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Abstract—This paper presents a model for optimizing the
management of a Li-Ion battery in a microgrid, considering the
presence of nonlinear losses during the charging and discharging
processes. The paper examines the nature of these losses and
proposes updated nonlinear expressions that depend on the
state of charge and on the charging or discharging power.
The piecewise linear approximations of the losses bivariate
functions are implemented using the novel integer zig-zag (ZZI)
formulation. The corresponding ZZI constraints are integrated
into an optimization model to determine the optimal schedule
for a residential isolated microgrid comprising a solar panel, a
diesel generator, and a Li-Ion battery. The case study compares
different triangulation strategies regarding their impact on the
quality of the obtained solution and the computational burden.

Index Terms—Energy management system, microgrid, non-
linear losses, steady-state, zig-zag.

NOMENCLATURE

For the sake of simplicity, this nomenclature omits all terms
specific to the ZZI formulation, which will be elaborated upon
in section III.

A. Sets

t ∈ T time periods {1 to T}

B. Parameters

Dt Demand at each time period t, [kW]
∆t Duration of each time period t, [h]
a, b, c Quadratic, linear, and constant terms of the diesel

cost function, [e/h/(kW)2], [e/kWh], [e/h]
Eo Initial energy stored at the battery, [kWh]
P

d
Maximum capacity of the diesel generator, [kWh]

P
disc

Maximum discharge power of the battery, [kW]
P

cha
Maximum charge power of the battery, [kW]

E, E Maximum and minimum stored energy [kWh]
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C. Variables

et Energy stored at the end t [kWh]
pchart Power consumed by the battery in t [kW]
pdisct Power generated by the battery in t [kW]
pchaloss,t Power losses when charging in t [kW]
pdiscloss,t Power losses when discharging in t [kW]
ppvt Power produced by the PV panel in t [kW]
ppnst Non-served power in period t [kW]
ud
t Commitment of the diesel generator in t {0,1}

udisc
t Battery discharge decision in t {0,1}

ucha
t Battery charge decision in t {0,1}

I. INTRODUCTION

Li-Ion batteries are expected to play a crucial role in the
decarbonization of the electric power industry due to their
ability to store electricity efficiently and provide a reliable and
flexible power source. The optimal operation of a battery can
be obtained by solving a mathematical programming problem
considering as decision variables the power that can be charged
or discharged and the level of energy stored at any given
moment. In this sense, from the optimization point of view,
one of the challenges is the presence of non-linear losses
during both the charging and discharging processes. This paper
presents a battery optimization model considering non-linear
losses. This is achieved by means of the general integer zig-
zag (ZZI) formulation proposed in [1] that provides an efficient
non-convex piecewise linear approximation of univariate and
bivariate functions. In particular, the loss functions are ex-
pressed in terms of the State of Charge (SoC) and the power
charged/discharged, and this approach improves the accuracy
of the results while significantly reducing the computational
burden compared to other mixed-integer linear programming
techniques. To illustrate the application of this method, an
optimization model of a microgrid has been implemented
as in these installations, the optimal battery management is
essential for achieving an efficient operation [2]. The main
contributions of this paper are the following: First, the paper
provides updated non-linear expressions to approximate the
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charging and discharging losses of Li-ion batteries that can be
used in steady-state analyses for the energy management of
a microgrid. Second, the novel ZZI technique is proposed to
approximate those losses by accurate and efficient piecewise
linear approximations that can be embedded in optimization-
based models. Finally, a comparison of different triangulation
strategies is provided.

The paper is organized as follows: Section II proposes
the nonlinear expressions for the loss functions. Section III
explains the ZZI method. Section IV presents the optimization
model of a microgrid considering the mentioned nonlinear
losses. In Section V, the case study is presented, and finally,
Section VI summarizes the most relevant conclusions.

