Inferring Electric Vehicle Charging Patterns from
Smart Meter Data for Impact Studies

Feng Li*!, Elodie Campeau*, Ilhan Kocar®, and Antoine Lesage-Landry*
*Department of Electrical Engineering, Polytechnique Montreal, GERAD & Mila, Montreal, Quebec, Canada H3T 1J4
Email: {feng.li, elodie.campeau, antoine.lesage-landry} @polymtl.ca
TDepartment of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
Email: ilhan.kocar@polyu.edu.hk
fEaton’s CYME International T&D, Brossard, Quebec, Canada J4Z ON5

Abstract—In this work, we propose a non-intrusive and train-
ing free method to detect behind-the-meter (BTM) electric vehicle
(EV) charging events from the data measured by advanced
metering infrastructure (AMI) such as smart meters. By lever-
aging the contextual information of EV charging, we formulate a
mixed-integer convex quadratic program (MICQP) to detect EV
charging events from customers’ daily meter data. No labelled
training data or hyperparameter tuning are required, and the
MICQP can be efficiently solved. By collecting information about
the start time, the charging duration, and the power level of each
detected charging event, we infer customers’ charging patterns
in terms of probabilities of charging profiles through a data-
driven approach using one year’s meter data. In a numerical
case study, we use the proposed approach to extract EV charging
events from a test dataset of customers’ meter data, and we
demonstrate that similar detection accuracy is achieved as that of
other learning-based approaches which use high-solution meter
data. Finally, impacts of EV charging on the IEEE-8500 test
feeder are presented in the case study by using the inferred
charging patterns.

Index Terms—Convex programming, data-driven, electric ve-
hicle, smart meter, behind-the-meter, distribution networks.

I. INTRODUCTION

With the increasing penetration levels of EVs on the power
distribution networks, utility planners need to evaluate the
impacts of EV charging on their networks to maintain system
reliability and power quality. Due to the randomness associated
with the usage of EVs, stochastic methods are usually adopted
to analyze the impact by characterizing EV owners’ charging
habits in terms of probabilities of charging profiles [1]. While
such probabilities can be constructed based on historical EV
charging events, as EV chargers are often installed behind-the-
meter (BTM), the charging events are invisible to utilities. It
is hence challenging to directly observe customers’ charging
behaviours. In this work, we propose a method to detect
customers’ charging events from the smart meter data, which
are readily available to the utilities. For each charging event
detected, the start time, the duration, and the power level of
the charger is extracted. We then infer customers’ charging
patterns in terms of probability distributions based on the
extracted information out of all charging events detected.

In the literature, there exist mainly two groups of methods
to detect EV charging events from the smart meter data: su-
pervised learning-based and training-free methods. Supervised

machine learning methods, e.g., convolutional neural networks
and recurrent neural networks, have been trained to detect EV
charging events with the best average accuracy of 71% [2],
[3], [4], [5]. These methods primarily focus on identifying
time periods associated with EV charging activities. Super-
vised classification methods, e.g., random forest algorithm, k-
nearest neighbour, and classification-regression trees, are also
deployed for qualitative purposes, such as distinguishing EV
owners from other consumers [6], [7]. The downside of these
methods is that their performance is highly dependent on the
quality and quantity of data available for training, i.e., the
training samples.

In addition to supervised learning-based methods, training-
free methods have also been utilized in EV detection. These
approaches take advantage of contextual information (e.g.,
standardized power level of EV chargers), and for this reason,
they are widely applicable to customers’ data on different
distribution networks and/or regions. Models based on cross-
correlation and pattern recognition are proposed in [4], [8].
These models use sliding windows and pattern search tech-
niques to identify EV’s charging events. For improved accu-
racy, filtering techniques are proposed in [9], [10] to specifi-
cally remove data segments that do not meet typical values of
power levels and of duration of an EV charging event. Signal
decomposition is also utilized and takes advantage of trends
in measured meter data to target EV signatures [11]. These
methods are easily interpretable, but are limited by the as-
sumptions made about EV charging behaviours. More refined
models further leverage statistical and probabilistic methods.
For example, [12], [13] use independent component analysis
(ICA) to detect EV charging events. Probabilistic models such
as hidden Markov models (HMM) allow to account for the
uncertainty around EV charging profiles in terms of the start
time, the initial state-of-charge, duration, or the power level.
In [14], [15], the authors used HMM to separate individual
appliances from an aggregate load without requiring complete
knowledge of the types of appliances in the households. Even
though no training is required, hyperparameter tuning is still
necessary for optimal performance.

