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Abstract—The hosting capacity region defines a joint feasible
region in the operational space involving various installations. By
facilitating their coordinated operation, this region succeeds in
tapping into the grid’s power delivery potential. Meanwhile, when
approximating this region using an expansive polytope, facet
selection should be carefully considered. Random facet selection
will cause the Matthew effect, indicating that a facet which
was more frequently selected owns a higher likelihood of being
selected again. Such effect eventually harms the region expansion
efficiency. Beyond static facet selection measures, this paper
proposes adaptive measures for further improved assessment
performances. The adaptive scheme is engineered to cyclically
use original measures, thereby merging and leveraging their
potentials on efficient facet selection. Relevant 3-dimensional
region assessment experiments are conducted on a 10.5 kV
Dutch grid case, which is modelled on Pandapower toolkit. The
results demonstrate that, compared to static alternative measures,
adaptive measures contribute to larger region space consistently,
with potential region space gain being up to 62.2%. This validates
the superior efficacy of adaptive mechanism in facet selection for
region assessment.

Index Terms—hosting capacity, feasible region, computational
geometry, metaheuristic, reinforcement learning.

I. INTRODUCTION

The concept of hosting capacity has been widespread uti-
lized to establish integration capacity limits for various distri-
bution energy resources [1]. With raising appliance diversity
in contemporary distribution grids, hosting capacity can be
extensively applied to bidirectional units such as transformers
and EV charging stations [2],[3]. During hosting capacity
assessment, as illustrated in Fig. 1a, the distribution system
operator (DSO) adopts a risk-averse approach, focusing on
extreme scenarios to define a safe operation range. This
approach helps maintain constrained grid performance indices,
thereby meeting power quality requirements and preventing
grid overload [4], though it has compromised grid elasticity.
There is a need for the hosting capacity to be intelligently
restructured to maximize grid utility. In the Netherlands, the
DSO is anticipating smart capacity allocation, especially given
that new customers in Dutch provinces are facing extensive
connection delays until years-long grid expansion [5]-[7].
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Fig. 1: The conceptual evolution of hosting capacity
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Fig. 2: 3-Node testing case schematic

To this end, with the aim of leveraging grid power delivery
potential, the DSO has experimentally implemented dynamic
hosting capacity allocation [8]-[10]. As demonstrated by an
exemplary grid case in Fig. 2, after daylight hours, the DSO
reduces the hosting capacity allocated for solar plants, thereby
temporarily allowing higher power injection from wind plants
during the night. Such practice equivalently results in dynamic
rectangular operation areas as depicted in Fig. 1b, where
each interior point corresponds to a combinational opera-
tion scenario of various units. These areas are constrained
by red marginal operation points, whose corresponding grid
performance indices are on the edge. These boundary points
formulate a quasi-triangle area named ”hosting capacity re-
gion” (HCR), encompassing all potential outcomes of hosting
capacity allocation [11]. Evolving from the hosting capacity
concept, through coordinated cooperation across associated
energy units, the HCR allows certain point of connections
(POCs) to intermittently transmit more power when the re-
maining ones are not heavily burdened. By adopting this
strategy of HCR-based collaborative cooperation, the grid
power delivery potential will be fully unleashed.

Suffering convexity absence in the power grid model, the
derivation of HCR can be difficult [12]. Meanwhile, as inves-
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Fig. 4: Growth principle of polytope-approximated region

tigated in [13], an alternative convex region with acceptable
inaccuracies can be used to approximate the HCR. This convex
region can be asymptotically represented by an expansive
convex hull of derived marginal points [14]. As shown in
Fig. 3, to approximate the exemplary oval region, we can
initially figure out three marginal points A,B,C to outline a
stripe triangle as a feasible region, which later evolves into a
grey quadrangle upon adding a new vertex D. By that analogy,
a well-grown polytope emerges to represent the original HCR
with tolerable region space loss. The polytope described by
linear constraints is convenient for computer processing.

