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Abstract—This paper proposes a new method for the multi-
objective sizing of microgrids, which aims to minimize both
the investment and operation costs, as well as the carbon
footprint of their components and energy usage. The method
employs Mixed Integer Linear Programming (MILP) and Pareto
optimization to assess the balance between economic and en-
vironmental goals, constructed using the ϵ-constraint method.
Additionally, the overall operation of a grid-connected microgrid
is optimized considering unintentional islanding contingencies
through a stochastic scenario-based mathematical programming
model. Tests were conducted using data from CampusGrid, a real
microgrid located at the University of Campinas (UNICAMP)
in Brazil. The model determines the optimal size and type of
Distributed Energy Resources (DERs), such as local Thermal
Generation (TG), Photovoltaic (PV) systems, Battery Energy
Storage Systems (BESSs), and load/generation curtailment re-
quirements in islanded mode. For carbon-intensity comparison,
a case study was conducted using attributes and parameters from
the city of Beijing in China. The results provide valuable insights
into the optimal sizing and configuration of microgrids, with an
emphasis on cost-efficient and environmentally sounding energy
solutions.

Index Terms—Greenhouse gas emissions, microgrid sizing,
mixed-integer linear programming, multi-objective optimization,
Pareto efficiency, renewable energy resources.

I. INTRODUCTION
With the increasing integration of Renewable Energy

Sources (RESs) into the power grid, such as Photovoltaic
(PV) and Wind Turbines (WT), microgrids have emerged as
a key solution for effectively managing and harnessing these
resources. Originally designed to address the energy needs of
isolated areas without access to a main grid, microgrids have
now evolved to enhance the reliability and sustainability of
local power systems connected to the grid [1]. Microgrids can
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comprise a variety of Distributed Energy Resources (DERs),
including RESs, storage systems, distributed generators, and
controllable loads, all synergistically enhancing the flexibility,
reliability, and efficiency of microgrids.

Non-renewable DERs are recognized for their higher relia-
bility due to their dependence on fossil fuels, which are less
susceptible to weather conditions. However, using fossil fuels
contributes to Greenhouse Gas (GHG) emissions and entails
substantial Operation and Maintenance (O&M) expenditures.
On the contrary, RESs offer environmentally friendly alter-
natives but are inherently subject to stochastic fluctuations.
As a solution, hybrid microgrids strategically integrate diverse
energy resources and storage technologies, such as Battery
Energy Storage System (BESS), to meet energy demands [2].
Skillful hybrid microgrid design yields a favorable cost-benefit
equilibrium, as renewable energy production typically outper-
forms conventional energy production in terms of expenses.
Despite RESs’ higher initial investment costs compared to
conventional distributed generation, the swift amortization of
these upfront investments leads to a systematic reduction in
reliance on non-renewable sources [1]. Although hybrid micro-
grids may exhibit higher initial costs compared to traditional
power plants due to expensive storage units, their overall O&M
costs remain lower [3].

In this scenario, the optimal design of a microgrid involves
precisely determining optimal sizes and attributes for its DERs.
As the optimization of microgrid sizing is a well-explored
research subject, numerous studies have previously presented
their findings in this area. In [1], the optimal sizing of a storage
system under stochastic WT generation is proposed using Ben-
ders’ decomposition. In [4], a two-stage method for optimizing
the size and location of the DERs is proposed, considering
on- and off-grid operational modes. The work presented in
[5] proposes a reinforcement learning framework for optimal
sizing and energy management of islanded microgrids that
minimizes costs. [6] proposes an optimal sizing Mixed Integer
Linear Programming (MILP) model for an islanded microgrid,
which selects the best technology for storage batteries and WT
from a set of commercial models.
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NOMENCLATURE

Sets:
B, b Set/Index of available BESS technologies
C, c Set/Index of contingencies
G, g Set/Index of PV generation modules
S, s Set/Index of generation and demand scenarios
T , t Set/Index of time periods
Parameters:
∆t Time step considered in the sizing problem [hours]
ηchar
b BESS charging efficiency

ηdis
b BESS discharging efficiency

ηPV
g PV generator efficiency

ΓN net present value
EBESS Maximum installation energy capacity of BESS [kWh]
P EDS Power limit that can be consumed from the EDS [kW]
PD Maximum system load [kW]
P BESS Maximum installation power capacity of BESS [kW]
P PV Maximum installation capacity of PV system [kW]
P TG Maximum operating power capacity of TG [kW]
πs,c Probability of scenario and contingency
EMMAX Maximum GHG emission [kgCO2e]
m Small value for accounting hours operated
cTG
t TG O&M cost [USD/kWh]

cEDS
t EDS operation cost [USD/kWh]

ciTG TG installation cost [USD/kW]
ciBESS,E

b BESS energy installation cost [USD/kWh]
ciBESS,P

b BESS power installation Cost [USD/kW]
ciPV

g PV installation cost [USD/kW]
D Off-grid mode duration [hours]
DoDb BESS depth of discharge
eEDS GHG emission of EDS operation [kgCO2e/kWh]
eTG GHG emissions of TG [kgCO2e/kWh]
eBESS
b GHG emission of BESS operation [kgCO2e/kWh]