II. EXPRESSIONS OF BATTERY LOSSES

A. Non-linear behavior of the battery

Batteries are highly complex systems, and their modeling
should balance accuracy and computational efficiency. In [3], a
review is presented on the various alternatives available in the
literature to model Li-Ion batteries. [4] is a classical paper that
presents an equation that describes the discharge behavior of
a battery that is deduced by analyzing the cathode and anode
potential during the discharge process, assuming that both
electrodes have porous active materials, that the electrolyte
resistance is constant, that the cell is discharged at a constant
current, and that the polarization is a linear function of the
active material current density:

Vbatt = Eo −R · i−K
Q

Q− it
i+A · e−B· itQ (1)

where Vbatt (V) is a time-dependent variable that expresses
the voltage between the terminals of the battery, Eo (V) is
the constant potential of the cell (sum of the corresponding
terms for the anode and cathode) that could be interpreted
as the open-circuit battery voltage if the exponential term
were disregarded, R (Ω) is the internal resistance, i (A) is the
current withdrawn from the battery, K (Ω) is the polarization
coefficient, Q (A·h) is the amount of available charge, it (A·h)
is the amount of charge that has been obtained from the battery
at time t measured since the moment that the discharge started,
and A (V) and B (dimensionless) are empirical constants to
model the initial exponential drop expressed in the last term
of (1). In posterior papers, the exponential term is expressed
as A · e−B·it, and therefore the units of B are (A·h)−1. The
empirical values of Eo, K, Q, R, A, and B can be determined
by fitting the equation numerically to discharge data obtained
through experiments.

In [5], the authors take as a starting point a similar equation
as (1), but introduce some improvements to consider the
varying nature of the current: it =

∫ t

0
i · dt.

In this case, the obtained expression for the Li-Ion battery
discharge process is the following one, where the current
satisfies that i > 0:

V disc
batt = Eo −R · i−K

Qm

Qm − it
(it+ i∗) +A · e−B·it (2)
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Fig. 1. Simulated example of charge and discharge cycles of a Li-Ion battery.

where the term i∗ (A) is the low-pass filtered current flowing
through the polarisation resistance that helps to carry out the
numerical simulations with a typical value of the time constant
equal to τ = 10 s, Qm (A·h) represents now the maximum
battery capacity, and the coefficient B ((A·h)−1) has been
adapted from (1) taking into account the value Qm.

In addition, based on [5], the resulting expression for
the charging process is the following one where the current
satisfies that i < 0:

V char
batt = Eo−R·i−K

Qm

Qm − it
it−K

Qm

it+ 0.1 ·Qm
i∗+A·e−B·it

(3)
Notice that in (3), the polarisation resistance is shifted by
about 10% of the capacity of the battery to reflect experimental
results when the battery is fully charged (it = 0).

Let us define the polarization resistance Rpol as follows:

Rpol(i) =

{
K Qm

Qm−it if i > 0

K Qm

it+0.1·Qm
if i ≤ 0

(4)

Then, the general expression for Vbat valid for both the
charging and discharging processes is the following one:

Vbatt = Eo −R · i−Rpoli
∗ −K

Qm

Qm − it
it+A · e−B·it (5)

These expressions have been tested with the battery model
from the Simscape Electrical™, Specialized Power Systems
Library, [6]. The voltage of the battery under controlled current
(-2, 0, +2 A) is shown in the first subplot of Figure 1, along
with the resulting (SoC) starting at 50%. In this example, a
minimum discharge value of 20% was set to stop the discharge
process, with a delay of 15 minutes between both the charging
and discharging processes where the current is null.

Instead of modeling the polarization resistance in terms of
it, working directly with the SoC may be more convenient. Let
us define the SoC as the ratio between the stored charges in a
particular moment and the maximum capacity. Assuming that
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initially the battery is fully charged, the following expression
can be applied:

SOC =
Qm −

∫ t

0
i · dt

Qm
=

Qm − it

Qm
(6)

yielding to:
it = Qm(1− SOC) (7)

B. Losses in terms of the current

When current flows through the battery’s internal resistance,
some electrical energy is converted into heat due to the Joule
effect. This heat leads to a loss of energy in the battery and
can cause the battery to heat up. In addition, during charging
and discharging, a series of complex electrochemical reactions
occur in the battery’s electrodes and the electrolyte. As these
reactions are not 100% efficient, a small amount of energy
is lost as heat. To illustrate this phenomenon, one can assess
the product of the battery current and each of the four terms
constituting the voltage drop across the battery obtained from
(5):

(Eo − Vbatt)i = R · i2︸ ︷︷ ︸
Term1

+Rpol · i∗ · i︸ ︷︷ ︸
Term2

+ (
Qm

Qm − it
it)i︸ ︷︷ ︸

Term3

− (A · e−B·it)i︸ ︷︷ ︸
Term4

(8)

In Figure 2, the temporal evolution of each of the four
terms is displayed. The first term represents the Joule losses
within the battery’s internal resistance. The battery begins
with an initial state of charge (SOC) of 50% and charges
until it reaches its maximum capacity. Subsequently, there is
a 15-minute waiting period, followed by discharge until the
SOC reaches 20%. After another 15-minute wait, this pattern
repeats consistently. During both the charging and discharging
processes, the power associated with the first term remains
consistently positive, signifying losses as expected within a
resistance with a constant value. This results in a square wave
in the dissipated power. A similar phenomenon occurs with
the second term; however, in this case, since the polarization
resistance depends on the SOC, the instantaneous losses also
vary over time while remaining consistently positive. Con-
versely, the third and fourth terms exhibit a pattern alternating
between positive and negative power.