A three-dimensional (3D) case in Fig. 4 further explains the
polytope growth process during HCR assessment. Regarding
a known feasible region with vertices G,A,B,C, through
choosing the centroid D of face ABC, vector OD will
be stretched to reach a new marginal point E. Afterwards,
yellow plane ABC will be replaced by new planes ABE,
ACE, and BCE. Intuitively, the selected facet centroid D
determines the polytope growing direction, thus influencing
its growth performance. Therefore, selecting the right facets is
crucial. Without proper facet selection measure, random facet
selection will cause Matthew effect, where facets that have
acquired enough exploitation chances is reversely easier to be
selected for further exploitation. Plainly, the rich get richer
and the poor get poorer. This issue and its implications for
expansion efficiency will be further discussed and analyzed at
Section II-C in this paper [15]. Therefore, in this illustratory
case, we need certain measures to rationalize the choice of
exploiting ABC, rather than three other facets.

In pursuit of efficient facet selection, several static measures
have been proposed in [13]. There are two aspects to evaluate
the measure quality, including measure computation hardness
and respective polytope hypervolume increment. None of the
measures above can excel in both aspects. This paper aims to
address such challenge by adaptive measure selection, drawing
inspiration from adaptive ideologies in both large neigh-
borhood search algorithm for vehicle routing problem and

reinforcement learning for K-armed bandit problem [16],[17].
Through cyclically adopting static measures in reference to on-
line updating weight factors, adaptive facet selection measures
are derived to achieve a trade-off between region assessment
performance and computation burden. The main contributions
of this paper are twofold:

1) To answer the importance of facet selection measure
adoption, we offer a theoretical analysis on the Matthew
effect under random facet selection, a topic not thor-
oughly explored in current literature.

2) Inspired by metaheuristic and reinforcement learning
techniques, we improve the facet selection efficiency via
adaptive measure usage. This leads to faster polytope
expansion with consistently low computational load.

The remainder of this paper are organized as follows.
Section II introduces the assessment framework and provides
deep discussions on Matthew effect caused by random facet
selection. Based on original static facet selection measures, the
adaptive variants are proposed and analyzed in Section III.
Measure validation by experimental tests are conducted in
Section IV and a conclusion is provided in Section V.

II. HOSTING CAPACITY REGION AND ITS ASSESSMENT

A. Convex region assessment
The multidimensional hosting capacity region assessment

scheme in distribution grids has been briefly investigated
in [13]. Respective testing cases reveal the acceptable accuracy
of convexified DistFlow model as illustrated in (1), which is
adopted as the grid model in this paper. Relevant variable and
parameter notations are listed in Table I.

Pij =
∑

k:(j,k)∈E

Pjk − Pj (1a)

Qij =
∑

k:(j,k)∈E

Qjk −Qj (1b)

vj = vi − 2(rijPij + xijQij) (1c)

P 2
ij +Q2

ij ≤ vil
max
ij (1d)

vmin
j ≤ vj ≤ vmax

j (1e)

Pmin
i ≤ Pi ≤ Pmax

i , Qmin
i ≤ Qi ≤ Qmax

i (1f)

Index Meaning

Constant Parameters
E / (j, k) Grid graph / Connection between node j and node k
rij / xij Line resistance / reactance between node i and node j

Pmin
i / Pmax

i Minimum / Maximum of active power in node i
Qmin

i / Qmax
i Minimum / Maximum of reactive power in node i

vmin
i / vmax

i Minimum / Maximum of voltage level square on node i
lmax
ij Maximum of current magnitude square from i to j

Decision Variables
Pi Equivalent injection active power in node i
Qi Equivalent injection reactive power in node i
vi Square of voltage level over node i

TABLE I: General notations in DistFlow model

From a risk-averse perspective, we can also employ iterative
intersections between several convex polytopes produced by
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Fig. 5: Increasing descendants during facet exploitation

Fig. 6: Exploitation call number distribution of an initial facet

various convex models including (1), thereby ensuring an
inner approximated HCR [13], within which all operation
points should theoretically maintain grid feasibility. However,
regardless of the chosen approach, it is inevitable to assess the
convex feasible region of (1). In the remainder of this paper,
we will focus on how to efficiently assess the region based on
(1) through an approaching polytope.

