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Abstract—Transmission systems have experienced an increase
in the occurrence frequency and intensity of high voltage events
over the past few years. Since traditional approaches to optimal
power flow do not scale well to real-life systems, it has become
urgent to develop new methods to help operators improve tertiary
voltage control. In this paper, we propose to train a graph neural
network to choose voltage setpoints by interacting with a power
grid simulator using reinforcement learning techniques. Moreover,
we introduce the hyper heterogeneous multi graph formalism
to account for topology variations of real-life systems (assets
disconnection, bus-splitting, etc.). Our approach is validated on
an artificial case study based on the case60nordic power grid.

Index Terms—Graph Neural Networks, Reinforcement Learn-
ing, Tertiary Voltage Control

I. BACKGROUND & MOTIVATIONS

In recent years, transmission systems have experienced
an increase in the frequency and intensity of over-voltage
events [1]. This worrying trend is due to multiple factors,
including the increasing share of hard-to-predict renewable
energies, new electricity uses and several temporary net load
reductions. Voltage is controlled inter alia by generators that
adjust their reactive power production to match a certain
voltage setpoint (primary voltage control). Multiple generators
can be pooled together to control the voltage at a so-called
“pilot” bus (secondary voltage control). Tertiary voltage control
consists in keeping all voltages across the grid in an acceptable
range, firstly by choosing appropriate voltage setpoints (as
input to a primary or a secondary voltage control), but also
by opening transmission lines, connecting and disconnecting
shunts, controlling tap changers and starting synchronous
condensers. The growing complexity of tertiary voltage control
pushes Transmission System Operators (TSOs) to develop
real-time decision support tools to assist operators in their
daily tasks. For each operating condition it is given, it should
suggest an action to the operator, the latter being free to ignore
it. Thus, this is an open-loop configuration, where the tool
cannot take as input the actual system’s response to its own
actions. Furthermore, the tool should not rely on any expensive
intermediate simulation so as to meet real-time constraints.

Tertiary voltage control can be cast as an AC Optimal Power
Flow (ACOPF) problem [2]. Despite an extensive body of

literature, none of the current traditional resolution methods
scale well to real-life problems, which involve large decision
spaces and prohibitive combinatorial aspects. Hoping for a more
scalable approach, the Power Systems community investigates
the use of neural networks [3], a class of highly expressive
and trainable functions. Neural networks are extremely fast
at inference time, although they require a computationally
heavy off-line training phase. They have achieved tremendous
successes in various domains (computer vision [4], natural
language processing [5] and games [6]), always displaying
a strong ability to solve complex problems that require a
very high level of abstraction with regards to the data at
hand. In the context of ACOPF, neural networks can either
be trained by imitation (supervised learning) or by interaction
with a simulator through Reinforcement Learning (RL) [7].
Recent work explores the application of deep neural networks
to ACOPF [8], while others [9], [10], [11], [12] frame the
ACOPF problem as a closed-loop RL problem.

All previously mentioned works involving neural networks
are valid under the assumption that topology (i.e. the way
elements that make up the grid are interconnected together)
remains constant. Such a hypothesis does not hold in real-life
power systems: lines get disconnected, generators regularly
start up and shut down through the course of a day and buses
within a substation get merged and split. As a matter of fact,
real-life power grid data have a graphical structure that may
change from one operating condition to the other. A specific
class of neural networks called Graph Neural Networks (GNNs)
[13], [14] has been especially designed for such a case, and
has thus been extensively applied to a wide range of power
systems problems [15]. More specifically, GNNs have been
trained to solve the closed-loop RL version of the ACOPF
[16], [17], [18], and to imitate traditional ACOPF solvers [19].

As a first step towards a real-time decision making tool for
tertiary voltage control, we focus on the sole choice of generator
voltage setpoints. Our approach consists in the training of a
GNN-based policy by interaction with a black-box simulator.
The main contributions of this work are:

1) the first RL training of GNNs to address open-loop
tertiary voltage control;
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2) the introduction of Hyper Heterogeneous Multi Graphs1

(H2MGs), that seamlessly represent power grids;
3) a companion GNN architecture that relies on Neural

Ordinary Differential Equations (NODEs) [21];
4) an experimental comparison of our approach against an

ACOPF baseline on data with large load and topology
variations;

5) an exploration of the ability of our method to generalize
to operating conditions – in particular topologies – never
encountered during training;

6) an open-source implementation of our method, and open-
source datasets along with their generation script.