This paper proposes not to include terms 3 and 4 in the
loss function, and therefore, the proposed expression of the
instantaneous battery losses is the one shown in (9):

ploss ≈ R · i2︸ ︷︷ ︸
Term1

+Rpol · i∗ · i︸ ︷︷ ︸
Term2

(9)

The time intervals for collecting and analyzing time series
data can vary depending on the application and system require-
ments. In a stationary battery system, the Energy Management
System (EMS) can use periods of several minutes to monitor
the state of charge and discharge, as well as other factors
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Fig. 2. Simulated example of charge and discharge cycles of a Li-Ion battery.

such as temperature and ambient conditions. Thus, for the
EMS problem in which transient effects are disregarded and a
steady-state approach is employed, the filtered current can be
assumed to be equivalent to the average steady-state current
in the considered discrete time period. Denoting as I [A] the
average current in such interval of time, then the corresponding
average losses can be expressed as follows:

ploss = (R+Rpol) · I2 (10)

Taking into account the expressions in (4) and (7), the
expressions of the losses [kW] proposed in this paper for the
battery discharge and charge losses are the following ones:

pdiscloss,t = 10−3(R+
K

soct
)I2 (11)

P char
loss = 10−3(R+

K

1.1− soct
)I2 (12)

C. Losses in terms of the power

Assuming that the battery power is expressed in [kW], and
denoted by Vr (V) the rated battery voltage, the current can
be approximated as follows:

I ≈

{
+103 Pdisc

Vr
if discharge

−103 P char

Vr
if charge

(13)

This allows us to express the losses of the battery as shown in
the expressions (14) and (15), which have a quadratic behavior
for the power and hyperbolic for the SoC:

pdiscloss,t = 103(R+
K

soct
)(
pdisct

Vr
)2 (14)

pcharloss,t = 103(R+
K

1.1− soct
)(
pchart

Vr
)2 (15)

Notice that expressions (14) and (15) differ from the expres-
sions presented in [7] in equations (13) and (14). The reasons
for such discrepancies are twofold. First, the empirical 10%
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correction explained previously in (3) leads to a denominator
in one of the terms of the charging case equal to 0.9 − soc
instead of 1.1 − soc. This issue is later corrected in [8] that
uses the proposed denominator 1.1− soc that is also coherent
with the expressions used in the battery library available in
[6]. Second, when the authors of [7] obtain the expressions
in terms of power instead of current, they consider Term 3
in (8) as losses. This issue is also inherited in paper [8], see
equations (1) and (2). Consequently, the losses estimated in
the numerical simulations carried out in those papers might
be overestimated.

In any case, although this paper uses the expressions of the
losses (14) and (15), the method proposed here is entirely
general and would allow approximating any nonlinear loss
function as long as it exhibits a dependency on two variables
(power and SoC in this case), as the Zig-Zag method is limited
to univariate or bivariate functions.

III. INTEGER ZIG-ZAG FORMULATION

The approximation of non-linear and non-convex functions
by piecewise linear functions is common in operations research
applied to real-world problems. A popular approach was first
presented in [9], and according to [10], it is the most common
method available in the literature. The basic idea is to split
the entire domain of two independent variables into non-
overlapping triangles. Then, auxiliary binary variables are used
to ensure that only one triangle is active at a time. This
formulation, referred to as C-K1, has been included in the
appendix and will be used as a benchmark in the study case.

In recent years, more efficient formulations have been
proposed. For instance, [11] introduces a formulation for
piecewise linear functions of one and two variables that use a
number of binary variables and extra constraints logarithmic
in the number of linear pieces of the functions, and they prove
that the new formulations have favorable tightness properties
that result in better computational performance than other
mixed integer binary formulations. Later on, the binary and
integer zig-zag formulations (ZZB and ZZI, respectively) were
proposed in [1], providing an efficient non-convex piecewise
linear approximation of univariate and bivariate functions.