B. Random polytope approximation for convex body

In the context of convex HCR, its assessment task converts
into a general convex body approximation problem. However,
identifying a finite set of marginal points while minimizing
convex body approximation loss poses a significant challenge.
Reference [18] provides an overview on state-of-the-art re-
sults on convex body approximation by random polytope,
highlighting key findings on the limits of approximation
accuracy. Specifically, an improved random walk algorithm
was proposed in [19], which limits relative error after finding
O(D7) points, where D is the dimension number. Such high
computation burden harms its universal applicability.

In practice, the DSO prefers a heuristic approximation
scheme to manage computational demands, even if it means
compromising on accuracy. As detailed at Section I, a method
involving endogenous polytope expansion is favored over ran-
dom point search. During this expansion phase, selecting facets
is a crucial step that must be approached with care, considering
its potential impacts on region assessment performance.

C. Matthew effect under random facet selection

Inheriting the randomness ideology in previous approxima-
tion algorithms, a spontaneous random facet selection scheme
can be considered. However,this approach may suffer Matthew
effect. The concept of ”Matthew effect” was initially proposed
by [15] in the sociology field, delivering the idea that a greater
level of initial wealth allows individuals to secure a first-mover
advantage. This effect can be summarized by the platitude ”the
rich get richer and the poor get poorer”. In the facet selection
problem, the Matthew effect indicates that certain facets gain

an increasing priority of being selected due to the cumulative
advantage in their descendant number.

For further illustrations, we revisit face ABC in Fig. 4,
depicted as a yellow plane in Fig. 5. In the initial round, face
ABC has a 1

4 chance of being picked, and later being replaced
by three descendants in Fig. 5. These new faces, along with
the original ones, then have an equal opportunity to be chosen
next. Consequently, the likelihood of picking a descendant of
ABC becomes 1

2 . If one of these descendants is selected in the
second round, the descendant number of face ABC will rise
to five accordingly. By the third turn, the probability to select
a descendant of face ABC will be up to 3

8 . Inductively, under
random selection, once that one initial face has been exploited
first, it earns higher chance to be further exploited and reaches
more descendants in an accumulative way. Plainly, the rich
get richer and the poor get poorer. This tendency eventually
triggers the Matthew effect.

Although the Matthew effect under random facet selection
has been empirically verified by Monte Carlo simulations for
3D scenarios in [13], there is still no analytical solution for
its presence in multidimensional cases. To address this, we
need to first derive the theoretical frequency distribution for
exploiting a single initial facet. Let D and N denote the
dimension and total exploitation call number, with K being
the number of exploitation calls over a single initial facet.
In the ith round, the selection pool includes (D − 1)i + 2
facets, so the total possibility number SN can be calculated as
(2a). Towards a certain initial facet, if it has been exploited K
times after N iterations, its descendant number will grow into
(D − 1)(K − 1) + 1. Therefore, the total possibility number
SK for these favorable K iterations can be derived as (2b).
In remaining N −K rounds, the total possibility number SM

to exploit left D initial facets is calculated as (2c). Therefore,
the probability PK for K calls occurring for a certain initial
facet can be calculated as (2d).

SN =

N∏
i=1

[
(D − 1)i+ 2

]
(2a)

SK =

{ (
K
N

)∏K
i=1

[
(D − 1)(i− 1) + 1

]
K > 0

1 K = 0
(2b)

SM =

{ ∏N−K
i=1

[
(D − 1)i+ 1

]
N > K

1 N = K
(2c)

PK =
SK · SM

SN
(2d)

To verify such analytical solution, we conducted 10000 sim-
ulations with setting D and N as 3 and 200. The distribution
of K has been plotted by blue bars in Fig. 6. Simultaneously,
the estimated distribution based on (2d) is given by red curve
in the same figure, showing a good fit with the empirical data.
The validity of (2) has been successfully confirmed. Based on
these analytical results, the probability Γ12.5% that an initial
face acquires less than 12.5% exploitation chances, a half of
what would be expected if chances were evenly distributed
among all four initial facets, can be calculated as high as
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44.58%. Conversely, the probability (1−Γ50%) that it acquires
more than 50% exploitation chances, which doubles the cor-
responding expected value, is up to 18.09%. Through tuning
the values of D and N in (2), similar phenomena of high
Γ 1

2(D+1)
and (1−Γ 2

D+1
) values keep being observed, thereby

analytically confirming the existence of Matthew effect under
random facet selection.

