
23rd Power Systems Computation Conference
  

Paris, France — June 4-7, 2024 

              PSCC 2024 

Energy Management of Airport Service Electric 

Vehicles to Match Renewable Generation through 

Rollout Approach

Renjie Wei 

State Grid Laboratory of Grid Advanced Computing and 

Applications 
State Grid Smart Grid Research Institute Co., Ltd 

Beijing, China 

wrj245478404@hotmail.com 

Fei Zhou 

State Grid Laboratory of Grid Advanced Computing and 

Applications 
State Grid Smart Grid Research Institute Co., Ltd 

Beijing, China 

zhoufei@geiri.sgcc.com.cn 

 

Yishen Wang 

State Grid Laboratory of Grid Advanced Computing and 

Applications 
State Grid Smart Grid Research Institute Co., Ltd 

Beijing, China 

wangyishen07@163.com 

 

 

 

 
Abstract—Traditional diesel-based airport service vehicles are 

characterized by a heavy-duty, high-usage-frequency nature and 

a high carbon intensity per vehicle per hour. Transforming these 

vehicles into electric vehicles would reduce CO2 emissions and 

potentially save energy costs in the context of rising fuel prices, if 

a proper energy management of airport service electric vehicles 

(ASEVs) is performed. To perform such an energy management, 

this paper proposes a new customized rollout approach, as an 

optimal control method for a new ASEV dynamics model, which 

models the ASEV states, their transitions over time, and how 

control decisions affect them. The rollout approach yields an 

optimal control strategy for the ASEVs to transport luggage and 

to charge batteries, with the objective to minimize the operation 

cost, which incentivizes the charging of the ASEVs to match 

renewable generation. Case studies demonstrate that the rollout 

approach effectively overcomes the “curse of dimensionality” 

challenge. The rollout algorithm results in a total cost 

approximately 10% less than that of the underlying “greedy 

charging” heuristic, which charges a battery whenever its state of 

charge is not the maximum. The rollout algorithm is proven to be 

adaptive towards flight schedule changes at short notice. 

Index Terms-- airport service electric vehicle; electric vehicle; 

energy management; heuristic control; optimal control; rollout 

algorithm. 

I. INTRODUCTION  

The transition to electric vehicles (EVs) is vital for fulfilling 
the target of reducing CO2 emissions by 80% by 2050 in the 
UK, relative to the 1990’s level [1]. Much attention was 

devoted to electrifying tens of millions of consumer vehicles. 
Although they are vast in number, they have a relatively low 
carbon intensity in terms of emission per vehicle per hour, 
because an average consumer vehicle remains dormant in most 
hours of a day and it is of a light-duty nature. Unlike consumer 
vehicles, airport service vehicles are characterized by a heavy-
duty, high-usage-frequency nature, a high carbon intensity per 
vehicle per hour, and a strong correlation with flight patterns. 
Transforming diesel-based airport service vehicle fleets into 
EVs would be one of the effective adoption to reduce CO2 
emissions for this carbon-intensive industry. In this context, 
airport service electric vehicles (ASEVs) specifically refer to 
electric trailers that transport checked luggage between the 
sorting facility in the terminal and departure/arrival flights. The 
aim of this paper is to develop an optimal energy management 
strategy for the ASEVs in terms of battery charging and task 
assignment.  

Existing research work focuses on consumer EVs and taxis 
at different locations, e.g. households, office buildings, 
highway service stations, etc. References [2], [3] focus on 
consumer EV charging at commercial buildings. A number of 
references consider domestic EVs as a part of home energy 
management systems [4], [5], [6], an energy hub [7] or a 
community energy system [8]. A number of references 
investigate the operation of electric vehicle parking lots [9], 
[10], including airport parking lots [11]. References [12], [13] 
both develop stochastic optimization models for the joint 
operation of EV fleets and renewable generation. Reference [14] 
develops a balanced charging strategy to satisfy both the EV 
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owners (saving costs) and the network operator (relieving 
loads). Reference [15] develops an optimization model to 
schedule airport ground operations, including aircraft and 
shuttle bus scheduling. Although that reference does not focus 
on EVs, it acknowledges the importance of the optimization of 
airport ground operations.  

There are ASEV suppliers [17], [18], [19], but the optimal 
control of the ASEVs was an unanswered question. For an 
airport with tens of ASEVs, the dynamic system has a 
prohibitively large number of states (i.e. the “curse of 
dimensionality”), too large to derive an accurate optimal 
solution to the ASEV control problem. Therefore, two research 
questions arise from the optimal scheduling of ASEVs: 1) the 
modeling of the ASEVs as a distinctive dynamic system of a 
stochastic dynamic, hybrid nature; and 2) the derivation of an 
optimal control strategy for the dynamic system.  