ePV
g GHG emission of PV generation operation [kgCO2e/kWh]

fD
t,s Load multiplication factor

fPV
t,s PV generation multiplication factor

M Load curtailment cost [USD/kWh]
N cycle

b BESS lifetime in cycles
NPV

g PV life cycle [year]
NhTG TG life cycle [hours]
PH Planning horizon [years]
r Annual interest rate
T Time between investment and operation [years]
Variables:
αBESS

b Binary variable for BESS technology selection
αPV

g Binary variable for PV technology selection

χD
t,s,c Binary variable representing load curtailment

χPV
t,s,c Binary variable representing PV curtailment

δTG
t,s,c Binary variable of TG operating enable time

γBESS,char
t,s,c Binary variable representing BESS charging

γBESS,disc
t,s,c Binary variable representing BESS discharging

C Total microgrid CAPEX [USD]
CBESS BESS investment cost [USD]
CPV PV system investment cost [USD]
CTG TG investment cost [USD]
EM Total microgrid GHG emission [kgCO2e]
EMBESS Total BESS GHG emissions [kgCO2e]
EMEDS Total EDS GHG emission [kgCO2e]
EMPV Total PV system GHG emissions [kgCO2e]
EMTG Total TG GHG emission [kgCO2e]
O Total microgrid OPEX [USD]
OEDS EDS operating cost [USD]
OLC Load curtailment operating cost [USD]
OTG TG operating cost [USD]
R Total microgrid RCV [USD]
RBESS BESS replacement cost [USD]
RPV PV system replacement cost [USD]
RTG TG replacement cost [USD]
EBESS

max Decision variable for installed BESS energy [kWh]
EBESS, lin

b,max Linear equivalence of installed BESS energy capacity [kWh]

EBESS,lin
t,s,c,b Linear equivalence of BESS operating energy [kWh]

EBESS
t,s,c BESS operating energy [kWh]

P BESS
max Decision variable for installed BESS power [kW]

P PV
max Decision variable for installed PV power [kW]

P TG
max Decision variable for installed TG power [kW]

P TG,lin
t,s,c,max Linear equivalence of TG installed capacity [kW]

P BESS, lin
b,max Linear equivalence of installed BESS power capacity [kW]

P PV,,α
g Auxiliary variable for PV linear equivalence [kW]

P BESS,char,lin
t,s,c,b Linear equivalence of BESS charging power [kW]

P BESS,disc,lin
t,s,c,b Linear equivalence of BESS discharging power [kW]

P PV,lin
t,s,c,g Linear equivalent of PV operating power [kW]

P EDS,+
t,s,c Positive component of EDS operating power [kW]

P EDS,-
t,s,c Negative component of EDS operating power [kW]

P BESS,char
t,s,c BESS charging power [kW]

P BESS,disc
t,s,c BESS discharging power [kW]

P EDS
t,s,c EDS operating power [kW]

P PV
t,s,c PV system Operating power [kW]

P TG
t,s,c TG Operating power [kW]

Optimizing the design of microgrids is of utmost importance
not only from an economic standpoint but also in terms of
environmental sustainability. The dual objective of minimizing
both the cost and GHG emissions of microgrids reflects the
growing recognition that addressing climate change requires
not only reducing reliance on fossil fuels but also ensuring the
efficient sizing and utilization of RESs. This context propelled
many previous studies. The work presented in [7] has a multi-
objective optimization model that minimizes the costs of an
off-grid system and the carbon emissions from the diesel gen-
erator using genetic algorithm (GA). In [8], a multi-objective
optimization is done by minimizing the costs of an islanded
microgrid using MILP, while the GHG emissions from a
diesel generator are minimized using the ϵ-constraint method.
In [9], [10], an off-grid system composed of PV, BESSs,
and diesel generation is considered. [9] proposes a converged
elephant herding optimization (cEHO) for minimizing the total
system cost, while [10] uses a particle swarm optimization

(PSO) method, and both use the ϵ-constraint method to mini-
mize emissions from the diesel generator. A grid-connected
energy system is modeled in [11], encompassing heating,
cooling, and electrical subsystems. The study employs the non-
dominated sorting genetic algorithm II (NSGA-II) to optimize
the system reliability, annual expenditures, and emissions from
fuel consumption within the microgrid and associated with
grid electricity. In [12], a new self-adaptive multi-objective
genetic algorithm (SAMOGA) is proposed for minimizing the
component costs and carbon emissions from diesel generators
on a grid-connected microgrid.

However, these prior studies exclusively account for carbon
dioxide (CO2) emissions coming from fossil fuel combustion.
It is worth noting that while the power generated by RESs
and stored within BESS does not trigger GHG emissions, a
substantial energy quantity is consumed during the production,
application, and disposal of the components of the system. In
Life-Cycle Assessment (LCA) analyses, researchers evaluate
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TABLE I
COMPARATIVE ANALYSIS WITH PREVIOUS WORKS THAT ADDRESS MICROGRID SIZING.