The Matthew effect under random facet selection leads
to irrational distribution of exploitation calls, where certain
initial facets might not be chosen in enough times, adversely
influencing the HCR assessment performance. As investigated
in [13], blaming on Matthew effect, sharing the same value
of N , random facet selection will cause at most 21.13%
region space loss compared to measure-based ones. The results
highlight the necessity of measure-based facet selection, whose
respective selection measures will be further discussed and
explored at Section III.

III. ADAPTIVE FACET SELECTION

A. Static selection measures

In need of measure-based facet selection, several static
measures have been proposed in [13]. Those static measures
are designed to eliminate the hidden issue of Matthew effect,
they lead to lower measure values for the descendants of
initially well-exploited facets as the polytope expands.

1) Local-greedy measure: As listed in Table II, let ∆R

denote the additional region hypervolume after facet selection
and exploitation. By adopting a local-greedy approach, which
seeks the highest immediate benefit in each step, we can take
∆R as the criterion for selecting facets in a straightforward
way. Meanwhile, due to its ergodic nature, this greedy measure
may be questioned in the aspect of computation hardness,
which needs to exploit all D new facets in every iteration.
Each turn of facet exploitation, particularly using the bisection
method, is time-consuming due to inevitable iterative power
flow analysis. In a general multidimensional HCR assessment
task, such computational demands become untenable, despite
the leading performance of this measure as investigated in [13].
Therefore, the local-greedy measure needs alternatives to cope
with limited computing resource in most practices.

Measure Meaning in 3D case Target

∆R Polyhedron volume increment Maximal
V(F) Face area Maximal

V(C(F,O)) Origin-apex triangular pyramid volume Maximal
g(F) Face generation order Minimal

TABLE II: Measure table for facet selection

2) Alternative measure: For measure computation burden
reduction, as proposed in [13], several alternative measures can
be considered as listed in Table II. Regarding n-dimension
polytope C, let F denote its facet, which is an (D − 1)-
dimension polytope. C(·) computes a convex-hull of all inputs.
V(·) calculates the polytope hypervolume. g(·) enumerates
the facet generation order, and equals 0 for initial (D + 1)
facets. In the 3D context, a higher V(F) indicates a larger

basis of the new generated pyramid, and a higher V(C(F,O))
implies a pyramid basis far from the origin point. Both
results empirically contribute to faster polytope growth. g(F)
aims for brute-force Matthew effect mitigation without any
geometric considerations. Notably, in some extreme cases, the
facet selected by V(F) or V(C(F,O)) may be stuck in an
looping situation, where one newly generated descendant facet
is quite close and similar to its ancestor facet. This occurs
particularly when the ancestor facet, which possesses a large
hypervolume, is positioned too near to the origin. To jump
off this predicament, one approach could be to exclude this
descendant facet from the selection pool directly.

The alternative measures outlined above eliminate the need
for preliminary facet exploration, thus substantially lowering
computational complexity. Meanwhile, compared to ∆R, they
are more empirical and own weaker causal relationship with
efficient facet selection, which in turn can impact HCR as-
sessment performances. Moreover, since these measures are
static, they lack adaptive properties to maintain consistent
performances across various scenarios. Therefore, it is crucial
to consider an adaptive framework to catalyze the reaction
between those static measures.