According to the numerical results of [1] and [12], where
this technique is applied successfully to model net-head hydro
units, ZZI outperforms ZZB. For that reason, this method
is summarized hereafter to understand its applicability for
modeling the non-linear losses of the battery.

A. ZZI mathematical formulation

Let z = f(x, y) be a continuous non-linear bivariate
function (it can be non-convex), defined over the domain
[x, x]×[y, y]. The function f(x, y) can be piecewise linearized
by performing a triangulation of the domain over which the
function is defined and imposing that for points lying in
between any given triangle, the function is approximated by
the linear combination of its three vertices. The first step is
to build the triangular mesh. This can be achieved by creating
a rectangular grid where the x and y domains are discretized

in n + 1 and m + 1 values: x̂i,∀i ∈ I = {1, · · · , n + 1}
and ŷj ,∀j ∈ J = {1, · · · ,m + 1}. Thus, the x-axis is split
into n intervals, and the y-axis is split into m intervals. Then,
it is necessary to define the triangles. Given a rectangle, it
is possible to define four possible triangles resulting from
connecting the opposed vertices by a diagonal (southwest to
northeast) or by an anti-diagonal (southeast to northwest). For
instance, anti-diagonal connections have been used in Figure
3, while both diagonal and anti-diagonal connections appear
in the Union-Jack triangulation shown in Figure 4.

In order to compute the linear combination of the triangle
vertices, let’s define the continuous variables θi,j ∈ [0, 1]
as the weights used to compute the convex combination.
Assuming that only tree adjacent vertices can have a value
of θi,j different from zero (which will be ensured later on by
a set of additional constraints), the convex combination can
be obtained as shown in (16):

x =
∑
i∈I

∑
j∈J

θij · x̂i (16a)

y =
∑
i∈I

∑
j∈J

θij · ŷj (16b)

z =
∑
i∈I

∑
j∈J

θij · f(x̂i, ŷj) (16c)∑
i∈I

∑
j∈J

θij = 1 (16d)

0 ≤ θij ≤ 1 ∀i ∈ I, ∀j ∈ J (16e)

Let’s denote column a particular index i ∈ I and row a
particular index j ∈ J . The intuitive idea of this method
is to ensure that the values of θi,j can only assume non-
zero values for two adjacent columns and two adjacent rows.
This is known as a special ordered set of type 2 (SOS2)
constraints, and among the SOS2 formulations available in
the literature, the zig-zag method is very efficient from the
computational perspective. The application of the zig-zag
method to uni-variate functions requires to build previously
the integer encoding matrix Cν with dimension (d×ν) where
ν is a positive integer and d = 2ν . The recursive expression
(17) presented in ([1]) can be used to build this matrix for any
value of ν, taking into account that Cν

d is a row vector obtained
by extracting the d-th row from matrix Cν , C1 = (0, 1)T , and
0d and 1d are column vectors with dimension d filled with
zeros and ones respectively.

Cν+1 =

(
Cν 0d

Cν + 1d · Cν
d 1d

)
(17)

The expression (17) can be used to build the two matrices
needed for the bivariate functions: Cs to formulate the SOS2
constraints that ensure that only two adjacent columns are
active and Cr to formulate the SOS2 constraints that ensure
that only two adjacent rows are active. The values of s and r
depend on the size of the selected grid and can be computed as
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Fig. 3. 8× 8 grid with the K1 triangulation pattern.

follows using the ceil function (⌈a⌉:= smallest integer greater
or equal than a): s = ⌈log2(n)⌉, and r = ⌈log2(m)⌉

Once the four vertices of the rectangle defined by the two
active columns and the two active rows of the grid have
been selected, the next step is to select a triangle among
the ones that can be formed in that rectangle. Therefore, the
whole triangle selection process can be broken down into
three groups of constraints: 1) adjacent columns selection, 2)
adjacent rows selection, and 3) triangle selection.