In this work, we develop a method that can accurately
detect the EV charging events from smart meter data through
a mixed-integer convex program, which can be solved in
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a computationally efficient way. Our method leverages the
contextual information of EV charging, and does not rely
on any supervised or unsupervised learning models hence no
labelled training samples or hyperparameter tuning are nec-
essary, making it readily implementable for utilities. Through
a data-driven approach, we construct the charging patterns of
all customers in terms of probability distributions from the
detection results. Using the inferred charging patterns, impacts
of these customers’ EV charging behaviours to the power
distribution network can then be analyzed [1].

The rest of the paper is organized as follows: in Sec-
tion II we state the main assumptions about the contextual
information of EV charging. We then formulate a mixed-
integer convex quadratic program to detect a customer’s EV
charging events during a day. In Section III, we present
our methodology to infer EV charging patterns for a set of
customers on the distribution network, based on the detected
EV charging events. The charging patterns are represented by
distributions of charging start time, duration, and power levels.
We present a case study to illustrate the EV charging patterns
extracted by our proposed approach. We then showcase the
quality and accuracy of the inferred patterns by using them
in a stochastic analysis of EV impacts to a test distribution
network in Section IV. Finally, we conclude in Section V and
point out some future work directions.

II. DETECTION OF EV CHARGING EVENTS

Let P = [P;]Y, € RNX™T be the real power data
measured in kW by the smart meters for a set of N cus-
tomers and for Np days, where 7' is the time horizon or the
number of data samples during a day. Here, we assume that
P, € R™T is measured at a 15-minute interval, hence T = 96.
Let PEY PBL ¢ RVNXMoT' refer to, respectively, the power
demands to charge customers’ EVs and those of the baseload,
i.e., all other appliances and devices in the households. Hence,
we write P = PEY + PBL. Our goal is to disaggregate PEY
from P through a detection procedure for EV charging events.

A. Contextual information

In this section, we state several assumptions based on
characteristics of EV charging events and results of statistical
studies. In this work, we consider only the residential cus-
tomers, as they account for up to 80% of charging events with
diversified and stochastic charging patterns [16].

o The charging power levels depend on the vehicle mod-
els and the type of chargers. For residential customers,
Level 1 or Level 2 chargers are usually used. As the time
required for a full-charge by Level 2 chargers is shorter
and the associated costs to install them keep decreas-
ing over time, they are becoming more popular among
residential customers [17]. Hence, the set of possible
charging power levels depending on vehicle models is
assumed to be P = {3.6,6.6,7.2,9.6,11.5,15}, in kW.

o Based on a statistical study on Pecan Street data [18],
the duration of charging events is usually more than
30 minutes, and the number of charging events during a

day is usually less than 3 [11]. In another statistical study
on HVAC systems, the average duty cycle of an HVAC
system is about 30 minutes [19]. In order to differentiate
EV charging events from HVAC duty cycles, in this work
we ignore charging events that last less than 1 hour.

o We assume that the profile of a charging event follows

a rectangular waveform, i.e., the power consumption is
constant during the entire charging period [20], and is
voltage independent. The variations in power consump-
tion are ignored when the charging starts and completes,
as well as due to voltage fluctuations during charging. As
shown later in the case study section, the assumption is
valid, e.g., when comparing the waveform of the detected
EV charging event with the true waveform.

o According to a survey on multi-vehicle households [21],
90% of EV owners have more than 1 vehicle but only
1% of them own another EV. Hence, we assume that
only 1 EV is charged each day, even for households with
multiple EVs. Hence, all charging events in a day should
have the same power level.

We remark that in some cases where utilities only have
data of lower temporal resolution, e.g., hourly measurements,
our EV detection approach can still be applied but reduced
accuracy may be expected.

B. Mixed-integer convex quadratic program

Let P; 4 € RT be customer i’s power demand during day d,
and PPy, PP € R” be the demand for EV charging and
baseload, respectively. The mixed-integer convex quadratic

program (MICQP) to determine P}y is formulated as:

T
subject to ?B}i = % Zthl PPl (1), (2)
Py = PPy + PPy, 3)
x,y,z € {0,1}7, 4)
6 € {0,1}/PIXT 5)
6" e RIPI, (6)
1ry <2, )
St g (t 4 ) + 2(t+n) < 1,VE (8)
5 1p <x, ©)
5 (P—clp) <P <8 (P+elp), (10)
5" = %MT, (1
8(p.t) <1— P78 (p+n), ¥p,t,  (12)
PIY(t) — PRyt — 1) <y(t)M, vt, (13)
PIY(t — 1) — Pyy(t) < z(t)M, Vi, (14)
PR (t) < x(t)M, Vi, (15)
PIY (1), PYy(t) > 0, Vi, (16)
x(t) —x(t—1) =y(t) —z(t), Vt. (17
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The objective (1) is to minimize the variance of t of the baseload
PP after P}, is subtracted from P; 4, where PP% is the mean
value of the resultmg baseload as computed in (2) The binary
variables x,y,z € {0,1}7 indicate, respectively, whether an
EV is being charged (x(¢) = 1), the start time (y(¢) = 1), and
the end time (z(¢) = 1) of a charging event for each time step ¢
during the horizon T'. Here, as we assume that EVs are not
charged more than twice during a day, we limit the detection
of charging events to 2 by (7), i.e., y(¢) = 1 at no more than
2 time steps. As we do not consider charging events that last
less than 1 hour, we use (8) to enforce that we cannot have
an active y and an active z during any time window of 4 time
steps. With (9) and (10), the power level at each time step ¢
takes a single value from P (within some tolerance € > 0), and
the activated power level is indicated by the binary variable
6 € {0, 1}/PIXT_ Here, |P| is the cardinality of P, and 1p| is
the column vector of ones of dimension |P|. It is possible that
different power levels may occur during a charging event, i.e.,
step changes, hence we need to ensure that the same power
level is adopted during all charging events of the day. An
intermediate variable 8" € RI”! is defined in (11) to calculate
the fraction of power levels activated during the day, where 1
is the column vector of ones of dimension 7'. By (12) we force
that the higher power level with a corresponding non-zero 8"
value is always used during this day. By (13)-(17), the profile
of a charging event must follow a rectangular waveform at
the selected power level, where M is a large constant, i.e.,
M > max(P). Finally, the resulting P}y and PP};(t) should
be non-negative at all times. '

Note that for the simplicity in notation, the subscripts ¢ and d
on all binary and intermediate variables, namely x,y, z, §, and
6h, are omitted in the formulation of the MICQP.

III. CUSTOMERS’ EV CHARGING PATTERNS

Let 7% and 79 be random variables on sample space 7 and
P° be a random variable on sample space P, which represent,
respectively, the start time, the duration, and the charger power
level of EV charging events for all customers on a given net-
work. Here, T = [0, At, 2At, - - -, (T—1)At] is the discretized
time horizon with a time step At = 15 minutes. The charging
patterns can be characterized through the inferred probability
mass fur}ctions (PMFS) of these random variables, namely,
frs(t), fra(t), and fpe(p).

Let t§ .3 4,15 4 and Pf ; be, respectively, the duration, the
start time, the end time, and the power level of the EV charging
events detected for customer ¢ on day d by solving the MICQP
proposed in the previous section. From the solution obtained,
we compute ta= {t eT|ylt) =1}t , ={teT|zl) =
1}, ]y =15, —t; ,, and P, = {max,(P})}. We note that
as we detect up to two charglng events in each day, two values
may be collected in each of them. By repeatedly solving the
MICQP for all customers and for all days, i.e., to extract all
charging events in P, we obtain the following multisets of

detected results:

T ={t{4 d=1,2,--- ,Np, i=1,2,--- N}
_{tld, =1,2,---,Np, i=1,2,--- ,N}
{ dad—12 ?ND7Z.:1,27"‘,N}’

We remark that 7°,79, and P° contain the same number
of elements. The probability mass functions (PMFs) for the
random variables 7°,T¢, and P° are then approximated by
the empirical distributions:

s t Z 1{25“ t E T
|Ts| teTs
de d| Z lga(t), teT (18)
tdeTd
fP c Z 1{17} P E P’
|7’ per

where 1 is an indicator function, i.e., 1y} (p) = 1if p° = p
and 1,3 (p) = 0 otherwise.
Based on 7° and 79, we then construct a set of all possible
charging profiles in per-unit (p.u.) values:
L={lpu) |t e t'eT", (19)
where 7° and T are the support of 7% and 79, respectively,
and

1, ifts<t<ts4+19,
lts,td(t) = {O

A profile I 4(t) reconstructs the per-unit rectangular wave-
form of a charging event that has been detected from cus-
tomers’ smart meter data. To conduct an impact analysis of
EV charging, we also need to calculate the probability that
each [ 4(t) is adopted, which is given by:

. (20)
otherwise.