The optimal control of a dynamic system is related to 
stochastic dynamic programming [16] [20] in terms of their 
stochastic and dynamic nature. The rollout algorithm for 
dynamic programming [20], [21] can be borrowed but it needs 
to be adapted for the optimal control of ASEVs: the underlying 
heuristic control strategies need to be defined and uncertainties 
need to be properly modeled.  

Thus, to better control the ASEV considering their 
characteristics, this paper proposed a dynamic programming 
approach based on rollout method, which would not only guide 
the EV charging, but also matching the PV generation to 
improve the energy efficiency. This paper makes the following 
original contributions: 

1) This paper proposes a new ASEV dynamics model. The 
model involves: i) discrete dynamics, i.e. the changes of the 
ASEV discrete states to “work”, “charge”, or “idle” over time; 
ii) continuous dynamics, i.e. the changes of the battery state of 
charge (SoC) over time; and iii) a stochastic nature of the 
ground transport workload.  

2) To perform an energy management of the ASEVs, this 
paper proposes a new customized rollout approach, as an 
optimal control method for the ASEV dynamics model. The 
approach controls the ASEVs to transport luggage and to 
charge batteries, with the objective to minimize the total 
operation cost. Two customized suboptimal heuristic control 
strategies are proposed as the base strategies for the rollout 
approach, which then iteratively improves the heuristic control 
strategies into an optimal control strategy. The rollout approach 
effectively overcomes the “curse of dimensionality” challenge.  

The energy management of ASEVs through the rollout 
approach will bring a number of benefits: 1) it will save costs 
for the airport; 2) by matching the ASEV battery charging load 
curve with renewable generation, the control method 
encourages the ASEVs to consume locally generated renewable 
energy, reduces CO2 emissions, and makes the charging load 
curve friendly to the grid.   

The rest of this paper is organized as follows: Section II 
presents the ASEV dynamics model; Section III presents the 

optimal control method for the ASEV dynamics model; Section 
IV performs case studies; and Section V concludes the paper. 

II. PROBLEM FORMULATION: ASEV DYNAMICS MODEL 

The ASEV uncertainties are divided into two different parts: 
the uncertainties of the ground transport workloads and the 
uncertainties of the flights. For the uncertain ground transport 
workloads, the proposed model adopted an appropriate model 
which is explained in Section II-A. For the uncertainties of the 
flights, including the flights delaying or cancelling, a Guassian 
noise is added to the model to reflect the delaying time of each 
flight. 

A. Modeling of Uncertain Ground Transport Workload 

Before presenting the ASEV dynamics model, the ground 
transport workload model is presented. Suppose the jth flight is 
awaiting ground transport service at time t (called flight j at time 
t), because it has landed or is ready to depart. The time required 
for an ASEV to serve this flight is stochastic because: 1) 
although the airline company knows the number of passengers 
and luggage weight for the flight in question, the information 
may not be shared with the airport. 2) Even if the information 
were made available to the airport, there is a random noise in 
the time required to service the flight. Denote the time required 
for an ASEV to serve flight j at time t as 𝑤̃𝑗𝑡, which follows a 

truncated normal distribution ψ [22]. 

𝜓(𝜇, 𝜎, 𝑎, 𝑏, 𝑤̃𝑗𝑡) 

=

{
 
 

 
 

0                        if 𝑤̃𝑗𝑡 ≤ 𝑎

∅(𝜇, 𝜎2;  𝑤̃𝑗𝑡)

Φ(𝜇, 𝜎2; 𝑏) − Φ(𝜇, 𝜎2; 𝑎)
    if 

0                        if 𝑤̃𝑗𝑡 ≥ 𝑏

𝑏 ≤ 𝑤̃𝑗𝑡 ≤ 𝑎 
(1) 

where 𝜇  and 𝜎  are the mean and deviation of the “parent” 

normal distribution, respectively. 𝑎  and 𝑏  are the upper and 

lower bounds, respectively. ∅(𝜇, 𝜎2;  𝑥)  and Φ(𝜇, 𝜎2; 𝑥)  are 

the probability density function and cumulative distribution 

function, respectively, of the “parent” normal distribution with 

mean 𝜇  and deviation 𝜎 . The truncated normal distribution 

model is justified because: 1) a normal distribution is a default 

choice when there is no detailed knowledge to support 

alternative complicated probability distributions; and 2) 𝑤̃𝑗𝑡 is 

bounded in reality.   