1) Adjacent columns selection: It is necessary to define the
integer variable ζcolg ∈ Z where g is an auxiliary integer index
and to apply the constraints shown in (18) ∀g ∈ [1, s]Z:

∑
i∈I

Cs
i−1,g

∑
j∈J

θij

 ≤ ζcolg ≤
∑
i∈I

Cs
i,g

∑
j∈J

θij

 (18a)

0 ≤ ζcolg ≤ 2s−g (18b)

Notice that in (18) Cs
i,j represents the element (i, j) of the

matrix, and it has been assumed that Cs
0 ≡ Cs

1 , and Cs
n+1 ≡

Cs
n for notation simplicity.
2) Adjacent rows selection: Analogously, it is necessary to

define the integer variable ζrowk ∈ Z where k is an auxiliary
integer index and to apply the constraints shown in (19) ∀k ∈
[1, r]Z. In this case, it is also assumed that Cr

0 ≡ Cr
1 , and

Cr
m+1 ≡ Cr

m.

∑
j∈J

Cr
j−1,k

(∑
i∈I

θij

)
≤ ζrowk ≤

∑
j∈J

Cr
j,k

(∑
i∈I

θij

)
(19a)

0 ≤ ζrowk ≤ 2r−k (19b)

3) Triangle selection: Once the four vertices of the active
rectangle have been selected, the selection of one unique
triangle can be achieved by different methods. In case the
K1 triangulation is chosen, then equations (20) and (21) must
be considered, where it is necessary to define the binary
variables z1 and z2. In the case of choosing the union-jack
triangulation, only one binary variable is required, and the
required constraints are the ones shown in (22) and (23).

Fig. 4. 8× 8 grid with the J1 triangulation pattern.

∑
(i,j)∈S1

θi,j ≤ z1
∑

(i,j)∈S2

θi,j ≤ 1− z1∑
(i,j)∈S3

θi,j ≤ z2
∑

(i,j)∈S4

θi,j ≤ 1− z2

z1, z2 ∈ {0, 1}

(20)

S1 = {(i, j) : i+ j ≡ 2 mod 4}
S2 = {(i, j) : i+ j ≡ 0 mod 4}
S3 = {(i, j) : i+ j ≡ 1 mod 4}
S4 = {(i, j) : i+ j ≡ 3 mod 4}

(21)

∑
(i,j)∈S1

θij ≤ z1
∑

(i,j)∈S2

θij ≤ 1− z1 (22)

z1 ∈ {0, 1}

S1 = {(i, j) : i is even and j is odd}
S2 = {(i, j) : j is even and i is odd}

(23)

IV. MODEL

A. Objective function

The objective function (24) is to minimize the sum for all
the periods of the diesel generation cost plus the possible non-
served energy cost:

min
∑
t

[a · (pdt )2 + b · pdt + c · ud
t + cpns · ppnst ] ·∆t (24)

Notice that in (24), the commitment status of the diesel
generator multiplies the independent term of the cost function,
as such cost is only incurred when the diesel generator is
functioning.

B. Constraints

The demand balance equation (25) establishes that the
demand Dt has to be satisfied by the PV generation ppvt , plus
the diesel generation pdt , plus the power injected by the battery
during the discharge pdisct , minus the power consumed during
the battery during the charging process pchart . In the event that
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there is not enough generation to meet the demand, the slack
variable ppnst would be activated:

ppvt + pdt + pdisct − pchart + ppnst = Dt,∀t ∈ T (25)

In numerous EMS applications, rather than employing volt-
age or current as control variables, the focus is placed on the
power generated or consumed by the battery. For this reason,
only quantities related to the power and energy of the battery
will be used in this formulation. In a battery, the SoC measures
the percentage of electrical charge stored at a given moment
in relation to the maximum charge it could hold, considering
the battery’s nominal capacity. Since voltages or currents in
the battery are not modeled, it is proposed to approximate the
SoC using energy-related quantities rather than charge-related
ones. The energy balance equation (26) expresses the energy
content in the battery at the end of each period et taking into
account the charging and discharging processes where et−1

for t = 1 is equal to the initial charge of the battery Eo:

et = et−1 + [(pchart − pcharloss,t)− (pdisct + pdiscloss,t)]∆t,∀t ∈ T
(26)

As et is an instantaneous value at the end of each discrete
time period, this paper proposes to approximate the SoC at
each time step in terms of the average value of the energy
content at the beginning and at the end of each period:

soct =
1
2 (et−1 + et)

E
(27)

Regarding the battery losses, the expressions (14) and (15)
are considered and the ZZI method explained in section III is
replicated for all the variables pcharloss,t and pdiscloss,t.