Furthermore, we emphasize the following properties, that will
prove critical in the face of real-life systems:

• training is operated by interaction with a simulator, not
by imitation of a traditional ACOPF solver;

• the simulator is considered as a black-box, thus enabling
the use of various kinds of simulators, including dynamical
ones.

We believe that the present work lays a sound foundation for
the real-time optimization of real-life cyber-physical structures
(i.e. where additional couplings are induced by automata),
considering both their continuous and topological aspects. Still,
the present paper assumes a context where traditional ACOPF
resolution methods are competitive: this allows for a sound
assessment of our method against a well understood baseline.

The remainder of the document is organized as follows.
Section II states the tertiary voltage control problem, converts
it into a specific kind of reinforcement learning problem
and then details our proposed H2MG data formalism and
its companion neural network architecture. Section III provides
details about the experimental protocol (dataset generation,
baseline, hyper-parameters), compares our proposed method to
an ACOPF baseline, and explores its ability to generalize to out-
of-distribution operating conditions. Section IV summarizes
the present study and explores promising research avenues
with regards to our long term objective. While the present
paper is self-contained, additional details can be found in the
supplementary material [22].

II. METHODOLOGY

In this Section, we first describe the optimization problem
we wish to solve, and how we approach it as an RL problem.
Secondly, we propose a data formalism for operating conditions,
as well as a companion neural network architecture. Finally, we
detail how to solve our RL problem with the said architecture.

A. Initial Optimization Problem

Let us denote a power grid operating condition by x ∈ X ,
which encompasses both its topological structure and its numer-
ical features2. This includes buses with their voltages bounds,
loads with their active and reactive injections, generators with
their active generation and reactive power bounds, lines and

1H2MGs appeared in a prior PhD thesis [20], but not in published work.
2Assuming all binary and categorical features have been mapped to R.

transformers with their admittances, etc. Let y ∈ Y(x) be a
tertiary voltage control decision, which is contingent on the
number and nature of voltage control assets available in x. In
the context of this paper, y is the vector of generator voltage
setpoints, whose size varies with the amount of generators
present in x. We are looking for a value for y that minimizes
a real-valued cost function c,

y∗(x) ∈ argmin
y∈Y(x)

c(x, y). (1)

The long-term purpose of our research project is to address
the problem of tertiary voltage control using both continuous
(secondary voltage setpoints and ratio tap changers setpoints)
and discrete (lines and shunts opening and synchronous
condensers activation) control variables. As a first step towards
this goal, we only consider generators voltage setpoints, which
are continuous control variables.

When controlling voltages, operators actually aim at achiev-
ing multiple goals, each involving various time scales. As a
proxy of this complex process, our cost function c includes
losses cL and penalizes voltages (resp. currents) that are too
close or beyond their permanent limits using cV (resp. cI ).

c(x, y) = cL(x, y) + λ [cV (x, y; ϵ) + cI(x, y; ϵ)] (2)

cL(x, y) =

∑
ℓ∈Ebranch

x
PL
ℓ∑

n∈Eload
x

P d
n

(3)

cV (x, y; ϵ) =
1

|Ebusx |
∑

n∈Ebus
x

max(0, ϵ− vn, vn − 1 + ϵ)2 (4)

cI(x, y; ϵ) =
1

|Ebranchx |
∑

ℓ∈Ebranch
x

max (0, ϵ− iℓ, iℓ − 1 + ϵ)
2 (5)

where Ebranchx , E loadx , Ebusx are respectively the sets of branches,
loads and buses of x; PL

ℓ is the power loss at branch ℓ; P d
n is the

power consumed by load n; vn = (Vn−V n)/(V n−V n) is the
voltage magnitude of bus n normalized by its operational limits
(V n, V n); iℓ = (Iℓ− Iℓ)/(Iℓ− Iℓ) is the current magnitude of
branch ℓ normalized by its operational limits (Iℓ, Iℓ) (taking
the max normalized current over the two branch extremities);
λ > 0 balances penalization terms cV and cI with regards to
losses cL; and ϵ > 0 activates the said penalization before a
violation occurs. Right-hand terms in equations (3), (4) and
(5) indeed depend on x and y, as currents, voltages and losses
are estimated by a power system simulator. Dependencies are
not made explicit for the sake of readability. Notice that all
intermediate costs (3), (4) and (5) are dimensionless, and do
not scale with the power grid size. Pairs (x, y) that do not
make the simulator converge are associated with a prohibitively
large cost.

