/10.1016/j.apenergy.2023.120787
https://doi.org/10.1016/j.egyr.2023.05.215
https://doi.org/10.3390/app12199903
https://doi.org/10.1016/j.jclepro.2023.138531
https://doi.org/10.1016/j.jclepro.2023.138531
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1109/ICPES.2016.7584179
https://doi.org/10.1016/j.solener.2015.03.004
https://doi.org/10.1016/j.est.2021.103406
https://doi.org/10.1016/j.enconman.2018.11.079
https://msi-jp.com/xpress/learning/square/10-mipformref.pdf
https://msi-jp.com/xpress/learning/square/10-mipformref.pdf
https://ipse.gov.co/cnm/informe-mensuales-telemetria/
https://doi.org/10.1016/j.apenergy.2023.120709
https://doi.org/10.1016/j.apenergy.2023.120709
https://www1.upme.gov.co/DemandayEficiencia/Paginas/costos-de-racionamiento.aspx
https://www1.upme.gov.co/DemandayEficiencia/Paginas/costos-de-racionamiento.aspx

	Introduction
	Representative scenario generation
	Models
	RES production (PV generators)
	Power - To - X Technology - PEM Electrolyzer
	Fuel Cell

	Optimal Allocation of Hydrogen Components and PV Systems
	Extended Relaxation of Power Flow
	Mixed Integer Quadratically Constrained Programming Model for Optimal Allocation of Hydrogen and PV Components


	Case Study
	Contingency Scenarios
	Scenario 1: Normal Operation Mode
	Scenario 2: External Grid Omission (N-1 criteria)
	Scenario 3: External Grid and Single Diesel Generator Omission (N-2 criteria)


	Results and Discussions
	Conclusion
	References
	Appendix
	Symbols