The unit-commitment constraint of the diesel generator (28)
ensures that it cannot produce when it is off:

pdt ≤ ud
t · P

d
,∀t ∈ T (28)

To prevent the battery from charging and discharging at the
same time, the equations (29a) and (29b) are taken into
account, and (29c) imposes that only a mode of operation
is possible during the same hour:

pchart ≤ ucha
t · P cha

,∀t ∈ T (29a)

pdisct ≤ udisc
t · P cha

,∀t ∈ T (29b)

udisc
t + uchar

t ≤ 1,∀t ∈ T (29c)

Finally, the bounds of the decision variables are the follow-
ing ones:

E ≤ et ≤ E,∀t ∈ T (30a)
0 ≤ ppvt ≤ P pv

t ,∀t ∈ T (30b)

0 ≤ pdisct ≤ P
disc

,∀t ∈ T (30c)

0 ≤ pchart ≤ P
cha

,∀t ∈ T (30d)
0 ≤ ppnst ,∀t ∈ T (30e)

TABLE I
MICROGRID PARAMETERS

Load Dmax 1.47 [kW]
Solar Panel P pv

max 2 [kW]

Diesel

P d
max 1.0 [kW]

c 0.0157 [e]
b 0.1080 [e/kW]
a 0.3100 [e/kW2]

Li-Ion battery

E 2.9 [kWh]
E0 0 [kWh]
P

cha 2.9 [kW]
P

disc 2.9 [kW]
K 8.0625 [mΩ]
R 26.46 [mΩ]
Vr 51.2 [V]
cens 1 [e/kWh]

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

k
W

PV Av.

Load

Fig. 5. Hourly load and available PV

V. STUDY CASE

This section presents the results obtained with a microgrid
taken from [13], which comprises a PV panel, a Li-Ion battery,
and a diesel generator (see Table I). The analysis has been
carried out for various grid sizes, for the two explored zig-
zag triangulations (ZZI-K1 and ZZI-J1) and for the classic
formulation C-K1. A relative tolerance of 0.5% has been
chosen as the termination criterion for the resulting mixed-
integer quadratic programming (MIQP) problems solved by
commercial solvers CPLEX 22.1.1.0 and GUROBI 10.0.3.
First, the results for a 48-hour horizon are presented, and
subsequently, the analysis is extended for two 168-hour cases.

A. Optimal management for a 48-hour scope

Figure 5 shows the hourly and the available PV profiles over
a 48-hour period. These two consecutive days were selected
to explore a scenario encompassing extreme conditions: a
heavily overcast day with minimal PV generation and a clear,
sunny day. Figure 6 shows the results obtained with ZZI-
J1 using a 8 × 8 grid. On the first day, both the generator
and the battery are required to meet the demand during the
peak demand hours. On the other hand, since the peak solar
irradiation hours do not align with the demand peaks on the
second day, this solar production is utilized to charge the
battery. Subsequently, this stored energy is used to meet the
load requirements. Additionally, it can be seen that the hourly
average SoC throughout the entire horizon respects the 10%
and 100% limits.

B. Optimal management for two 168-hour scopes

In order to assess the performance of both zig-zag formu-
lations in the case of a larger-scale problem, the models have
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Fig. 6. Obtained results (ZZI-J1 8× 8, GUROBI)
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Fig. 7. Hourly load and available PV

been run for one week in summer (168h S) and one week in
winter (168h W). Figure 7 depicts both weeks’ demand and
available solar production time series. The obtained results are
presented in Figures 8 and 9. In winter, the diesel generator
plays a much more prominent role, and the battery manage-
ment becomes more demanding to leverage solar production
during the limited available hours while ensuring sufficient
energy reserves to satisfy the demand. However, in summer,
it is observed that the battery is mainly managed to harness
the surplus during peak solar production hours when demand
is already met.

C. Computational performance

Table II compares the model’s performance for different
configurations. GUROBI outperforms CPLEX with an average
execution time between 30 and 115 times faster in the 48h
scenarios where both solvers provided solutions. Empty cells
indicate that the solver has been unable to find an integer
solution within the 1-hour time limit. Except for small cases
with the lowest grid resolution, the results indicate that meth-
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Fig. 8. Obtained results (ZZI-J1 8× 8, GUROBI, Winter)
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Fig. 9. Obtained results (ZZI-J1 8× 8, GUROBI, Summer)

ods based on the zig-zag formulation are significantly superior
to the classical formulation: 12.1 faster on average for the
analyzed cases where all the methods provided a solution for
the 8×8 grid. In the case of the weekly execution with a high
level of detail, the ZZI-J1 formulation stands out compared
to other methods as it allows for finding a solution. This
suggests that for large-scale problems with a high level of
grid granularity, the ZZI-J1 method should be preferred.