B. Reinforcement Learning Problem

Our goal is to train a deep neural network to solve the
problem (1) not for just a single value of x, but instead for
a whole distribution p of power grid operating conditions.
Provided with a certain x ∼ p, we have to return in one
step a value for y that minimizes the black-box cost function
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neural network

operating condition x probability distribution Πθ control variable y cost c(x, y)
1.050.97

sampling simulation

Fig. 1. A power grid operating condition x is passed to a neural network which produces a probability distribution Πθ(·|x) for each control variable (i.e.
generator voltage setpoints). A value for y can thus be sampled, and passed to the cost function c for evaluation, which involves a simulation.

c(x, ·). This is a case of contextual bandit problem (with
the particularity of a deterministic reward), which is typically
addressed by the RL literature [7]. A key idea in RL is to
consider a probabilistic control policy Πθ, which takes the form
of a conditional probability distribution over Y(x) knowing a
certain operating condition x, and parameterized by a vector θ.
We are thus looking for a parameter value θ∗ that minimizes
c for the distribution p,

θ∗ ∈ argmin
θ∈Θ

E x∼p(.)
y∼Πθ(.|x)

[c(x, y)] . (6)

Once trained, the policy is used deterministically by choosing
argmaxy Πθ(y|x) as a decision variable for a given x. The
pipeline from an operating condition x, to a probability
distribution Πθ, a sample y and then a cost c(x, y) is illustrated
by Figure 1.

As a matter of fact, we do not assume that we have a direct
access to the probability distribution p, but only to a dataset
Dtrain sampled from it. The policy Πθ is trained over Dtrain

in the hope that it will perform well on another dataset Dtest

independently sampled from p.
Readers from the RL domain may find useful to think of

c as the opposite of a reward, of x as a state and of y as an
action.

Our control variables being continuous, we choose Πθ to be
a multivariate Gaussian distribution defined as

Πθ(·|x) = N (fθ(x), σ
211), (7)

where σ > 0 is a fixed parameter, 11 is the identity matrix of
suitable dimension, and fθ is a trainable function parameterized
by a vector θ (see Subsection II-D). Notice that the covariance
matrix could also be output by a neural network, which should
be investigated in future work.

C. Hyper-Heterogeneous Multi Graphs (H2MGs)

Let us now introduce our Hyper Heterogeneous Multi Graph
(H2MG) formalism to represent operating conditions.

1) Topological Variations: In practice, power grid operating
conditions display a wide variety of topological configurations.
New transmission lines, shunts or generators may be built,
while some preexisting ones can get temporarily or definitively
disconnected. Moreover, operators can perform bus-splitting
operations that deeply alter interconnection patterns. We are
thus facing a distribution p of operating conditions x where
both numerical features and the topology can vary, as illustrated
in Figure 2. To address this challenge, it is essential to represent
operating conditions in a suitable fashion.

p(x)

(b)

(a)

(c)

Fig. 2. In actual power grid distributions, topology varies from one operating
condition to the other: (a) new assets can be built, (b) preexisting ones may
be disconnected, and (c) operators may perform bus-splitting operations.

A naive approach consists in framing operating conditions
as standard graphs. This however requires to aggregate
together generator, load, shunt and bus features into a node.
Transmission lines and transformers on the other hand are
cast as edges without distinction, as shown in Figure 3b. This
pre-processing step is the cause of an information loss which
may prove detrimental in the face of our long term objective.

(c) H2MG(b) Standard Graph(a) Single Line Diagram

bus gen

load line
transfo.

address
node
edge

bus gen

load line
transfo.