Reference Technology Fuel consumption DERs life-cycle On-grid Off-grid Model of RCV Solution
choice emission model emission model model model device method

[1] ✓ Benders’ decomposition
[4] ✓ ✓ MILP
[5] ✓ ✓ Reinforcement Learning
[6] ✓ ✓ MILP
[7] ✓ ✓ ✓ GA
[8] ✓ ✓ ✓ MILP / ϵ-Constraint
[9] ✓ ✓ ✓ cEHO / ϵ-Constraint

[10] ✓ ✓ ✓ PSO / ϵ-Constraint
[11] ✓ ✓ ✓ NSGA-II
[12] ✓ ✓ SAMOGA
[13] ✓ ✓ ✓ ✓ GA / MILP

This work ✓ ✓ ✓ ✓ ✓ ✓ MILP / ϵ-Constraint

and assess the environmental impacts of products and services,
comprehensively considering all their life-cycle processes.
Many LCA studies have been carried out for different types
of batteries [14]–[18] and PVs [19]–[21] to establish their
equivalent carbon footprint. Considering LCA studies in the
optimal design of microgrids is a novel paradigm for further
reducing their environmental impact. In [13], a GA is used for
sizing DERs that minimizes the cost and life-cycle emissions
of all the components of an islanded microgrid. Table I
summarizes the main attributes of the works mentioned above.

In this context, this paper proposes a novel holistic approach
to address the multi-objective optimization of costs and GHG
emissions in the design of microgrids. The model contemplates
a grid-connected microgrid with PV, Thermal Generation
(TG), and BESS, which is able to operate in islanded mode
during contingencies of the main grid. Additionally, different
scenarios of PV generation and load demands are considered
while considering main-grid contingencies to guarantee sys-
tem autonomy. This approach considers Capital Expenditures
(CAPEX), Operating Expenses (OPEX), and Replacement
Cost Value (RCV) for all components in the cost function.
Furthermore, it integrates LCA of emissions from BESSs and
PVs [13] as well as the equivalent carbon footprint per kWh
from the imported energy and local TG. The proposed multi-
objective optimization is represented using a MILP model and
solved with the ϵ-constraint method to obtain an optimal Pareto
front with the non-dominated solutions. In addition to finding
the optimal sizing of the components, this model also decides
the optimal choice between different technologies of PV
panels and batteries available in the market. By encompassing
these additional factors, this work provides a comprehensive
contribution to optimizing grid-connected microgrid design,
which, to the best of our knowledge, has not been addressed in
previous works (see the last line in Table I). This approach not
only promotes environmental sustainability but also ensures
the economic viability of microgrids, contributing significantly
to the transition to cleaner energy sources.

In summary, the main contribution of this paper is a new
microgrid sizing optimization tool that contemplates: 1) life
cycle emissions of PV panels and batteries; 2) multiple scenar-
ios of local demand and PV generation; 3) off-grid operation
due to contingencies of the main grid; 4) the RCVs of all

components in the cost function; 5) optimal choice between
different technologies of batteries and PVs panels; 6) a holistic
MILP model that allows an accurate assessment of the trade-
off between overall costs and GHG emissions.

II. METHODOLOGY

The methodology of this paper focuses on utilizing MILP
to address the complex task of sizing microgrids. Microgrids
involving various DERs offer a promising solution for lo-
calized energy distribution. The complexity arises from the
need to optimize the configuration of these resources while
considering technical, economic, and environmental aspects.
The presented methodology uses MILP to systematically de-
termine optimal microgrid sizing by considering both discrete
and continuous decision variables, enabling a comprehensive
analysis of microgrid components and interactions.

A. MINLP formulation

The microgrid sizing problem becomes a Mixed-Integer
Nonlinear Programming (MINLP) when the option to choose
multiple technologies is introduced. This type of model-
ing utilizes the product of two variables: a binary variable
representing the technology type and a continuous variable
representing its capacity.

1) CAPEX model: The total CAPEX is defined by equa-
tion (1), which corresponds to the summation of investments
resulting from the installation of BESS, TG, and PV systems.
C = CBESS + CPV + CTG (1)

The following equations model the installation investments
for each component of the microgrid. Equation (2) shows the
investment cost for BESS installation. Equation (3) calculates
the installation cost of the PV system. Since this methodology
involves the selection of different technologies, the nonlinear-
ity of the problem appears in (2) and (3) due to the product
between the binary variable that determines the type and size
of the device to be installed. Lastly, (4) models the investment
cost of TG installation.

CBESS =
∑
b∈B

[
αBESS
b · (ciBESS,P

b · PBESS
max + ciBESS,E

b · EBESS
max )

]
(2)

CPV =
∑
g∈G

(
ciPV

g · αPV
g · P PV

max
)

(3)

CTG = ciTG · P TG
max (4)
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2) OPEX model: OPEX is defined by (5) and corresponds
to the sum of operational costs represented by load curtailment
and the energy supplied by the Energy Distributions System
(EDS) and the TG system. Equations (6)–(8) model the
individual costs, respectively.