Suppose that the 24 hours of a day are discretised into 144 
stages, starting from Stage 0 to Stage 143 at an interval of 10 
minutes. Let 𝑤𝑗𝑡  denote the discrete number of stages 

(essentially the amount of time) required for an ASEV to serve 
the jth flight that is awaiting service at Stage t. Therefore, 𝑤𝑗𝑡  
is a random discrete variable. 

Now the continuous random variable 𝑤̃𝑗𝑡 is discretized into 

𝑤𝑗𝑡: first, divide the time range of  [𝑏, 𝑎] into m stages at an 

interval of ∆𝑡 = 5 minutes (assuming that the length of [𝑏, 𝑎] 
is 𝑚∆𝑡). These m stages are represented by m integers from 
𝑏/∆𝑡 to 𝑎 ∆𝑡⁄ − 1, therefore, 𝑤𝑗𝑡 ∈ [𝑏 ∆𝑡⁄ , 𝑎 ∆𝑡⁄ − 1] and 𝑤𝑗𝑡  
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is an integer. Secondly, the probability of 𝑤𝑗𝑡  taking value 𝑘 

out of the m values is given by 

Prob(𝑤𝑗𝑡 = 𝑘) = Φ(𝜇, 𝜎2; 𝜌𝑢) − Φ(𝜇, 𝜎
2; 𝜌𝑙) (2) 

 

where Φ is the cumulative distribution function as defined in 
(1). 𝜌𝑢  and 𝜌𝑙  are the upper and lower bounds of 𝑤̃𝑗𝑡  within 

Stage 𝑘, respectively. 𝑤𝑗𝑡  is the discretized random workload, 

as explained above. For example, 𝑤𝑗𝑡 ∈ {3, 4, 5, 6}, meaning 

that the ground transport for the jth flight at Stage t requires 15 
minutes (𝑤𝑗𝑡 =  3 stages) to 30 minutes (𝑤𝑗𝑡 =  6 stages) to 

complete. The probability of 𝑤𝑗𝑡  taking each discrete value is 

derived in (2). 𝑤𝑗𝑡  is a critical input for the ASEV dynamics 

model introduced in Section II –B. 

B. ASEV dynamics model 

In this chapter, an ASEV dynamics model is presented, 

which models the control decisions, the ASEV states and their 

transitions over time. The model considers the uncertain 

ground transport workload as modelled in Section II-A.  

At any Stage t (time is discretised into stages), the ASEV fleet 

state 𝑆𝑡  consists of the states of all individual ASEVs. 𝑆𝑖𝑡  
denotes the state of an ith ASEV at Stage t, given by: 

 

𝑆𝑖𝑡 = [𝑞𝑖𝑡 , 𝑆𝑜𝐶𝑖𝑡 , 𝑓𝑅𝑖𝑡] (3) 

 

where 𝑞𝑖𝑡 is a discrete state: 𝑞𝑖𝑡 = 1 means that the ith ASEV 

is charging at Stage t; 𝑞𝑖𝑡 = 0 means that it is idling; 𝑞𝑖𝑡 < 0 

means that it is working (in this paper, “working” means 

undertaking ground transport) and it will take |𝑞𝑖𝑡| stages to 

complete the work. 𝑆𝑜𝐶𝑖𝑡 , a continuous state, is the state of 

charge (SoC) of the ith ASEV’s battery at Stage t. 𝑓𝑅𝑖𝑡 denotes 

the battery cycles to failure for the ith ASEV at Stage t. 

 

Figure 1.  Overview of the ASEV dynamics model. 

According to Fig. 1, the optimal control is performed online, 

i.e. the control decision for each Stage t is made when the state 

𝑆𝑖𝑡  at Stage t becomes known. 

The energy cost for the ith ASEV at Stage t is given by: 

𝐶𝑖𝑡

= {
𝐶𝑅 ∙ 𝑚𝑎𝑥{𝑞𝑖𝑡 , 0} ∙ 𝐸𝑐        if𝑚𝑎𝑥{𝑞𝑖𝑡 , 0} ∙ 𝐸𝑐 ≤ 𝐸𝑅𝑡
𝐶𝑅𝐸𝑅𝑡 + 𝐶𝐺𝑡(𝑚𝑎𝑥{𝑞𝑖𝑡 , 0} ∙ 𝐸𝑐 − 𝐸𝑅𝑡)   otherwise

 
(4) 