Prlly ] = Pr[T* = ¢*,T¢ = t]

21
=Pr[T* =t | T9 = t%) fra(tY),
where Pr[T® = t* | T9 = t4] is approximated by m/n, where n
is the total number of detected charging events lasting for ¢¢
and m is the number of charging events starting at t° out of
the n events. We remark that as ¢4 € Id, we have n > 1.

IV. CASE STUDY

We use the Pecan Street data [18] to evaluate the per-
formance of our method to extract customers’ EV charging
habits. The dataset contains smart meter data measured for 76
customers with EVs for the full year of 2021. Daily power
demand of EV charging is also recorded for each customer,
which serves as the “ground truth” to verify the accuracy of
the detection results using our approach.
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Load 1517- Day 217

104 — AMI
EV
5 54 —— EV (truth)
0 20 40 60 80
Time (every 15min)
Load 2470- Day 246
— AMI
57 EV
E —— EV (truth) M
0 T T T T
0 20 40 60 80
Time (every 15min)
Load 2018- Day 58
5.0 1 — AMI

EV
—— EV (truth)

0 20 40 60 80
Time (every 15min)

Fig. 1: Examples of EV charging events detected from smart
meter data measured throughout a day at every 15 minutes

A. Distributions of charging patterns

The first step is to detect daily charging events of each
customer from the smart meter data by solving the MICQP. We
remark that some customers have photovoltaic (PV) systems,
so the measured consumption has already been offset by the
PV generation. In order to compare the detected events with
the ground truth, the smart meter data for these customers
are pre-processed by subtracting the PV generation. Figures 1
and 2 show examples of the charging events detected during
a day of selected customers. Two experiments are performed:
(1) using smart meter data measured at a 15-minute interval
and (2) using hourly measurements.

We observe in Figure 1 that EV charging events are ac-
curately detected from the meter data measured at every 15
minutes in terms of start time, duration, and the power level.
We demonstrate that our method can accurately detect the EV
charging events in the following cases: multiple events occur
during the day (e.g., Load 1517 and Load 2018), periods
with constant higher power consumption are not identified
as EV charging (e.g., Load 2470), and the pause between
two charging events is correctly recognized (e.g., Load 2018).
We also test our approach on the same customers/days but
using hourly meter measurements, and the results are shown
in Figure 2. We observe that while EV charging events can
still be detected, the level of accuracy is reduced mainly due
to the lack of data. For example, the power level is determined
to be 3.6kW for Load 1517 because the baseload consumption
during the day would become negative if the power level were
set at 7.2kW. For Load 2470, a peak demand at 2AM is
mistakenly identified as a charging event for 1 hour. Lastly, the
brief pause between the two charging events for Load 2018 is

Load 1517- Day 217

101 — Ami
EV
E 51 —— EV (truth)
0 \/
0 é 1'0 1'5 2'0
Time (hourly)
Load 2470- Day 246
5 — AMI
= EV
~ — EV (truth)J\/\
0 N~ :
0 5 10 15 20
Time (hourly)
Load 2018- Day 58
5.0 1 — AMI
EV
E 2.5 —— EV (truth)
0.0

0 5 10 15 20
Time (hourly)
Fig. 2: EV charging events detected for the same customer/day
as in Figure 1 but from smart meter data measured at every
hour

not picked up, hence the extracted information on start time
and duration of the charging event is not exact.

To benchmark the performance of our proposed approach
to detect the EV charging events, we compare it with two
other algorithms: one based on signal decomposition [11] and
the other using a trained CNN model [5]. We adopt the two
metrics used in [11] to evaluate the detection performance on
customer 7’s data:

e F1 Score F1 that measures the accuracy of detection
results. The score is defined in terms of sample counts
in True Positive (T'P), False Positive (F'P), and False
Negative (F'N) conditions:

B 2T P;
- 2TP,+ FP,+ FN;’
o Explained Variance Score Ey, that measures the disper-

sion or discrepancy between the detected and true EV
consumption data. The Ey, score is defined as:

Var(PEY — PEV )

,true
EV ’
Var(Pi,lrue)

where PEY, PEXUC € RMT are the detected and true EV

charging consumption for all days, respectively.

Fl;

Evar,i =

We remark that the closer the two metric values are to 1, the
better the performance of the algorithm is.