B. Primal adaptive measure design

Although static alternative measures at Table II maintain
consistent computation hardness, they may contribute to in-
consistent facet selection efficiency during region assessment.
In other words, in a general case, neither of them can
consistently outperforms the others in terms of providing
a theoretically guaranteed enhanced assessment. Intuitively,
these measures are expected to be combined in a certain
way for merging and leveraging their potentials on efficient
face selection. Therefore, inspired by adaptive ideology in
large neighborhood search algorithm for vehicle routing prob-
lems, adaptive measure selection can be adopted [16],[20].
Beside the contribution to potential faster region expansion,
this adaptive mechanism owns another advantage of previous
knowledge omittance on the candidate case. This allows the
DSO to eliminate worries about choosing the appropriate static
measure for the upcoming test case.

Let ω
(i)
m be the weight factor of measure m used in i-th

iteration in (3). α is a adaptive coefficient in range [0,1].
Ω

(i)
m is the score of measure m in that round, which can be

defined as polytope hypervolume gain once choosing measure
m. The measure with the maximal weight factor will be
choose for helping facet selection. This adaptive scheme aims
to continuously evaluate and learn from historic and present
performances of each static measure, thereby picking out a
suitable measure to fit the current assessment process.

ω(i)
m ← (1− α)ω(i−1)

m + αΩ(i)
m (3)

In summary, Algorithm 1 is proposed for primal adaptive
facet selection in region assessment. The naming of ”primal”
for Algorithm 1, is based on its concise deterministic measure
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selection mechanism without either perturbative or proba-
bilistic ideology, which is more popular in complex adaptive
mechanism and will be discussed at Section III-C.

Algorithm 1: Primal adaptive measure selection
Data: Measure list M, polytope feasible region C.
Set ω(0)

m ← 0 for m in M;
Initialize an adaptive coefficient α;
Initialize iteration number i← 1;
repeat

for m in M do
Set Cm to be a polytope from C, which uses
m as the facet selection measure;

Ω
(i)
m ← V(Cm)− V(C);

ω
(i)
m ← (1− α)ω

(i−1)
m + αΩ

(i)
m ;

end
C← Cm, where respective ω

(i)
m is maximal;

(finalizing facet selection in each round)
until stopping criterion reaches;

Based on measure list M, this adaptive measure exhibits
higher computation hardness than a single static measure. It
exploits all facets in the waiting pool preliminarily, which are
nominated by individual measures in M during each cycle.
However, only one measure is ultimately selected for use
based on weight factors. Noticeably, the pool size will not
increase by |M| iteratively, because measures may recommend
the facet already in the waiting pool. Therefore, regardless
of the dimension number D, its exploitation call number
threshold in each iteration is capped at |M|. Compared to static
local-greedy measure, in a general multidimensional case, the
computation hardness can be substantially reduced through
primal adaptive measure.

C. Reinforcement-learning-inspired adaptive measures

Enlightened by reinforcement learning methods in K-armed
bandit problem, the primal adaptive measure evolves upon
integrating concepts of perturbation or probability [21]. The
K-armed bandit problem, a fundamental issue in reinforcement
learning, seeks for an optimal strategy to allocate limited
resources between various choices with the maximal expected
reward [17]. As an analogy, looking into the facet selection
problem during region assessment, we need to invest limited
facet exploitation chances based on various facet selection
measures, aiming to maximize the final region space.

Based on model similarity between these two problems,
their respective algorithmic solutions should have common
elements. Noticeably, the primal adaptive selection strategy
described in Section III-B can be taken as a variant of
incremental action-value method, which has been widespread
adopted to cope with the K-armed bandit problem. In such
context, the introduction of perturbative or probabilistic ide-
ology holds promise for enhancing the region assessment
performance, drawing from their proven effectiveness in the
K-armed bandit problem.

1) ϵ-greedy adaptive measure: Rooted in the perturbative
ideology, inheriting and devising the deterministic mechanism
from the primal adaptive measure, ϵ-greedy mechanism al-
lows intermittent random choice with the probability of ϵ.
Accordingly, Algorithm 1 evolves into Algorithm 2 for ϵ-
greedy adaptive measure implementation. The ϵ-greedy adap-
tive measure aims for a trade-off between ”exploitation” of the
measure owning the highest expected payoff and ”exploration”
to acquire more information about the expected payoffs of
the other measures. Unlike direct random facet selection
with the hidden issue of Matthew effect, the randomness of
selection acts on the static measures. Under ϵ-greedy adaptive
mechanism, the waiting pool for selection can still incorporate
up to |M| new facets in each iteration, avoiding the excessive
inclusion characteristic of entirely random selection.