 

where 𝐶𝑅 denotes the energy price per kWh from renewable 

generation. 𝐸𝑐  denotes the energy consumption (some of the 

energy is charged to the battery and the rest is lost) during each 

stage. 𝐸𝑐  is a constant given the assumption of the constant 

battery charging power. 𝐶𝐺𝑡 denotes the price per kWh of the 

grid-supplied energy at Stage t. 𝐸𝑅𝑡  denotes the available 

energy generated by renewable generation at Stage t. 𝑞𝑖𝑡  is 

given in (3). The “max” term in (4) ensures that the energy cost 

is incurred only when the ASEV is charging. Equation (4) is 

based on the principle that the ASEV fleet gives priority to 

consuming the cheap energy directly purchased from 

renewable generation over consuming the grid-supplied 

energy. For the 𝐸𝑅𝑡 , it is assumed to be accurately predicted by 

a combination of historical data and prediction algorithms and 

for each time stage, it is known to the airport control system. 
The battery degradation cost for the ith ASEV at Stage t is 

given by 

𝐵𝑖𝑡 = 𝑓(𝑆𝑜𝐶𝑖𝑡 , 𝐸𝑤 , 𝑓𝑅𝑖𝑡)     if 𝑞𝑖𝑡 < 0 (5) 
 

where 𝑞𝑖𝑡 , 𝑆𝑜𝐶𝑖𝑡  and 𝑓𝑅𝑖𝑡  are given in (3). 𝐸𝑤  is the energy 
discharged during Stage t. Function f is the linear function for 
battery degradation cost during its normal charging-discharging 
cycles, with its coefficient derived from [23]. It is the function 
of the SoC, energy discharged during Stage t, and the cycles to 
failure. If the battery is over-charged or deep discharged, some 
parameters in this function will be changed and the degradation 
cost increases more with the same energy discharged. 

The total cost (including energy and battery degradation 
costs) for all ASEVs at Stage t is given by: 

𝑔𝑡 = ∑(𝐶𝑖𝑡 + 𝐵𝑖𝑡)

𝑁𝐸𝑉

𝑖=1

   𝑡 = 0,1,2… ,𝑁 − 1 (6) 

 

where 𝐶𝑖𝑡 and 𝐵𝑖𝑡  are given in (4) and (5), respectively. 𝑁𝐸𝑉 is 
the total number of ASEVs.  

Ideally, all ASEV batteries, except for those which is under 
work state or just finishing work, should be charged to full at 
the end of the day to prepare the ASEVs for ground transport 
the next day. If any battery is not charged to full at the last stage 
of the day (Stage N), this incurs a terminal stage cost. Also, if a 
flight needs the ASEV but there is no ASEV available, a 
punishment for the delay is added. In this paper, it is included 
in the terminal stage cost because it is calculated at the end of 
each day. The terminal stage cost is given by: 

𝑔𝑁 = ∑𝐶𝐺𝑁𝐵(𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑖𝑁)

𝑁𝐸𝑉

𝑖=1

+ ∑ 𝑇𝑑𝑒𝑙𝑎𝑦𝑖𝐶𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡

𝑁𝑑𝑒𝑙𝑎𝑦

𝑖=1

 

(7) 

 

where 𝐶𝐺𝑁  denotes the price per kWh of the grid-supplied 
energy at Stage N. 𝐵  denotes the battery energy capacity. 
𝑆𝑜𝐶𝑚𝑎𝑥  is the upper bound of the SoC. 𝑁𝐸𝑉 is the total number 
of ASEVs. 𝑆𝑜𝐶𝑖𝑁 denotes the SoC of the ith ASEV at Stage N. 
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𝑁𝑑𝑒𝑙𝑎𝑦  is the total number of times of ASEV delay on the day 

and 𝑇𝑑𝑒𝑙𝑎𝑦,𝑖 is the duration of the ith ASEV delay. 𝐶𝑝𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 
denotes the punishment cost per time slot. 

The objective of the ASEV optimal control is to minimize 
the summation of 𝑔𝑡 over all stages of the day. 

Min 𝐽 = 𝑔𝑁 + ∑ 𝑔𝑡
𝑁−1
𝑡=0  (8) 

 

where 𝑔𝑡 and 𝑔𝑁 are given in (6) and (7), respectively. 

When the SoC of the ith ASEV battery reaches either the 
upper bound or the lower bound, there are two state constraints:  

Case 1: an ASEV i is prevented from switching to work 
because of a low SoC. 