Fig. 3. Representation of a power grid as a single-line diagram (a) (at the
busbar resolution), as a standard graph (b) and as a H2MG (c). Standard graphs
are made of nodes and edges, and require to aggregate together objects of
different natures, while our proposed H2MG formalism allows for a seamless
representation of power grid operating conditions.

Our H2MG formalism arises from our need to represent
untampered real-life operating conditions. It will also prove
critical in the future when we will have to account for cyber-
physical couplings induced by the secondary voltage control
(or any other automaton), as well as switches and breakers that
make up the detailed topology of substations. Readers who
are familiar with power systems softwares will likely notice
that H2MGs actually coincide with most power systems data
formats.

2) Graphical Structure: We define the sets of elements of
the structure of an operating condition x by3:

3For the sake of simplicity of the explanation and without limitation, we
don’t distinguish here among different types of lines (e.g. multi-terminal, DC,
AC, . . . ), different types of transformers (e.g. voltage vs phase), different types
of generators, loads, and shunts, and we do not consider switches and breakers,
and automata such as secondary voltage controls.
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• a set of buses Ebus
x ,

• a set of generators Egen
x ,

• a set of loads E load
x ,

• a set of shunts E shunt
x ,

• a set of lines E line
x ,

• a set of transformers E transfo
x .

Elements of such sets are called hyper-edges, and are inter-
connected via a set of addresses Ax to form the graphical
structure of an operating condition x, as illustrated in Figure
3c. Addresses serve as interfaces between hyper-edges, and do
not bear any numerical input feature.

Let us denote by C := {bus, gen, load, shunt, line, transfo}
the set of all hyper-edge classes. For a given class c ∈ C, all
hyper-edges are of the same order, meaning that they are all
connected to the same number of addresses.

For instance, transmission lines are of order 2: they have
one “from” port, and one “to” port. On the other hand, loads
are of order 1, since they are only connected to one address.

Instead of being composed of nodes and edges, graphical
structures of H2MGs are made of a series of hyper-edges of
various classes and orders, all interconnected through addresses.
They lie at the intersection of:

• Hyper graphs – Hyper-edges of various orders (1, 2, etc.);
• Heterogeneous graphs – Multiple classes of hyper-edges;
• Multi graphs – Collocated hyper-edges of the same class.

As illustrated in Figure 3, they allow for a much more natural
and exhaustive representation of operating conditions than
standard graphs, since they do not require to aggregate together
assets into nodes and edges.

We denote by Oc the ordered set of ports of class c ∈
C. A port o ∈ Oc is a mapping from a hyper-edge to an
address, o : Ecx 7→ Ax. For instance, two winding transformers
are connected to exactly two addresses, and they have two
distinct ports (“high voltage” and “low voltage”) which are
not interchangeable.

We define the neighborhood of address a ∈ Ax as

Nx(a) = {(c, e, o)|c ∈ C, e ∈ Ecx, o ∈ Oc, o(e) = a}. (8)

This notion of neighborhood of address a basically tells:
• which hyper-edges of x are connected to address a;
• to which classes they belong;
• through which ports they are connected to a.
3) Feature Vectors: All hyper-edges of an operating con-

dition x bear real-valued features: loads are defined by their
active and reactive power, transmission lines by their resistance,
reactance, etc. We denote by xc

e the feature vector born by
hyper-edge e ∈ Ecx of class c ∈ C. All hyper-edges of the same
class bear feature vectors of the same dimension.

D. Neural Network Architecture

Our tertiary voltage control policy Πθ relies on a trainable
function fθ to compute the mean of a multivariate Gaussian
distribution, as stated in equation (7). The said function should
take an operating condition x as input, and return one voltage
setpoint value per available generator. Let us remind that the

number of connected generators may vary from one operating
condition to the other.

As motivated in Section I, fθ is chosen to be a GNN [13],
[14], [15]. Moreover, our architecture borrows from the NODE
literature [21], and is thus called Hyper Heterogeneous Multi
Graph Neural Ordinary Differential Equation (H2MGNODE).
Its overall process is illustrated in Figure 4.

1) Latent Variables: Our proposed architecture relies on
the use of a series of latent vectors (ha)a∈Ax located at each
address of the input operating condition x. The dimension of
ha is a hyper-parameter.