Algorithm 2: ϵ-greedy adaptive measure selection
Data: Input data in Algorithm 1, probability ϵ.
Implement initialization steps in Algorithm 1;
repeat

Run the repeat-loop section in Algorithm 1;
Generate a random number τ in range [0,1];
if τ ≤ ϵ then

C← Cn, where n is a random integer in M;
end

until stopping criterion reaches;

The computation hardness of ϵ-greedy adaptive measure
keeps the same with that of primal one. However, the inter-
mittent random nature of ϵ-greedy adaptive measure introduces
more uncertainties to region assessment performance, as ϵ also
needs to be tuned besides α. Such additional strain of tuning
the perturbation degree is undesirable. Therefore, instead of
perturbative ideology, probabilistic ideology can be integrated,
whose probabilistic distribution can be determined in advance
to omit extra parameter tuning.

2) Gradient adaptive measure: Instead of weight-factor-
dominating framework in primal and ϵ-greedy ones, a proba-
bilistic preference framework is adopted in gradient adaptive
measure. Instead of absolute priority, a larger weight factor
implies a higher likelihood to select the respective measure.
For the ith iteration, towards the weight factor ω(i)

m for measure
m, the corresponding probability π

(i)
m can be calculated as

(4) using the soft-max distribution, a classic function utilized
in K-armed bandit problem [17]. It should be noted that the
probability function can be also flexible, including sparsemax,
spherical softmax, etc [22]. However, to maintain focus and
avoid complexity, this paper only explores and validates the
use of the softmax function for region assessment.

π(i)
m =

eω
(i)
m∑|M|

m=1

(
eω

(i)
m

) (4)

Based on variable notations in primal adaptive measure
part, upon calculating the average reward Ωi in previous i
iterations as (5) , the weight factor update rule is written as
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(6). Ωi serves as a baseline to determine whether the selected
measure m should earn more preference in the next round. In
accordance with (4)-(6), Algorithm 3 is derived for gradient
adaptive measure implementation.

Ωi =

∑i
j=1 Ωj

i
(5)

ω(i)
m ← ω(i−1)

m + α(Ωi − Ωi)(1− π(i)
m ), m = Ai

ω(i)
m ← ω(i−1)

m − α(Ωi − Ωi)π
(i)
m , m ̸= Ai

(6)

Algorithm 3: Gradient adaptive measure selection
Data: Input data in Algorithm 1.
Implement initialization steps in Algorithm 1;
repeat

for m in M do

π
(i)
m ← eω

(i)
m∑|M|

m=1

(
eω

(i)
m

) ;

end
Select n in M using π values (Gibbs-distribution);
Set Cn to be a polytope from C, which uses n as

the facet selection measure. C← Cn;

Ωi ← V(Cn)− V(C), Ωi ←
∑i

j=1
Ωj

i ;
for m in M do

if m=n then
ω
(i)
m ← ω

(i−1)
m + α(Ωi − Ωi)(1− π

(i)
m );

else
ω
(i)
m ← ω

(i−1)
m − α(Ωi − Ωi)π

(i)
m ;

end
end

until stopping criterion reaches;

Without pre-exploitation in the waiting pool of facets, which
aims for their expected pay-off evaluation, the gradient adap-
tive measure is designed to learn after the action. Therefore,
the respective facet exploitation call number in each iteration
has been further reduced to 1, which equals that of static
measures. In other words, its computation hardness keeps the
same with those of static alternative measures, which is lower
than those of primal and ϵ-greedy ones.

D. Summary

To encapsulate thee characteristics of all facet selection
measures reviewed, Table III provides a comparative overview,
where ne denotes the facet exploitation call number in each
iteration. The ”Performance” column highlights their contribu-
tions to region assessment performance. The property values
in this column indicate their empirical performance, which is
subject to further exploration and validation at Section IV.