O = OEDS + OTG + OLC (5)

OLC = 365 ·ΓN ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
M · πs,c · fD

t,s · PD · χD
t,s,c

)
(6)

OEDS = 365 · ΓN ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
cEDS
t · πs,c · P EDS,+

t,s,c

)
(7)

OTG = 365 · ΓN ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
cTG
t · πs,c · P TG

t,s,c

)
(8)

The operational costs represented in OPEX and RCV in-
clude a component that accounts for the net present value, aim-
ing to bring equivalence to present costs. This component is
defined according to equation (9) as outlined in reference [22].

ΓN =
1

(1 + r)T
·
(1 + r)PH − 1

r(1 + r)PH
(9)

Regarding the probability parameter (πs,c), its value is
calculated based on the product between the probability of
each PV level, load level, and off-grid mode, as described
in (10), where

∑
s∈S,c∈{0,C} πs,c = 1.

πs,c = π(PV level)× π(Load level)× π(off-grid) (10)

3) RCV model: In addition to considering investment and
operational costs, this study incorporates the concept of RCV,
which is quantified according to equation (11). RCV represents
the total cost of replacing components installed at current
prices to ensure that the capacity and functionality of the
microgrid are maintained over time. This is calculated by
summing up the RCV for each component, reflecting the
financial provision required for future replacements essential
to the system’s sustainability.

R = RBESS + RPV + RTG (11)

Equation (12) shows the calculation of RCV for the BESS.
The formulation considers the charge, discharge, and the
device’s number of cycles to determine the RCV over time.
Equation (13) presents the RCV calculation for the TG. In this
formulation, the binary variable δTG

t,s,c is used to account for the
time the TG was operational. Therefore, the RCV formulation
for the TG introduces an additional nonlinearity. Lastly, (14)
demonstrates the RCV calculation for the PV based on the
device lifespan.

RBESS = 365 · ΓN ·
∆t

2
·
∑
t∈T

∑
s∈S

∑
c∈{0,C}

∑
b∈B

[
πs,c · αBESS

b ·
ciBESS

b

N
cycles
b

·

(
ηchar
b · PBESS,char

t,s,c +
1

ηdisc
b

· PBESS,disc
t,s,c

)]
(12)

RTG = 365 · ΓN ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
ciTG · δTG

t,s,c ·
P TG

max

NhTG

)
(13)

RPV = ΓN

∑
g∈G

(
ciPV

g · αPV
g ·

P PV
max

NPV
g

)
(14)

4) Power flow and PV model: The power flow is modeled
by (15), which accounts for all generations and demands from
the perspective of the EDS.

P EDS
t,s,c + P TG

t,s,c +
∑
g∈G

[
P PV
t,s,c · αPV

g · (1− χPV
t,s,c)

]
+ PBESS,disc

t,s,c =

PD · fD
t ·

(
1− χD

t,s,c

)
+ PBESS,char

t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C} (15)

The generated PV power is modeled in equation (16), which
represents the product between the installed capacity and the
generation profiles.

P PV
t,s,c = P PV

max · fPV
t,s,c · ηPV

g ∀t ∈ T , s ∈ S, c ∈ {0, C} (16)

B. EDS and off-grid model

Equation (17) models the operational limits of the power
supplied by the EDS, and (18) separates the positive and neg-
ative components of the EDS power. Moreover, (19) enforces
the EDS power to be zero in case of off-grid mode operation
for a duration of the contingency D, in hours.

− P EDS ≤ P EDS
t,s,c ≤ P EDS ∀t ∈ T , s ∈ S, c ∈ {0, C} (17)

P EDS
t,s,c = P EDS,+

t,s,c − P EDS,–
t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C} (18)

P EDS
t,s,c = 0 ∀ t ∈ T, s ∈ S, c ∈ {0, C} |c ≤ t < c+D and c > 0 (19)

1) TG model: The operational limits of the TG were mod-
eled by (20). The binary variable δTG

t,s,c in the lower and upper
limits accounts for the periods of actual device operation, and
P TG

max is also a decision variable.

m · δTG
t,s,c ≤ P TG

t,s,c ≤ P TG
max · δTG

t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C} (20)

Where m corresponds to a very small value. This model was
used to account for the number of times the TG was activated.

2) BESS model: The BESS model implemented in this
paper considers nonlinearities due to the product between
binary variables for technology selection and the maximum
power and installation capacity of the BESS.

Equations (21)–(23) linearly model the charging and dis-
charging of the BESS using binary variables.

0 ≤ PBESS,disc
t,s,c ≤ PBESS

max · γBESS,disc
t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C} (21)

0 ≤ PBESS,char
t,s,c ≤ PBESS

max · γBESS,char
t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C} (22)

γBESS,disc
t,s,c + γBESS,char

t,s,c ≤ 1 ∀t ∈ T , s ∈ S, c ∈ {0, C} (23)

Equations (24) and (25) restrict the operation of the BESS
during off-grid mode periods to only supply what is demanded
by the load.