If 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡 ≤ 𝑆𝑜𝐶𝑚𝑖𝑛 , then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡 ≥ 0 (9) 
 

where 𝑞𝑖𝑡, 𝑞𝑖𝑡+1, and 𝑆𝑜𝐶𝑖𝑡  are defined in (3). 𝑆𝑜𝐶𝑚𝑖𝑛 denotes 
the lower bound of the SoC. 𝑢𝑖𝑡  is the control decision for 
ASEV i at Stage t: 𝑢𝑖𝑡 = 1 means “to charge battery”; 𝑢𝑖𝑡 = 0 
means “to idle”; and 𝑢𝑖𝑡 = −1  means “to work (i.e. undertake 
ground transport)”.  

Case 2: an ASEV i is prevented from battery charging 
because its SoC has reached the upper bound. 

If 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡 = 𝑆𝑜𝐶𝑚𝑎𝑥 ,  
then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡 ≠ 1 

(10) 

 

where 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are defined in (3). 𝑆𝑜𝐶𝑚𝑎𝑥  is 
defined in (7); 𝑢𝑖𝑡 is defined in (9).  

When the SoC of the ith ASEV battery is above the lower 
bound and the ASEV is not currently working, a control-based 
state transition can occur. This is further divided into two cases: 

Case 1: the ASEV i is controlled to work.  

If 𝑆𝑜𝐶𝑚𝑖𝑛 < 𝑆𝑜𝐶𝑖𝑡  and 𝑞𝑖𝑡 ≥ 0 and 𝑢𝑖𝑡
= −1, then 𝑞𝑖𝑡+1 = −𝑤𝑗𝑡  

(11) 

 

where 𝑆𝑜𝐶𝑚𝑖𝑛  is defined in (9). 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are 
defined in (3). 𝑢𝑖𝑡 is defined in (9). w_jt denotes the number of 
stages (the amount of time) required for an ASEV to serve the 
jth flight that is awaiting service at Stage t, as explained in 
Section II-A. 

When a flight j is awaiting ground transport service at Stage 
t, it should be served as soon as there is at least one free ASEV.  

If 𝑤𝑗𝑡 > 0 and ∃𝑖: 𝑞𝑖𝑡 ≥ 0 and 𝑆𝑜𝐶𝑖𝑡

> 𝑆𝑜𝐶𝑚𝑖𝑛 + 𝐸𝑤𝑓 ,  

then ∃𝑖: 𝑞𝑖𝑡+1 = −𝑤𝑗𝑡  and 𝑢𝑖𝑡 = −1 

(12) 

 

where 𝐸𝑤𝑓 denotes the energy required for serving this flight 

and the other variables are defined the same as in (11). 

If a flight j is awaiting service at Stage t but because no 
ASEV is available, the service for flight j is delayed to Stage t 
+ 1. This translates to: 

if 𝑤𝑗𝑡 > 0 and ∀𝑖: 𝑞𝑖𝑡 < 0, then 𝑤𝑗𝑡+1 = 𝑤𝑗𝑡   

and 𝑑𝑗 ← 𝑑𝑗 + 1    

𝑡 = 0,1,2… ,𝑁 − 1 

(13) 

 

where 𝑤𝑗𝑡  is defined in Section II-A. 𝑞𝑖𝑡  is defined in (3). 𝑑𝑗 
denotes the stages of delay. It is initialized to zero.  

A hard constraint exists that the stages of service delay for 
any flight should be no more than a threshold.  

𝑑𝑗 ≤ 𝑑𝑡ℎ𝑟𝑒 (14) 

 

where 𝑑𝑡ℎ𝑟𝑒 is the threshold of delay; 𝑑𝑗 is defined in (13). 

Case 2: the ASEV i is controlled to idle or charge.  

If 𝑆𝑜𝐶𝑖𝑡 < 𝑆𝑜𝐶𝑚𝑎𝑥  and 𝑞𝑖𝑡 ≥ 0 and 𝑢𝑖𝑡
≥ 0, then 𝑞𝑖𝑡+1 = 𝑢𝑖𝑡  

(15) 

 

where 𝑆𝑜𝐶𝑚𝑎𝑥  is defined in (7). 𝑞𝑖𝑡 , 𝑞𝑖𝑡+1 , and 𝑆𝑜𝐶𝑖𝑡  are 
defined in (3). 𝑢𝑖𝑡 is defined in (9).  

When the ith ASEV is working, its work cannot be 
interrupted by any control decision. The ASEV will naturally 
complete the work. This is expressed as 

If 𝑞𝑖𝑡 ≤ −2, then 𝑞𝑖𝑡+1 = 𝑞𝑖𝑡 + 1 and 𝑢𝑖𝑡 = −1 (16) 

If 𝑞𝑖𝑡 = −1, then 𝑞𝑖𝑡+1 = 0 and 𝑢𝑖𝑡 = 0 (17) 

where all variables are defined the same as in (12).  