We introduce the simplifying notation he = (ho(e))o∈Oc ,
which is the concatenation of latent vectors located at all ports
of a hyper-edge e. For instance, if we consider a transmission
line e, connected to address 45 on its “from” port, and to
address 78 on its “to” port, then he = (h45, h78).

2) Architecture Equations: Our proposed H2MGNODE
architecture is defined by the following equations,

∀(c, e), x̃c
e = Ξc

θ(x
c
e), (9)

∀a, ha(0) = [0, . . . , 0], (10)

∀a, dha

dτ
= ν

 ∑
(c,e,o)∈Nx(a)

Φc,o
θ (x̃c

e, he(τ), τ)

 , (11)

∀(c, e), µc
e = Ψc

θ(x̃
c
e, he(1)). (12)

where ν is a bounded monotonic and smooth element-wise
function, and illustrated by Figure 4. Functions Ξ, Φ and Ψ
are basic Multi Layer Perceptrons (MLPs). Notice that the
parameter vector θ can be split in multiple parts, each being
associated with a specific neural network block.

a) Encoding: Equation (9) describes the embedding of the
input operating condition into a latent space, whose dimension
is a hyper-parameter. The same MLP Ξc is applied to all hyper-
edges of class c ∈ C. Input features are normalized beforehand,
as detailed in the supplementary material [22].

b) Interaction: Latent variables (ha)a∈Ax
obey a dynam-

ical system defined by equations (10 – 11), where τ denotes
time. Interactions follow the graphical structure of the input
operating condition x. Addresses a and a′ directly interact
only if there exists a hyper-edge connected to both of them.
They may also indirectly interact through common neighbors.
Inference is obtained by solving the dynamical system forward
in time from τ = 0 to 1, while back-propagation (i.e. the
estimation of ∇θfθ(x)) is based on solving it backward in
time [21]. Coupling mappings Φc,o

θ are shared across all ports
o of hyper-edges of class c.

c) Decoding: The latent variables’ values obtained at
τ = 1 are then converted into actually meaningful quantities
at hyper-edges through equation (12). The same MLP Ψc is
applied to all hyper-edges of class c ∈ C. In our case, this
step simply returns a scalar value µc

e for each controllable
device e of class c connected in the operating condition x.
This value is then used as the mean of the normal distribution
defined in equation (7). The resulting output may be scaled to
a reasonable range of values by an affine transformation.
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τ = 0

ha(1) =
∫ 1

τ=0
ν
(∑

(c,e,o)∈Nx(a)Φ
c,o
θ (x̃c

e, he(τ), τ)
)
dτ

1

3

2

2

[
1.04

]

[
0.98

]
µc
e = Ψc

θ (x̃
c
e, he(1))

DecodingEncoding Interaction

1

3

2
1

3

τ = 1τ = 0.5

1

x̃c
e = Ξc

θ (x
c
e)

 0.9
1.0
−0.7

 −0.6
0.7
−0.2



 0.7
0.0
−0.6

−0.3
1.0
−0.7


−0.9

0.2
−0.9



2
3

Fig. 4. Neural Network Architecture. The feature vectors of all hyper-edges are embedded into a latent space using class-specific encoders Ξc
θ . All addresses

are associated with latent coordinates initialized at zero, and then follow a trajectory defined by a differential system whose second member involves couplings
born by hyper-edges and defined by neural networks. Addresses interact until τ = 1. Finally, hyper-edges exploit the final locations of their addresses to
produce a meaningful prediction thanks to class-specific decoders Ψc

θ .

E. Training

Let us now define how to train our tertiary voltage control
policy Πθ. We have chosen an elementary RL algorithm called
REINFORCE [7], which is quite suitable for our case (absence
of sequentiality and deterministic cost function). It is based
on the so-called “log-trick” (∇θΠθ = Πθ.∇θ log Πθ), which
provides the following estimator of the gradient for a given x,

∇θEy∼Πθ
[c(x, y)] = Ey∼Πθ

[c(x, y).∇θ log Πθ(y|x)] . (13)

Depending on x, costs can vary on very different scales.
Operating conditions x with larger cost variations induce a
larger gradient, which hinders contributions of more common
operating conditions. Standardizing costs per operating con-
dition x (as detailed in Algorithm 1) has been observed to
greatly improve the training speed and stability [23].