0 ≤ PBESS,disc
t,s,c ≤ PBESS

max ·
(
1− χD

t,s,c

)
∀t ∈ T , s ∈ S, c ∈ {0, C} (24)

0 ≤ PBESS,char
t,s,c ≤ PBESS

max ·
(
1− χD

t,s,c

)
∀t ∈ T , s ∈ S, c ∈ {0, C} (25)

Equations (26) and (27) depict the BESS accumulated
energy during the initial period and subsequent periods, re-
spectively.

EBESS
t,s,c = 0.5 · EBESS

max +∆t
∑
b∈B

(
ηchar
b · αBESS

b · PBESS,char
t,s,c

−
1

ηdisc
b

·αBESS
b ·PBESS,disc

t,s,c

)
∀ t ∈ T , s ∈ S, c ∈ {0, C} |t = 1 (26)
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EBESS
t,s,c = EBESS

t−1,s,c +∆t
∑
b∈B

(
ηchar
b · αBESS

b · PBESS,char
t,s,c

−
1

ηdisc
b

·αBESS
b · PBESS,disc

t,s,c

)
∀t ∈ T , s ∈ S, c ∈ {0, C} |t > 1 (27)

Similar to the previous expressions, equations (28) and (29)
implement the Depth of Discharge (DoD) models for the
BESS.

−
∑
b∈B

(
DoDb · αBESS

b · EBESS
max

)
≤ EBESS

t,s,c − 0.5 · EBESS
max ≤

∑
b∈B

(
DoDb · αBESS

b · EBESS
)
∀t ∈ T , s ∈ S, c ∈ {0, C} |t = 1 (28)

−
∑
b∈B

(
DoDb · αBESS

b · EBESS
max

)
≤ EBESS

t,s,c − EBESS
t−1,s,c ≤

∑
b∈B

(
DoDb · αBESS

b · EBESS
max

)
∀t ∈ T , s ∈ S, c ∈ {0, C} |t > 1 (29)

Equation (30) model the energy limits of the BESS based
on the decision variable for maximum installed energy and the
BESS off-grid scenario.

0 ≤ EBESS
t,s,c ≤ EBESS

max ∀t ∈ T , s ∈ S, c ∈ {0, C} (30)

Equation (31) ensures that the BESS has at least half of
its capacity stored so that it can handle off-grid scenarios.
Moreover, equation (32) ensures that the BESS profile of
stored energy before an off-grid operation is equal to the on-
grid profile.

EBESS
t,s,c ≥ 0.5 · EBESS

max ∀t ∈ T , s ∈ S, c ∈ {0, C} |t < c or c = 0 (31)

EBESS
t,s,c = EBESS

t,s,0 ∀ t ∈ T, s ∈ S, c ∈ {0, C} |t < c (32)

3) Technology additional constraints: Given that only one
technology for the BESS and the PV system needs to be
chosen, equations (33) and (34) ensure that this condition is
satisfied.∑
g∈G

αPV
g = 1 (33)

∑
b∈B

αBESS
b = 1 (34)

4) Operational constraints: Equations (35)–(38) impose
upper limits on the decision variables of the capacities of the
devices installed in the microgrid. These limits represent both
the local installation capacities of the microgrid and the upper
bounds for linearization techniques.

0 ≤ P PV
max ≤ P PV (35)

0 ≤ P TG
max ≤ P TG (36)

0 ≤ PBESS
max ≤ PBESS (37)

0 ≤ EBESS
max ≤ EBESS (38)

5) MINLP formulation: Once the cost and operation mod-
els of the components involved in microgrid sizing are defined,
the formulation of the MINLP problem is given by (39). The
formulation minimizes the total costs (CAPEX, OPEX, and
RCV) subject to operational constraints.{

min cost = {C + O + R}
Subject to: (1) - (38) (39)

C. Yearly GHG emission formulation

This paper takes into account the equivalent GHG emissions
of the microgrid components, including the EDS, TG, BESS,
and PV system. Equation (40) shows how the total annual
emissions of the microgrid operation are calculated.
EM = EMPV + EMBESS + EMEDS + EMTG (40)

Equations (41) and (42) represent the proposed equivalent
emissions in operation as outlined in [13], with modifications
introduced by the nonlinear formulation of technology choice.
Equations (43) and (44) directly convert the consumed energy
into GHG emissions for the EDS and TG, respectively.

EMPV = 365 · ∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

∑
g∈G

(
ePV
g · P PV

max · fPV
t,s,c · αPV

g

)
(41)

EMBESS = 365 ·
∆t

2
·
∑
t∈T

∑
s∈S

∑
c∈{0,C}

∑
b∈B

[
πs,c · αBESS

b ·
eBESS
b

N
cycles
b(

ηchar
b · PBESS,char

t,s,c +
1

ηdisc
b

· PBESS,disc
t,s,c

)]
(42)

EMEDS = 365 ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
eEDS · P EDS,+

t,s,c

)
(43)

EMTG = 365 ·∆t
∑
t∈T

∑
s∈S

∑
c∈{0,C}

(
eTG · P TG

t,s,c

)
(44)

D. Linearization

The linear transformation involves using an equivalent for-
mulation of the product of binary variables with continuous
variables. The approach considered in this paper was based on
the linearizations proposed in reference [23].