APPENDIX: CLASSIC FORMULATION (C-K1)

This appendix includes the formulation of the classical
piecewise linear approximation method for functions of two
variables presented in [9]. The original expressions have been
adapted to align with the nomenclature used in this paper
and the K1 triangulation, aiming to simplify the comparison.
Therefore, for a point (i, j) of the mesh, its upper (u) and lower
(l) adjacent triangles can be defined as illustrated in Figure
10. For each upper triangle, it is necessary to define a binary
variable called ζui,j ∈ {0, 1} ∀i ∈ I , ∀j ∈ J . Similarly, binary
variables ζli,j ∈ {0, 1} are defined for each lower triangle. The
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TABLE II
SUMMARY OF COMPUTATIONAL PERFORMANCE.

Case Grid Method. Solver Obj.[e] Time [s] Rel.Gap
48h 4x4 ZZI-J1 cplex 6.1153 44.25 0.50%
48h 4x4 ZZI-J1 gurobi 6.1283 1.37 0.40%
48h 8x8 ZZI-J1 cplex 6.0687 572.55 0.50%
48h 8x8 ZZI-J1 gurobi 6.0893 19.56 0.37%
48h 4x4 ZZI-K1 cplex 6.1134 280.08 0.50%
48h 4x4 ZZI-K1 gurobi 6.1260 3.81 0.35%
48h 8x8 ZZI-K1 cplex 6.0688 378.48 0.50%
48h 8x8 ZZI-K1 gurobi 6.0928 10.87 0.44%
48h 4x4 C-K1 cplex 6.1134 333.48 0.50%
48h 4x4 C-K1 gurobi 6.1151 2.89 0.19%
48h 8x8 C-K1 cplex 8.2120 3600.00 28.38%
48h 8x8 C-K1 gurobi 6.0952 229.33 0.48%
48h 16x16 ZZI-J1 gurobi 6.0817 30.56 0.36%
48h 16x16 ZZI-K1 gurobi 6.0832 71.00 0.39%
48h 16x16 C-K1 gurobi - - - %

168h S 8x8 ZZI-J1 gurobi 4.8732 133.61 0.29%
168h S 16x16 ZZI-J1 gurobi 4.8712 267.63 0.45%
168h S 8x8 ZZI-K1 gurobi - - - %
168h S 16x16 ZZI-K1 gurobi - - - %
168h S 8x8 C-K1 gurobi 4.8806 374.41 0.43%
168h S 16x16 C-K1 gurobi - - - %
168h W 8x8 ZZI-J1 gurobi 19.1052 40.83 0.38%
168h W 16x16 ZZI-J1 gurobi 19.0596 224.11 0.26%
168h W 8x8 ZZI-K1 gurobi 19.1188 272.77 0.48%
168h W 16x16 ZZI-K1 gurobi - - - %
168h W 8x8 C-K1 gurobi 19.1277 3150.87 0.49%
168h W 16x16 C-K1 gurobi - - - %

Fig. 10. Classic formulation with a binary variable per triangle

constraint (31a) forces that only one triangle of the mesh must
be active. In addition, (31b) ensures that in order for θij to be
different from zero, at least one of the surrounding triangles
must be active.

∑
i∈I

∑
j∈J

ζui,j + ζli,j = 1 (31a)

θij ≤ ζui,j + ζli,j+1 + ζui−1,j

+ ζli,j + ζui,j−1 + ζli+1,j ∀i ∈ I, ∀j ∈ J
(31b)

where it is assumed that the binary variables with subscripts
i− 1, j − 1, (i+1, j +1) are null for the first (last) elements
of I and J . In addition, ζl1,j = ζun+1,j = 0,∀j ∈ J , and
ζli,1 = ζui,m+1 = 0,∀i ∈ I .

VI. CONCLUSIONS

This paper addresses the modeling of non-linear losses in
Li-Ion batteries. It proposes alternative expressions to those

used in state-of-the-art, which model losses based on the
battery’s state of charge and the power charged or discharged
in each period. Regarding the computational performance, the
presented zig-zag approaches outperform the classical method,
especially in instances with detailed grids for large problems.
In particular, the ZZI-J1 exhibits superior behavior in the
analyzed cases.
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