Recalling that Πθ is a multivariate Gaussian distribution
given by equation (7), we obtain the following:

∇θ log Πθ(y|x) ∝ (y − fθ(x)).∇θfθ(x). (14)

The policy training consists in iterating over operating
conditions x, testing multiple tertiary voltage control values
y ∼ Πθ(·|x), and updating θ, as detailed in Algorithm 1.

III. CASE STUDY

We validate our approach on the tertiary voltage control
problem introduced at the beginning of Section II, by comparing
it to an ACOPF solver baseline.

A. Dataset Generation

At first, three distinct variants4 (namely Standard, Condenser
and Reduced) were crafted from the case60nordic test case
[24] as detailed in Figure 5, where all voltage limits are set
to V = 0.9 p.u. and V = 1.1 p.u. Tuning parameters of the
tertiary voltage control problem are set to λ = 200 and ϵ = 5%,
and a simulator non-convergence is associated to a cost of 1.

For each of the three variants, exactly 100, 000 operating
conditions are generated for the train set, 2, 000 for the
validation set and 10, 000 for the test set. Instead of aiming

4available at github.com/bdonon/updating case60nordic/tree/PSCC24

Algorithm 1 REINFORCE Algorithm with standardized costs
Require: Dtrain; E, I, J ∈ N∗; σ2, α ∈ R+∗

Initialize θ randomly
for e ∈ {1, . . . , E} do

Sample I operating conditions (xi)i∈{1,...,I} from Dtrain

for i ∈ {1, . . . , I} do
for j ∈ {1, . . . , J} do

yi,j ∼ N (fθ(xi), σ
211) ▷ Sample action

ci,j ← c(xi, yi,j) ▷ Compute cost
end for
m̂i ← 1

J

∑
j ci,j

v̂i ← 1
J

∑
j(ci,j − m̂i)

2

for j ∈ {1, . . . , J} do
âi,j ← ci,j−m̂i√

v̂i
▷ Standardize costs

end for
end for
θ ← θ − α 1

I×J

∑
i,j âi,j .(yi,j − fθ(xi)).∇θfθ(xi)

end for

for a so-called “realistic” dataset, we sample from a broad
domain and then reject cases that do not meet certain criteria.
Operating states vary in terms of topology (0 to 4 lines
can be disconnected), total load (uniformly sampled between
50% and 120% of the initial value), individual load (sampled
from a Gaussian distribution) and generation (defined by
a DCOPF with random merit order), as detailed in the
supplementary material [22]. Voltage setpoints are initialized
at 1.0 p.u.. Resulting operating conditions being frequently
in overvoltage in our context, we choose to disconnect all
shunt capacitors and to keep connected all shunt inductors to
reduce voltages. Each operating condition undergoes checks to
reject cases with overflows, unrealistic bus voltages (outside of
the [0.85 p.u., 1.15 p.u.] range), or non-convergences. Object
disconnections (generators, transmission lines, north-east zone)
are performed by completely removing the said objects from
the network, which implies that the number of hyper-edges
of a given class varies from one operating condition to the
other. In the Standard test set, the number of generators varies
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Fig. 5. Case60nordic test case. The Condenser dataset includes the whole
system, the Standard dataset does not have the synchronous condenser g21
(green), and the Reduced dataset has neither the synchronous condenser g21
(green) nor the north-east region (red).

between 6 and 19 (while 23 are initially present), the number
of lines varies uniformly between 53 and 57 (while 57 are
initially present), the total load varies between 3 GW and
7 GW, and the initial number of voltage violations varies
between 0 and 21. The supplementary material [22] provides
a more comprehensive overview of the datasets’ generation
procedure and summary statistics.

A fourth dataset called All is composed of the union of the
three previous datasets.

B. Optimization Baseline

In order to set an objective baseline for the proposed
approach, we state and solve a relaxed version of the non-linear
ACOPF problem in polar coordinates. All equality constraints
have the standard form of the ACOPF equality constraints
and have been reproduced from [2]. The relaxation concerns
tolerating the violation of branch current magnitude and
voltage magnitude inequality constraints, which is penalized in
objective function (1) as per (2 – 5). The detailed formulation
is included in the supplementary material [22].