The equivalence for a linear model of the maximum PV
capacity to be installed is represented by equation (45), con-
sidering PV curtailment. Additionally, constraints (47)–(49)
are necessary to ensure linear equivalence.
αPV
g · P PV

max · (1− χPV
t,s,c) ≡ P PV,lin

t,s,c,g ∀g ∈ G (45)

In this case, finding an equivalence for the product between
a continuous variable and two binary variables is necessary.
Therefore, the equivalence needs to be done in two steps and
with the assistance of two additional representative variables.
αPV
g · P PV

max ≡ P PV,α
g ∀g ∈ G (46)

P PV,α
g ≤ P PV

max ∀g ∈ G (47)

P PV,α
g ≤ P PV · αPV

g ∀g ∈ G (48)

P PV,α
g ≥ P PV

max + P PV(αPV
g − 1) ∀g ∈ G (49)

P PV,α
g · (1− χPV

t,s,c) ≡ P PV, lin
t,s,c,g ∀t ∈ T , s ∈ S, c ∈ {0, C}, g ∈ G (50)

P PV, lin
t,s,c,g ≤ P PV,α

g ∀t ∈ T , s ∈ S, c ∈ {0, C}, g ∈ G (51)

P PV, lin
t,s,c,g ≤ P PV · (1− χPV

t,s,c) ∀t ∈ T , s ∈ S, c ∈ {0, C}, g ∈ G (52)

P PV, lin
t,s,c,g ≥ P PV,α

g − P PV · χPV
t,s,c ∀t ∈ T , s ∈ S, c ∈ {0, C}, g ∈ G (53)

The product between the binary variable for technology
choice and the nominal capacity of the BESS, both for power
and energy, can be converted in a linear model using the
equivalence presented in equations (54) and (58), respectively.
To ensure equivalence, it must be added the constraints (55)–
(57) and (59)–(61).
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αBESS
b · EBESS

max ≡ EBESS,lin
b,max ∀b ∈ B (54)

EBESS,lin
b,max ≤ EBESS

max ∀b ∈ B (55)

EBESS,lin
b,max ≤ EBESS · αBESS

b ∀b ∈ B (56)

EBESS,lin
b,max ≥ EBESS

max + EBESS(αBESS
b − 1) ∀b ∈ B (57)

αBESS
b · PBESS

max ≡ PBESS,lin
b,max ∀b ∈ B (58)

PBESS,lin
b,max ≤ PBESS

max ∀b ∈ B (59)

PBESS,lin
b,max ≤ PBESS · αBESS

b ∀b ∈ B (60)

PBESS,lin
b,max ≥ PBESS

max + PBESS(αBESS
b − 1) ∀b ∈ B (61)

Similarly to the installed capacity, the powers and ac-
cumulated energy of the BESS during its operation should
also be linearized. Equations (62), (66), and (70) demonstrate
the equivalences that need to be applied in the formulation.
Additionally, the constraints (63)–(65), (67)–(69), (71)–(73)
enable the equivalences for the linearized model.

αBESS
b · PBESS,char

t,s,c ≡ PBESS,char,lin
t,s,c,b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (62)

PBESS,char,lin
t,s,c,b ≤ PBESS,char

t,s,c ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (63)

PBESS,char,lin
t,s,c,b ≤ PBESS · αBESS

b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (64)

PBESS,char,lin
t,s,c,b ≥ PBESS,char

t,s,c + PBESS(αBESS
b − 1)

∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (65)

αBESS
b · PBESS,disc

t,s,c ≡ PBESS,disc,lin
t,s,c,b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (66)

PBESS,disc,lin
t,s,c,b ≤ PBESS,disc

t,s,c ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (67)

PBESS,disc,lin
t,s,c,b ≤ PBESS · αBESS

b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (68)

PBESS,disc,lin
t,s,c,b ≥ PBESS,disc

t,s,c + PBESS(αBESS
b − 1)

∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (69)

αBESS
b · EBESS

t,s,c ≡ EBESS,lin
t,s,c,b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (70)

EBESS,lin
t,s,c,b ≤ EBESS

t,s,c ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (71)

PBESS,lin
t,s,c,b ≤ EBESS · αBESS

b ∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (72)

EBESS,lin
t,s,c,b ≥ EBESS

t,s,c + EBESS(αBESS
b − 1)

∀t ∈ T , s ∈ S, c ∈ C, b ∈ B (73)

Finally, the product between the installed power of TG and
the variable that tracks its operating time is linearized, as
demonstrated by equations (74)–(77).