IV. EXPERIMENTAL VALIDATION

Numerical tests are implemented to verify the effectiveness
of proposed adaptive measures. The grid case in Fig. 7 is
based on a 10.5 kV network model from a Dutch DSO,
Alliander [23]. All POCs connects with constant-power loads,

Grid
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HV MV

1

2
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4
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6

7

Type: 50 AL

Type: 240 AL

8

20A

Type: 95 AL

9

(EV charging)

Fig. 7: The schematic of testing grid case

Measure Adaptive Matthew Effect ne Performance

- (random) No Yes 1 Low
∆R No No D High
V(F) No No 1 Medium

V(C(F,O)) No No 1 Medium
g(F) No No 1 Medium
Primal Yes No ≤ |M| High
ϵ-greedy Yes No ≤ |M| High
Gradient Yes No 1 High

TABLE III: Comparisons of various facet selection schemes

whose nominal current values are given in Fig. 7 with the
power factor being 0.98. More grid parameters are provided in
Table IV. Bus 2,4,7 or 3,5,7 are considered for three additional
EV charging station integration. To maximize converter utility,
we select injected active power from these three POCs as
dimensions.The fundamental vectors to formulate an initial
region are [1,0,0], [0,1,0], [0,0,1] and [-1,-1,-1]. The measure
list M used in each adaptive measure includes all three static
alternative measures. Both learning ratio α and perturbation
degree ϵ are set to be 0.1 as recommended in [17].

Object (max current) Resistance Reactance (50Hz)

240 AL Cable (412A) 126 mΩ/km 116 mΩ/km
150 AL Cable (312A) 320 mΩ/km 188 mΩkm
95 AL Cable (224A) 641 mΩ/km 204 mΩ/km

36MVA 50kV/10.5kV Transformer 0.0022 p.u. 0.065 p.u.

TABLE IV: Power cable and transformer parameters

A. Primal adaptive measure selection scheme

In each iteration, a facet will be selected for exploitation,
and a new vertex will be generated and included in the
updated region polytope. In the case of selecting POC 2,4,7
for 3D region assessment studies, as shown in Fig. 8a, in the
whole progress of 400 iterations, the primal adaptive measure
keeps better region assessment performance than three static
alternative measures. As plotted in Fig. 8b, similar phenomena
are observed in the case of POC 3,5,7 with the iteration
number being 600, where the superiority of primal adaptive
measure is even more pronounced.

Compared to measure V(F), which performs the best
among static alternative measures, the primal adaptive measure
earns 2.87% and 15.2% extra region space in these two distinct
scenarios. Such divergence might be empirically understood
by examining the geometric shapes of HCRs as illustrated
in Fig. 9. The HCR involving POC 2,4,7 resembles an or-
thotope more closely. In an orthotope, only the 2D critical
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Fig. 8: Polytope growth under various measures
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Fig. 9: Assessed hosting capacity regions

vertices exist, and the inclusion of any such vertex into the
polytope can significantly contribute a significant hypervolume
improvement. Intuitively, the region of POC 3,5,7 is farther
from a regular shape, suggesting a stronger motivation to
adopt adaptive mechanism for more frequent explorations with
a broader horizon. This, in turn, increases the chance of
identifying more critical vertices for better overall outcomes.

After confirming the superiority of primal adaptive measure
in region assessment performance, its empirical computation
complexity should be studied as well. Even though ne owns
a upper bound of 3, the total facet exploitation call numbers
are only 423 and 610 in two separate cases, whose equivalent
average ne values are as low as 1.06 and 1.02. Considering
such minor extra computation hardness of primal adaptive
measure, its priority over static alternative ones in the whole
measure pool has been further confirmed.