Our implementation of the ACOPF baseline5 uses the interior

5available at github.com/montefiore-ms/ACOPF4TVC

point method. It is developed in Julia [25] using the JuMP
modeling language [26] and the PowerModels.jl framework
[27] for data conversion. We rely on the KNITRO solver
[28] for solving all non-linear optimization problem instances.
Experiments are run on a MacBook Air M2 2022, and took
approximately 0.13s per operating condition.

C. Experiment Settings

Our method6 is implemented in Python [29] and JAX [30].
Multiple operating conditions are run in parallel, and power
flow simulations use PandaPower [31]. In order to be compliant
with the ACOPF formulation used by the baseline, we consider
the normalized squared current iℓ = (I2ℓ − I2ℓ)/(I

2

ℓ − I2ℓ)
in equation (5). During preliminary studies, various hyper-
parameter values have been tested. In the following, we report
values used in our experiments.

1) Policy parameters: All latent variables are vectors of
dimension 64. Encoders Ξ and decoders Ψ are MLPs with
2 hidden layers of size 128 and 64, with hyperbolic tangent
non-linearities. Coupling mappings Φ are MLPs with 1 hidden
layer of size 128 and hyperbolic tangent non-linearities. The
function ν is a hyperbolic tangent. All MLPs are implemented
in Flax [32].

ODEs defined by equations (10) and (11) are solved by a
first-order explicit Euler scheme (dτ = 0.05), implemented
in Diffrax [33]. Back-propagation (that involves solving the
system backwards in time) is performed using the same scheme.

The policy’s standard deviation σ is set to 0.005 p.u..
2) Training algorithm: For each of the four datasets, we

consider mini-batches of I = 32 operating conditions, and
J = 16 different actions tested on each one. The gradient is
processed by the optimizer Adam [34], with a learning rate of
3 × 10−4, and with standard parameters. Each training lasts
E = 200, 000 iterations, which took 6 days. Power system
simulations are run on AMD EPYC 7763 CPUs (16 Threads
in parallel), while policy inference and back-propagation are
run on NVIDIA RTX A5000 GPUs. Policies are evaluated
over their respective validation sets every 1, 000 iterations, and
only the best version is kept. A single training is performed
per train set. Inference takes 0.26 s per operating condition.

Figure 6 shows the convergence of the four different training
processes in terms of average cost over their respective
validation sets.
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Fig. 6. Average validation cost during training of the four models. The vertical
axis is in logarithmic scale.

6available at github.com/bdonon/PSCC2024
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Fig. 7. Comparison of the data distribution before any modification (top row), after the application of the ACOPF solver baseline (middle row), and after the
application of our policy trained on the Standard train set (bottom row). All data are from the Standard test set. The first column displays the histogram of
all voltage setpoints (control variables) over all generators and all operating conditions. The second column shows the histogram of resulting bus voltage
magnitudes over all buses and all operating conditions. The third column contains histograms of the violation count (current or voltage) per operating conditions.
The fourth column presents histograms of costs for all operating conditions. The vertical axis is represented in symlog scale (i.e. y 7→ ln (y + 1)). Both our
trained policy and the ACOPF solver baseline manage to bring the distribution of voltages mostly within authorized bounds (V = 0.9 p.u. and V = 1.1 p.u.),
although some marginal violations remain.

D. Results

We now investigate the performance of our four policies, each
being trained on a different train set. More detailed results are
available in the supplementary material [22]. The term violation
encompasses both overflows and voltage violations. Both the
ACOPF solver baseline and our policies cause approximately
0.2% of non-convergence over each test set (this rate goes
up to 1% for some policies tested on the Reduced test set).
In the following, non-convergences are counted as violations,
but they are not displayed on histograms. Notice that among
those operating conditions having a violation with our trained
policies, 90% display a voltage violation, while only 20%
display a current violation.

1) Standard Dataset Results: At first, let us analyse results
of a policy (denoted by GNN) trained on the Standard train
set, and tested on the Standard test set. Figure 7 compares
its performance against the initial situation where all voltage
setpoints are set to 1.0 p.u. (denoted by Start), and the ACOPF
solver baseline (denoted by ACOPF).