δTG
t,s,c · P TG

max ≡ P TG,lin
t,s,c,max ∀t ∈ T , s ∈ S, c ∈ C (74)

P TG,lin
t,s,c,max ≤ P TG

max ∀t ∈ T , s ∈ S, c ∈ C (75)

P TG,lin
t,s,c,max ≤ P TG · δTG

t,s,c ∀t ∈ T , s ∈ S, c ∈ C (76)

P PV,lin
t,s,c,max ≥ P TG

max + P TG(δTG
t,s,c − 1) ∀t ∈ T , s ∈ S, c ∈ C (77)

The formulation in equation (78) presents all the constraints
and equivalences for the MILP modeling of microgrid sizing.

min cost = {C + O + R}
Subject to:

(1)–(38), (47)–(49), (51)–(53)
(55)–(57), (59)–(61), (63)–(65)
(67)–(69), (71)–(73), (75)–(77)

Apply equivalences (45), (54), (58), (62), (66), (70) , and (74)
(78)

Algorithm 1 Pareto front using the ϵ-constraint method

1: Define ∆EM ▷ Small amount of emissions
2: while problem is feasible do
3: Solve MILP model in (78)
4: Calculate the maximum GHG emitted using (40)

(a.k.a., EMmax)
5: Add the constraint EM ≤ EMmax −∆EM
6: Add the solution to the set of non-dominated results

E. Pareto Front
The Pareto front was constructed using the ϵ-constraint

method, as described in Algorithm 1. This approach is a
simple technique for multi-objective optimization where one
objective is chosen to be optimized. The remaining objectives
are considered in the form of adjustable constraints. The
resulting set of non-dominated solutions is deployed in a
so-called Pareto front, which is a decision-making tool that
showcases the trade-off between objectives, in this case, total
costs vs total emissions. A similar approach for a different
optimization problem can be found in [24].

III. TEST CASE AND RESULTS
The microgrid size methodology proposed in this paper

is applied specifically in the context of the University of
Campinas, incorporating two technologies for both PV and
BESS. This approach uses data relevant to the cities of
Campinas, Brazil, and Beijing, China, to derive PV generation
probabilities and energy pricing strategies. Table II outlines the
PV technology data obtained from [13], [19], and the lithium
BESS technology data from [25], [26]. The key parameters of
the microgrid include a maximum demand (PD) of 500 kW.
Operational limits are established as: P EDS = 1 MW, P TG =
500 kW, P PV = 800 kW, PBESS = 1000 kW, with a BESS
capacity (EBESS) of 2000 kWh and Cmax = of 2 MUSD.

The probabilities for the operational scenarios, presented
in Table III, were determined with a focus on simulating a
low-reliability microgrid environment. The distribution for off-
grid modes was evenly set at four distinct times—3 a.m., 9
a.m., 3 p.m., and 9 p.m.—to ensure a balanced representation
across the daily cycle. For the PV generation probabilities,
historical global horizontal irradiance (GHI) data specific to
the cities analyzed provided a factual basis sourced from

TABLE II
LI-ION BESS AND PV TECHNOLOGIES DATA

Type ci η DoDb GHG N
cycles
b Ng

[USD/kW] [kg/kWh] [year]

PV technologies data
Perovskite 400 0.95 0.011 30
Si-PERC 310 0.95 0.018 30

BESS technologies data
LFP 815 0.93 0.88 147 3600
LTO 1,553 0.94 0.99 266 10000

TABLE III
PROBABILITY CONSIDERED FOR EACH SCENARIO AND OFF-GRID MODE

Low Medium High On-grid Off-grid
Campinas PV 0.014 0.293 0.693
Beijing PV 0.093 0.485 0.422
Load profile 0.330 0.330 0.340
Off-grid mode 0.900 0.100
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Fig. 1. Optimization problem parameters: (a) Brazil and China EDS energy cost and TG cost. (b) PV and Load Scenarios.

Total cost = 4.74 MUSD
CAPEX    = 2.49 MUSD
EDS (opex)  = 0.92 MUSD
LC (opex)      = 0.71 MUSD
TG (opex) = 0.00 MUSD
RCV (opex) = 0.62 MUSD

GHG    = 594.5 Ton/year
PV size    = 800 kW
TG size  = 0 kW
BESS = 1000 kW/2000 kWh
PV technology: Perovskite
BESS technology: LTO

Total cost = 2.47 MUSD
CAPEX    = 0.39 MUSD
EDS (opex)  = 1.12 MUSD
LC (opex)      = 0.05 MUSD
TG (opex) = 0.00 MUSD
RCV (opex) = 0.91 MUSD

GHG    = 694.5 Ton/year
PV size    = 800 kW
TG size  = 0 kW
BESS = 455 kW/909 kWh
PV technology: Perovskite
BESS technology: LFP

Total cost = 6.03 MUSD
CAPEX    = 2.25 MUSD
EDS (opex)  = 2.53 MUSD
LC (opex)      = 0.59 MUSD
TG (opex) = 0.00 MUSD
RCV (opex) = 0.04 MUSD

GHG    = 129.4 Ton/year
PV size    = 800 kW
TG size  = 0 kW
BESS = 889 kW/1778 kWh
PV technology: Perovskite
BESS technology: LTO

Total cost = 4.27 MUSD
CAPEX    = 2.49 MUSD
EDS (opex)  = 0.92 MUSD
LC (opex)      = 0.71 MUSD
TG (opex) = 0.00 MUSD
RCV (opex) = 0.62 MUSD