Fig. 2 presents a state transition graph describing the 
relation among 𝑞𝑖𝑡, 𝑤𝑗𝑡 , and 𝑢𝑖𝑡. 

 

Figure 2.  State transition graph for the ith ASEV. 

In Fig. 2, each circle represents a state of the ith ASEV. The 
value in each circle is 𝑞𝑖𝑡, i.e. the discrete state of the ith ASEV 
at Stage t. Red circles mean that the ith ASEV is working. The 
green and blue circles mean that the ith ASEV is idling and 
charging, respectively. As mentioned above, work cannot be 
interrupted. Therefore, in Fig. 2, the state transits naturally from 
-6 to 0 over time, as described by (16) and (17). 

-6 -5 -4 -3 -2 -1 0 1
qit=-wjt

wjt

uit=-1 uit=0 uit=1

uit=-1
wjt

uit=-1

wjt is a random discrete variable describing the number of stages 
required to serve flight j. In this example, wjt belongs to the set {3, 4, 
5, 6}, meaning that the ground transport requires at least 15 
minutes (3 stages) and at most 30 minutes (6 stages) to complete.
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For any ASEV i at stage t, the continuous dynamics of its 
battery SoC depends on its control decision 𝑢𝑖𝑡. 

𝑆𝑜𝐶𝑖𝑡+1

= {

𝑆𝑜𝐶𝑖𝑡 − 𝐸𝑤                                              if 𝑢𝑖𝑡 = −1

𝑆𝑜𝐶𝑖𝑡 +𝑚𝑖𝑛{𝛾𝐸𝑐 , 𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑖𝑡}   if 𝑢𝑖𝑡 = 1
𝑆𝑜𝐶𝑖𝑡                                                           if 𝑢𝑖𝑡 = 0

    
(18)   

where 𝑆𝑜𝐶𝑖𝑡  and 𝑆𝑜𝐶𝑖𝑡+1 are defined in (3). Differently, in (18), 
the unit of 𝑆𝑜𝐶𝑖𝑡  and 𝑆𝑜𝐶𝑖𝑡+1 is kWh. 𝑢𝑖𝑡 is defined in (9). 𝐸𝑤 
is defined in (5). 𝐸𝑐  is the energy consumption during each 
stage, as defined in (4). 𝛾 is the efficiency of the battery. 𝛾𝐸𝑐 is 
therefore the energy charged to the battery during each stage.  

With the ASEV dynamics model established, the next step 

is to determine a sequence of control variables 𝑢𝑖𝑡 (defined in 
(9)) for all i (all ASEVs) and for all t (all stages of a day), with 
the objective to minimize the total operation cost (defined in 
(8)). 

III. OPTIMAL CONTROL OF THE ASEV DYNAMICS MODEL 

Based on the ASEV dynamics model detailed in the last 
chapter, a rollout approach is presented as an optimal control 
method to determine a sequence of control variables 𝑢𝑖𝑡  for 
each ASEV at each stage t.  

At each stage t, the optimal cost-to-go function 𝐽𝑡 is defined 
as the minimum total cost from Stage t to Stage 𝑁 − 1 (the last 
stage of the day) plus the terminal stage cost 𝑔𝑁 (as given by 
(7)). Because the prohibitively large number of states in the 
ASEV dynamics model cause a combinatorial explosion, it is 
impossible to calculate the accurate cost-to-go function 𝐽𝑡, thus 
being impossible to develop an accurate optimal control 
strategy for the ASEV dynamics model. A customized rollout 
approach is developed to yield an optimal control strategy 
through approximations. It consists of the following steps: 

Two customized suboptimal heuristic control strategies are 

developed to approximate the cost-to-go function  𝐽𝑚  as 𝐽𝑚 , 
given the starting state 𝑆𝑚 (the ASEV fleet state at Stage m). 
The two heuristics are elaborated as follows: 

Heuristic i): the “renewable matching” heuristic. At each 
Stage t from Stage m to the last stage of the day, control the 
ASEVs to charge only when is available renewable energy as 
dictated by the renewable generation profile. When a flight is 
awaiting ground transport service, always assign the available 
ASEV with the greatest SoC to take the work.  