B. Reinforcement-learning-inspired adaptive scheme

To verify the effectiveness of ϵ-greedy and gradient adaptive
measures, experiments were carried out similarly to those
cases in Section IV-A. Together with previous results based
on V(F) and primal adaptive measure, respective region
assessment results are plotted in Fig. 10. In the case of
POC 2,4,7, ϵ-greedy one leads narrowly, indicating the benefit
of certain perturbation. Meanwhile, in the case of POC 3,5,7,
the gradient adaptive measure leads by a huge margin. It
contributes to 40.8% extra region space compared to primal
one, and 62.2% extra compared to V(F). The power of
probabilistic ideology in region assessment tasks has been
confirmed. Simultaneously, In spite of falling behind gradient
and primal ones, ϵ-greedy measure still leads narrowly with

0 100 200 300 400
Generated vertex number

200

400

600

Vo
lu

m
e 

(M
W

3 )

V(F)
Primal

-greedy
Gradient

(a) POC 2, 4, 7

0 200 400 600
Generated vertex number

250

500

750

1000

Vo
lu

m
e 

(M
W

3 )

V(F)
Primal

-greedy
Gradient

(b) POC 3, 5, 7

Fig. 10: Polytope growth with adaptive measures

V(F) in this scenario, showcasing the general superiority of
adaptive framework over static one.

In the exploitation process with gradient adaptive measure,
as shown in Fig. 10b, after approximately 200 iterations, it
successfully explores several critical vertices within a prob-
abilistic framework. These critical vertices contribute signifi-
cantly to such rapid region expansion. They are promising to
be acquired by learning more information about the expected
payoffs of various measures, emphasizing on the importance
of incorporating perturbative and probabilistic mechanisms to
entourage frequent ”exploration”.

C. Summary

In accordance with experimental results illustrated in
Fig. 8 and 10, the effectiveness of all proposed adaptive
measures has been successfully validated. Particularly, gra-
dient adaptive measure stands out as the optimal option,
considering its near-top performance in the case of POC 2,4,7
and substantially leading performance in that of POC 3,5,7.

V. CONCLUSION

Efficient facet selection is crucial for multidimensional
hosting capacity region assessment. This study introduces
adaptive facet selection measures that develop from traditional
static approaches by employing them cyclically. Enlightened
by adaptive ideology in meta-heuristics and reinforcement
learning studies, the proposed measures will be able to merge
and harness the strengthens of static ones. For their effec-
tiveness validation, grid case studies have been implemented.
Relevant results revealed the advantage of adaptive measures
to boost region assessment performance. Compared to static
alternative measures, the additional region space gain with
adaptive measures can be up to 62.2%. Meanwhile, this
comes with the additional strain of parameter tuning, including
learning ratio α and perturbation degree ϵ.

Looking ahead, regarding these adaptive measure, compre-
hensive parameter sensitivity analysis will be implemented,
thereby answering the impacts of these measure parameters
on region assessment performance. The impact of network
complexity on the computational performance will be also
analyzed, using an actual larger-scale grid case involving
298 buses. Moreover, more technical paths, for instance deep
reinforcement learning, will be discussed in future works, to
uncover new methods for further improving intelligent facet
selection strategies.
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[18] J. Prochno, C. Schütt and E. M. Werner Best and random approximation
of a convex body by a polytope. Journal of Complexity, 71, 101652,
2022.

[19] L. Lovász and M. Simonovits, Random walks in a convex body and
an improved volume algorithm. Random structures & algorithms, 4(4),
359-412, 1993.

[20] D. Pisinger and S. Ropke, Large neighborhood search in Handbook of
Metaheuristics, M. Gendreau and P. Jean-Yves, Eds., ch. 13. Springer,
2019.

[21] E. G. Talbi, Machine learning into metaheuristics: A survey and taxon-
omy. ACM Computing Surveys (CSUR), 54(6), 1-32, 2021.

[22] A. Laha, S. A. Chemmengath, P. Agrawal, M. Khapra, K. Sankara-
narayanan, and H. G. Ramaswamy, On controllable sparse alternatives to
softmax. Advances in Neural Information Processing Systems, 31, 2018.

[23] A. Ibós, Defining current harmonic limits for customers connected to low
and medium voltage. M.S. thesis, Eindhoven University of Technology,
Eindhoven, 2018.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4-7, 2024