GHG    = 179.4 Ton/year
PV size    = 697 kW
TG size  = 0 kW
BESS = 70 kW/137 kWh     
PV technology: PERC
BESS technology: LFP

Total cost = 3.35 MUSD
CAPEX    = 0.29 MUSD
EDS (opex)  = 1.25 MUSD
LC (opex)      = 0.00 MUSD
TG (opex) = 1.73 MUSD
RCV (opex) = 0.08 MUSD

GHG    = 594.5 Ton/year
PV size    = 796 kW
TG size  = 468 kW
BESS = 0 kW/0 kWh           
PV technology: PERC
BESS technology: ---

Total cost = 1.76 MUSD
CAPEX    = 0.26 MUSD
EDS (opex)  = 1.37 MUSD
LC (opex)      = 0.00 MUSD
TG (opex) = 0.06 MUSD
RCV (opex) = 0.07 MUSD

GHG    = 794.5 Ton/year
PV size    = 688 kW
TG size  = 401 kW
BESS = 3 kW/5 kWh
PV technology: PERC
BESS technology: LTO

Fig. 2. Optimization problem results. Pareto front obtained from Campinas COE and Brazilian average EDS GHG emission; and from Beijing COE and
Chinese average EDS GHG emission.

Solcast. This data-driven approach for PV generation aligns
with the empirical nature of the scenarios explored. A compar-
ative analysis across two systems with different GHI profiles
highlighted the impact of these probability parameters on the
solution outcomes, underscoring the importance of tailored
probabilistic inputs in modeling microgrid performance.

Regarding the TG, the following parameters were con-
sidered: ciTG = 100 USD/kW and NTG

h = 50,000 hours.
Concerning operational costs, the load curtailment considered
was 1 USD/kWh, and the costs of the TG and EDS are
depicted in Fig. 1a based on references [13], [27], [28].

The GHG emissions considered for the imported energy
from the EDS in the cities of Campinas and Beijing were
102 gCO2e/kWh and 531 gCO2e/kWh, respectively. These val-
ues were obtained from [29] and correspond to the countries’
average GHG emissions in 2022. The GHG emissions from the
operation of the TG were considered to be 800 gCO2e/kWh,
based on [13].

Regarding the other parameters, the off-grid mode time
duration was 3 hours, the planning horizon was set to 10 years,
the time between investment and operation was 1 year, and ∆t
was 30 minutes. The annual interest rate was equal to 1%.

The simulations considered the COE and PV generation
scenarios for each city, with Fig. 2 illustrating the combined
Pareto curves for Beijing and Campinas, showcasing the
total cost associated with various GHG emission levels, and
including representative samples detailing cost and sizing. The
limits of the curve are set by the infeasibility due to the
maximum sizing constraints for PV and BESS. A notable
observation across both scenarios was the necessity for at
least one technology swap to adhere to GHG emission limits

during the construction of the Pareto curve. The disparity
between the curves, particularly in the total cost to achieve
equivalent emissions, primarily derives from the GHG emis-
sions associated with imported energy from the EDS, with
Beijing’s equivalent emissions from imported energy being
approximately five times higher than Campinas’, underscoring
the need for a more significant investment in DER in Beijing
to match the GHG emissions levels attainable in Campinas.

Although time-intensive, the construction of Pareto curves
aligns with the strategic nature of microgrid planning in tack-
ling the computational demands of microgrid planning. This
long-term approach mitigates the emphasis on computational
speed compared to operational contexts. Efficiency gains for
larger systems or with additional technologies can be realized
through strategic pre-processing, such as excluding less viable
technologies early on. This refined focus ensures practicality
in planning without compromising computational depth.

Finally, Fig. 3 shows three examples of operation resulting
from the highlighted midpoint at Pareto’s curve from the
Campinas scenario. It is worth noting that there was even a PV
curtailment for the contingency at 9 a.m. to ensure compliance
with the grid operational limits.

IV. CONCLUSION
This paper proposes a Mixed Integer Linear Programming

(MILP) model for microgrid sizing that considers both grid-
connected and islanded operation modes, the Replacement
Cost Value (RCV) of Distributed Energy Resources (DERs),
the selection of technologies for Battery Energy Storage
System (BESS) Systems Photovoltaic (PV) panels, as well as
modeling Greenhouse Gas (GHG) emissions from microgrid
components. By incorporating GHG emissions modeling from
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Demand EDS PV Thermal BESS

Fig. 3. Operation obtained for Brazil’s highlighted midpoint of the Pareto curve. Left graph: full on-grid operation. Middle figure: microgrid islanding
operation at 9 a.m. Right figure: Microgrid islanding operation at 9 p.m.

microgrid components, Pareto fronts of annual GHG emissions
and total cost were obtained, considering aspects of both
Campinas in Brazil and Beijing in China. The evolution of the
Pareto front demonstrated that a slight increase in investment
has the potential to significantly reduce global GHG emissions.
Finally, the methodology successfully identified solutions with
different technologies along the Pareto front.
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