Heuristic ii): the “greedy charging” heuristic. Given the 
starting state 𝑆𝑚 at Stage m, control the ASEVs to charge as 
early as possible until the maximum SoC is reached. When a 
flight is awaiting ground transport service, always let the 
available ASEV with the greatest SoC take the work.  

Heuristic i) is not always feasible because, when renewable 
energy is seriously deficient throughout the day, the ASEV 
batteries all have too low SoC values to undertake the “peak” 
workload of ground transport. If heuristic i) is not feasible from 

Stage t, then heuristic ii) is selected. If both heuristics are 
feasible from Stage t, the better one (the one that leads to a 

lower 𝐽𝑡 ) of the two heuristics is selected. The approximate 

cost-to-go 𝐽𝑡  for the selected heuristic is recorded for use in 
Step 2). 

Given 𝑆𝑡 (the ASEV fleet state at Stage t) which consists of 
𝑆𝑖𝑡  for all ASEVs i, the rollout approach generates the set of all 
possible 𝑆𝑡+1 by enumerating all feasible control decisions 𝑢𝑖𝑡 
(defined in (9)) for Stage t, considering the workload 𝑤𝑗𝑡  
(defined in (11)). The approach then selects the “best” 𝑆𝑡+1 that 
produces the minimum approximate cost-to-go among all S𝑡+1 
in the set [20]. The mathematical expression is  

𝑆𝑡+1 = argmin𝑆∈𝑁(𝑆𝑡) 𝐽(𝑆) (19) 

where 𝑆𝑡 is the state at Stage t. 𝑁(𝑆𝑡) is the set of all possible 

states at Stage t + 1. 𝐽(𝑆) is the approximate cost-to-go 𝐽𝑡+1 of 
the better one of the two heuristics, expressed as the function of 
state 𝑆. The rollout control 𝑢𝑖𝑡 for all ASEVs i is the control that 
corresponds to the transition from 𝑆𝑡 to 𝑆𝑡+1. 

An alternative expression with the same meaning is given 
by 

𝑢𝑡 = argmin𝑢𝑡∈𝑈𝑡 and 𝑆∈𝑁(𝑆𝑡)
[𝑔𝑡 +  𝐽(𝑆)] (20) 

where 𝑢𝑡 is the set of control decisions for all ASEVs i at Stage 
t, i.e. 𝑢𝑡 = {𝑢𝑖𝑡  for all 𝑖}. 𝑈𝑡 is the constraint set for 𝑢𝑡 at Stage 
t. 𝑆𝑡, 𝑁(𝑆𝑡), and 𝐽(𝑆) is defined in (19). 𝑔𝑡 is defined in (6).  

This process iterates until S𝑡, S𝑖𝑡 , and 𝑢𝑖𝑡 for all stages t are 
determined. The sequence of 𝑢𝑖𝑡 for all ASEVs i and all stages 
t constitute an optimal control strategy, which controls each 
ASEV to charge, idle, and work at each stage. 

IV. SIMULATION RESULTS 

In this chapter, case studies are performed to validate the 

ASEV dynamics model and the customized rollout approach. 

The case studies are based on Bristol Airport, a medium-sized 

airport in the UK. Considering the scale of the airport, the 

number of ASEVs is set as 35. The renewable power output 

profiles are obtained from [24]. The battery charging type is at 

a constant power of 22 kW [25]. The battery cycle efficiency 

is 90% [26]. To prevent overcharge and deep discharge, the 

upper and lower threshold of SoC of each battery is 20% and 

80%. If the SoC of the battery is over 80% or lower than 20%, 

the degradation cost will increase significantly. The battery 

capacity is collected from the existing reference [27]. The case 

studies consider photovoltaic (PV) generation. The price for 

PV energy is £0.04/kWh. This model was built via YALMIP 

in MATLAB R2021a and solved by Cplex on a laptop with 

Intel Core i7 CPU 3.2-GHz and 32GB RAM. 

A. Scenario 1): Comparison between the ‘greedy charging’ 

and the rollout algorithm for a typical sunny month in 

summer  

One typical month in summer is chosen for the case study. 
The workload of serving any given flight is a random variable. 
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The random workload model is explained in Section III-A. 
Each flight is served by one ASEV.  

The SoC of the ASEVs under the ‘greedy charging’ 
algorithm is shown in Fig. 3 Compared with the control 
algorithm, the ‘greedy charging’ algorithm is set as the 
benchmark. The SoC of the ASEVs under the ‘rollout approach’ 
strategy is shown in Fig. 4. Each colour in the two figures 
represents an ASEV.  

 

Figure 3.  The SoC of the ASEVs in the summer month under rollout 

algorithm. 