Histograms of voltage setpoints issued by the ACOPF solver
and our policy are quite similar: peaks can be observed near ex-
treme values, and they both have an overall preference for high
voltage setpoint values. The distribution of resulting voltages at
all buses are also similar between the two approaches, although
our GNN policy has more difficulty preventing overvoltages.
The ACOPF solver brings the number of snapshots with at least
one current or voltage violation from 58% to 0.98%, while
our policy brings it to 5.2%. Still, both approaches manage to
drastically reduce the severity of violations: they both bring the
percentage of operating conditions with two or more violations
close to zero, and violating values are reasonably close to
limits.

2) Transfer Properties: A key property of our trained models
is their ability to be compatible with any possible operating
condition, regardless of its number of assets (generators, lines,
etc.) and of the way they are interconnected. Table I displays the
percentage of operating conditions in each test set with at least
one violation while using each one of the four policies trained

on the four training sets. In order to estimate the severity of
violations, Table II considers an additional 5% tolerance: only
voltages out of the [0.89 p.u., 1.11 p.u.] range and currents
above 105% of thermal limits count as a violation.

TABLE I
OPERATING CONDITIONS W/ VIOLATION.

Standard Condenser Reduced
test set test set test set

Start 58% 58% 59%
ACOPF baseline 0.98% 0.82% 1.0%
GNN trained on Standard 5.2% 5.8% 18%
GNN trained on Condenser 5.4% 5.1% 46%
GNN trained on Reduced 35% 34% 4.6%
GNN trained on All 4.5% 4.5% 4.7%

TABLE II
OPERATING CONDITIONS W/ VIOLATION – 5% TOLERANCE.

Standard Condenser Reduced
test set test set test set

Start 44% 44% 46%
ACOPF baseline 0.52% 0.49% 0.45%
GNN trained on Standard 1.6% 1.5% 6.0%
GNN trained on Condenser 1.9% 1.4% 20%
GNN trained on Reduced 21% 20% 1.5%
GNN trained on All 1.5% 1.3% 1.5%

We observe that policies trained on the Standard and
Condenser train sets generalize decently to each other’s test
sets, while the policy trained on the Reduced train set does not
generalize well to other situations. For each test set, the policy
trained on the union of all train sets performs comparably to
the policy trained on the corresponding train set. It has no
difficulty dealing with a broader range of topological variations.

IV. CONCLUSION & FUTURE WORK

Our research project aims at developing a decision support
tool for real-life and real-time tertiary voltage control. As an
intermediate step towards this goal, we explore the training of
a GNN-based policy to optimize generators’ primary voltage
control setpoints, using the REINFORCE method together with
a black-box simulator. We introduce the H2MG formalism
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to seamlessly represent power grid operating conditions, as
well as a companion GNN architecture, the H2MGNODE. We
experimentally showed on the case60nordic test case that our
framework is able to reach competitive performances compared
to an ACOPF baseline in a certain context. This confirms the
relevance of our methodology, which we believe will scale
better than traditional ACOPF solvers to larger systems and
more complex problems. Furthermore, some of the trained
policies were shown to generalize to out-of-distribution samples,
which is an essential feature for practical applicability.

Future work will focus on the following aspects:
• Improving the training process. This first study is based on

a standard implementation of the REINFORCE algorithm,
which could be improved in terms of sample efficiency.
Moreover, it would be interesting to explore the impact
of various integration schemes and parameters for our
H2MGNODE model.

• Real-life power systems. Our long-term objective is to
build a decision support tool for the French transmission
system. This will require to extend the methodology to
discrete variables to account for the switching of shunts,
lines and synchronous condensers. Moreover, the cyber-
physical structure of the secondary voltage control and
the detailed substation topology will have to be modelled
with the H2MG formalism. Finally, we will have to assess
the scalability of our approach to the French system in
terms of computational times.

• Other applications. The rather general nature of our
proposed methodology makes it a sensible candidate to
address other complex power systems problems, that may
include for instance sequential decision making under
uncertainty and distributed control.
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voltage control problem, Rémy Clément and Marc Schoenauer
for their help in formalizing the H2MG approach, and the
operators of the Alan GPU cluster at the University of Liège
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