Although the benchmark algorithms also use Pecan Street
datasets to test the performance, it is not clear what customers
and time periods are included in the datasets. Therefore, it is
not possible to directly compare the metric values of a specific
customer. Instead, we report the minimum, mean, median, and
maximum of F1 and E,, values obtained for all customers in
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Proposed approach  Decomposition [11] CNN [5]
F1 Evar F1 Evar F1 Evar
Min 0.696 0.512 0.771 0.611 0.765  0.857
Mean 0.876 0.805 0.906 0.831 0.892  0.890
Median  0.889 0.819 0.909 0.852 0911  0.891
Max 0.967 0.972 0.982 0.974 0.925 0.924

TABLE I: Performance comparison with other algorithms

the dataset used in this work, and compare them with those
reported in [5], [11] using their datasets. The values are shown
in Table I. We note that the performance of our approach is
comparable to that of the benchmark algorithms. Although
the minimum, mean, and median values from our approach
are slightly lower, we should emphasize that the meter data
used in both benchmark algorithms have 1-minute intervals,
while data with 15-minute intervals are used in our work. As
pointed out in [11], as the data measurement interval increases,
the accuracy of the algorithm decreases (e.g., the mean Ey,,
drops to 0.69 if data with 15-minute intervals are used in [11]).
Further, to obtain high accuracy, the CNN approach [5], being
a supervised-learning method, needs a large number of labelled
training samples which are difficult to obtain in practice. While
the method in [11] does not require training, tuning of the
hyperparamters in both stages of the decomposition is required
to differentiate EV charging from the use of air conditioners.
In our approach, by leveraging the readily available contextual
information of EV charging events, we do not require high-
resolution data, and we achieve comparable accuracy with that
of the literature without any model training or hyperparameter
tuning.

Next, we compute the empirical distributions for customers’
charging habits as in (18) based on charging events detected
for all customers during a full year. We use the meter data with
15-minute intervals due to the better accuracy of the detection
results. We compare the estimated PMFs and the cumulative
distribution functions (CDFs, except for the charger power
levels) computed from the detection results with those from
the ground truth in Figure 3. The following can be inferred
from the results for the customers in this Pecan Street dataset:

o Customers tend to charge EVs during evenings until early
mornings, with slightly higher probabilities starting in the
evenings;

o Each charging event usually does not last more than 9
hours;

« Daily energy consumption for charging EVs rarely exceed
60kWh, and;

o More than half of the EVs are charged at 3.6kW.

We remark that in the distributions of the charging start time,
high probabilities of starting the charging at midnight are
observed. This is because some charging events start during
the evening and continue until the next day. In this case, as we
only detect events during one day’s time window, the event is
broken into two parts with the second part starting at midnight
the next day. Also, as we only detect events lasting more

- - 1.00
P
0.061 | =W Detected (PMF) 2
2 e Truth (PMF) ; r0.75
= 0.04 —=-=- Detected (CDF)
% _______ —#— Truth (CDF) r0.50
* 0.021 | el L 0.25
oo LSttt oL
RSN 5 (LA O QO AC A A (LA S o SN
RN A N PN NN NN NN R e
Charging start time
0.15 - H1.00
o~ h L0.75
= 0.10
3 | | f @ Detected (PMF) === Detected (CDF) L 0.50
3 | Truth (PMF) —+— Truth (CDF) :
& 0.05 I L 0.25
0.00 ’dj!!!!!!llllllllkilli%llllil iy - . . . . . I 0.00
0.0 1.0 2.0 3.0 4.0 50 6.0 7.0 8.0 9.0 10.011.012.013.0
Charging duration (hr)
1.00
5 0157 i 0.75
3 1 I Detected (PMF) === Detected (CDF) |
g 010 I I Truth (PMF)  —+— Truth (CDF) 050
* 0.051 H”” L 0.25
0.00 =14 .,...!!,IH;I....., — - - —to0.00
0 10 20 30 40 50 60 70 80
Daily charging consumption (kWh)
o 60% 1 - B Detected
= e Truth
I
S 40%
E I
Q
£ 20% J —
<
’ ll N
— ! o

0% -

3.6 6.6 7.2 9.6 11.5 15.0
Charger power level (kW)

Fig. 3: Distributions of start time, duration, daily energy, and
charger power levels based on detected charging events

than 1 hour, we obtain a zero probability for charging events
starting on and after 11PM and for charging duration less than
1 hour, which are observable differences when comparing the
distributions in Figure 3.