 

Figure 4.  The SoC of the ASEVs in the summer month under ‘greedy 

charging’ algorithm. 

The operation costs of ASEVs under the two different 
algorithms are shown in Fig. 5.  

 

Figure 5.  The cost of Bristol Airport under ‘greedy charging’ and rollout 

algorithm in the summer month. 

When the ‘greedy charging’ algorithm is applied, in the 
summer month, for every time slot, there is no ASEV working 
beyond the upper bound or under the lower bound of its SoC 

range. It is assumed that there is no punishment for the ASEV's 
late departure. The total cost is £11,871.3 for the airport in the 
month. The battery degradation cost, energy purchase cost and 
terminal stage cost are about £4,221.3, £7,649.7 and £0 
respectively. 

If the rollout algorithm is applied, the total cost in the 
summer month is £10,673.2 for the airport. This is broken down 
into the battery degradation cost, energy purchase cost, and 
terminal stage cost of £4,668.6, £5,012.1, and £922.4, 
respectively.  

From the comparison of the ‘greedy charging’ algorithm 
and the rollout algorithm, it is clear that the rollout algorithm 
incurs a total cost of 10.5% less than that of the ‘greedy 
charging’ algorithm. The battery degradation cost and energy 
purchase cost of the rollout algorithm is 11.1% more than and 
51.3% less than those of the ‘greedy charging’ algorithm, 
respectively. In Fig. 4, it is shown that using the rollout 
algorithm, the ASEV battery may have an SoC below the lower 
bound. This is because the ASEV would be charged without 
considering possible flight delays. However, the rollout 
algorithm achieves a significant saving in the energy purchase 
cost, compared to the ‘greedy charging’ algorithm, because: the 
‘greedy charging’ algorithm does not care about the electricity 
price at all but charges the battery whenever the SoC is not at 
the maximum. In contrast, the rollout algorithm takes advantage 
of both the cheap PV energy and the low tariff period of the 
grid-supplied energy.   

In Fig. 3 and Fig. 4, the charging-discharging frequency of 
‘greedy charging’ is greater than that of the rollout algorithm. 
However, the battery degradation cost under the ‘greedy 
charging’ algorithm is less than that under the rollout algorithm. 
This is because under the ‘greedy charging’ according to 
Heuristic ii), the average SoC at the start of charging is greater 
than that under the rollout algorithm. In other words, the rollout 
algorithm leads to deeper discharges and thus a greater battery 
degradation cost than the ‘greedy charging’ algorithm. 
Secondly, as mentioned above, occasionally, the SoC of the 
ASEV under the rollout algorithm drops below the lower 
threshold, resulting in a higher-than-usual degradation cost. 
The terminal stage cost of ‘greedy charging’ is £0 because it 
charges an ASEV battery whenever it is not full and the ASEV 
is not working, regardless of the electricity price. This ensures 
that the ASEV batteries all have the maximum SoC value at the 
end of the day, resulting in a zero terminal stage cost. In contrast, 
the rollout algorithm only charges the ASEV batteries when the 
electricity price is low. As a result, at the end of the day, not all 
ASEV batteries are fully charged, causing a positive terminal 
stage cost. 

From the simulation results, considering the total cost, the 
rollout algorithm may be better than the ‘greedy charging’ 
algorithm. But in future, if the degradation cost increases, the 
‘greedy charging’ algorithm can be set as a possible protection 
control strategy for the ASEVs. 
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V. CONCLUSIONS 

This paper proposes a new dynamics model for airport 
service electric vehicles (ASEVs) and a new customized rollout 
approach as an optimal control method for the ASEV dynamics 
model.  Case studies compare the rollout algorithm and the 
‘greedy charging’ algorithm (it charges the battery whenever its 
SoC is not the maximum) for a typical summer month. The 
summer month has very different PV output profiles and tariffs. 
In the case study, the ‘rollout algorithm’ achieves a lower total 
cost than the ‘greedy charging’ algorithm. This is because the 
rollout algorithm takes advantage of the cheap PV energy as 
well as the off-peak price of the grid-supplied energy, with 
lower energy cost and total cost. However, the ‘greedy charging’ 
algorithm can help reduce the degradation cost. The battery of 
the ASEV under the ‘greedy charging’ algorithm may work for 
a longer time than the rollout algorithm. The research outcome 
will guide the airport to control the ASEV based on the 
transportation electrification in the airport. Future work will 
focus on an improvement of base algorithms for the rollout 
approach and applying the rollout approach to a larger airport 
with a more complex situation. 
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