B. Impact analysis of EV charging

In this part of the case study, we use the inferred charging
patterns to study the impact of EV charging to the distribution
network using the stochastic method described in [1]. The
IEEE-8500 test feeder [22] is selected with some modifications
to demonstrate the results. We construct the set of all possi-
ble per-unit charging profiles based on the detected results
using (19) and (20). The resulting set contains a total of
4224 profiles. We then use (21) to calculate the probability
that each profile will be adopted by the customers on the
network. We illustrate the probabilities of all profiles as a
heat map in Figure 4, where each profile is represented by
the tuple (start time, duration). For example, (8PM, 2h30m)
represents the profile for which charging starts at 8PM and
lasts for 2 hours and 30 minutes. To get the EV charging
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Profile probabilities (Detected)
12 - - 0.005

- 0.004

-0.003

-0.002

Duration (hour)

-0.001

-0.000

12 - - 0.005

10- - 0.004

-0.003

-0.002

Duration (hour)

3 ", -0.001
"
2 ik
1] .II"F -0.000
Fig. 4: Probabilities of profiles

profiles in kW, we multiply the per-unit profiles with the
6 power levels in P. The distribution of the power levels is
shown in the bottom right plot of Figure 3. For simplicity,
we assume that the distribution of power levels and the
probabilities that per-unit charging profiles are adopted by the
customers are independent.

In Figure 5 we show the impacts of EV charging on
the loading level of the substation transformer at penetration
rates of 10%, 30%, 50%, and 80%. The penetration rate is
defined as the ratio of the number of EVs connected to the
network over the total number of customers. We use both the
inferred probabilities and the true probabilities as in Figure 4
to perform the impact analyses. At each penetration rate,
we show the loading curve over one day without any EV
connected and compare the loading curves obtained from the
two sets of probabilities. We observe that as the penetration
grows, impacts to the transformer loading level increase, and
the transformer becomes overloaded during the evening hours
at 80% EV penetration. Due to differences in the profile
distributions, errors between the two loading curves are more
observable at higher penetration rates. We extract the per-unit
errors at all penetrations and show them in Figure 6. Errors
are mostly higher during the 9h-11h and evening hours, which
are the periods where differences in the profile distributions
are more observable in Figure 4. At 80% penetration rate, the
worst error is around 0.06 p.u. or 6%.

At 10% EV penetration

0.6 4 //‘\\\//
NS

0 5 10 15 20 0 5 10 15 20
Time (Hour) Time (Hour)

At 30% EV penetration

e

o N
S o o = o»
> o ® o N

Loading level (p.u.)

o
N

Loading level (p.u.)

o
o

At 50% EV penetration At 80% EV penetration

Loading level (p.u.)
Loading level (p.u.)

0 5 10 15 20 0 5 10 15 20
Time (Hour) Time (Hour)
—— No EV

With EV (Detected probabilities) === With EV (True probabilities)

Fig. 5: Comparison of the substation transformer loading levels
using detected and true profile probabilities at various EV
penetration rates

—— 10% penetration

30% penetration
—— 50% penetration
0.04 4 —— 80% penetration

0.06

0.02

0.00

Error of loading level (p.u.)

T T

0 5 10 15 20
Time (Hour)

Fig. 6: Result errors of the substation transformer loading
levels using detected and true profile probabilities at various
EV penetration rates

V. CONCLUSION

In this work, a non-intrusive and training-free method is pro-
posed to detect BTM EV charging events based on customers’
smart meter data. Our approach does not require labelled
training data nor hyperparameter tuning, and achieves a similar
level of accuracy in extracting information of charging events
as that of the literature by using meter data measured at every
15 minutes. Through a data-driven approach, we infer cus-
tomers’ charging patterns in terms of probability distributions
of charging profiles from the detection results during an entire
year. We compare the inferred probability distributions with
those from the ground truth, and illustrate that even if there
exist some minor differences between the two sets of distribu-
tions, no significant error occurs in the results of EV charging
impact analyses. The inferred probability distributions from
our approach allow utilities to not only evaluate impacts that
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EV charging may bring to power distribution networks, but
also design incentive programs to mitigate equipment overload
for better planning and operation of their networks [23]. In
practice, as EV owners’ charging behaviours may shift over
time, the variations can be captured by periodically applying
the method on customers’ smart meter data to update the
inferred probability distributions.

Our detection approach requires that the meter data contain
only consumption; in other words, if customers have power-
generating devices installed such as PV or battery systems,
the generation must be subtracted from the meter data. As
this information may not be available in practice, in the future
we wish to extend our approach by adding an extra step to
estimate BTM generation (e.g., [24]) and exclude them from
the meter data. Our approach can be further improved by
relaxing the assumption of rectangular charging waveform,
i.e., by considering variations of charging power in time.
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