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Abstract—The growing complexity of Power Distribution Sys-
tems, driven by distributed generation, renewable energy inte-
gration, and increasing demand, has led to restricted access to DS
data due to security and privacy concerns. This study addresses
limited data accessibility by proposing a hybrid approach for
crafting synthetic power distribution systems tailored for power
system analysis and control. Synthetic power distribution systems
refer to artificially generated models that faithfully replicate
real-world DS features while upholding security and privacy
constraints. This innovative methodology merges a Bayesian
Hierarchical Model with Markov Chain Monte Carlo techniques,
utilizing georeferenced data to capture intricate system depen-
dencies, feeder configurations, switch statuses, and load node
distributions. Leveraging OpenStreetMaps for DS topology, the
approach incorporates expert knowledge and real-world data.
Results highlight the methodology’s ability to evaluate credible
intervals for parameters, facilitating a probabilistic assessment
of uncertainties and enhancing decision support in power system
analysis and control. Findings affirm the hybrid approach’s
efficacy in generating realistic synthetic DSs, bridging the gap
between statistical and georeferenced methodologies for advanced
power system analysis and control. The capacity to generate
synthetic DSs provides valuable insights into power system
dynamics, addressing security, privacy, and data accessibility
concerns for a more informed decision-making process.

Index Terms—distribution systems, synthetic test cases,
bayesian hierarchical model, georeferenced data

I. INTRODUCTION

Distributed generation, renewable energy resources, and the
ever-growing demand for electricity have collectively con-
tributed to the increasing complexity of power distribution
systems (DS) [1]. However, due to security concerns, data
related to DS are often restricted, posing a challenge for
researchers and engineers who require access to reliable
datasets for training and testing power system analysis and
control algorithms [2]. Consequently, there is an urgent need
for methodologies that can effectively generate synthetic DS
from publicly available data, bridging the gap between data
scarcity and the demand for data-driven solutions in the power
distribution domain.
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Previous research has primarily focused on the development
of tools based on open data sources, such as OpenStreetMap
(OSM) [3]. These georeferenced approaches utilize street
location and distribution information to define the general
topology of electrical systems, providing an initial framework
for synthetic DS generation [1]. However, these methods still
face challenges in specifying electrical parameters and network
demands accurately, often resorting to simplified assumptions,
such as the proportionality of load demand to building size,
which may not fully capture the intricacies of real-world
distribution systems [1]. On the other hand, statistical tools
have been utilized to define probability distribution functions
for electrical properties of DS, allowing for the generation of
synthetic systems that reflect statistical characteristics of real
data [2]. However, these purely statistical methods may lack
georeferenced information and fail to produce realistic repre-
sentations of urban DS with accurate spatial and topological
features [2].

To address these limitations and create more accurate syn-
thetic DS, we propose a novel methodology that integrates
statistical and georeferenced approaches, presenting a hybrid
model for synthetic power distribution systems. The Bayesian
Hierarchical Model (BHM) is central to our approach, a
powerful statistical method known for its ability to manage
intricate dependencies and variable interactions [4]. BHMs
offer the advantage of capturing the correlations and interac-
tions between various power distribution system components,
including transformers, feeders, and substations, leading to
more comprehensive and realistic representations of the DS.

Our proposed BHM leverages the Markov Chain Monte
Carlo (MCMC) method to sample elements of the synthetic
DS from the posterior distribution. By combining expert
knowledge and real-world data, we construct credible intervals
(CD to derive posterior probabilities of parameters, allowing
for a robust and data-driven learning process. One significant
contribution of our approach is the evaluation of several
parameters as random variables, each with its own highest
density interval (HDI), instead of single point estimates. This
unique characteristic enables our model to effectively assess
the impact of uncertainties and quantify the importance of each
component in the synthetic system in a probabilistic frame-
work, enhancing decision support capabilities. This contrasts
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with conventional single point estimates found in the literature,
which may not fully account for the inherent uncertainties
in power distribution systems. Our work not only provides
a more accurate and versatile representation of synthetic DS
but also offers insights into the integration of statistical and
georeferenced data, bridging the gap between two distinct
methodologies for synthetic DS generation.

The rest of this article is structured as follows: Section II
provides a concise literature review of recent works related to
the creation of synthetic power distribution systems. In Section
III, we define the methodology of our proposed work, which
incorporates a hybrid model integrating georeferenced data and
statistical methods. Section IV presents the key findings of our
study, and finally, Section V offers concluding remarks.

II. LITERATURE REVIEW

The process of creating synthetic distribution systems has
been in the literature in various forms. The interest in such
approaches comes down to two main factors: Georeferenced
data is usually open available from platforms such as the
OpenStreetMaps [3]; Electrical data from power distribution
systems are usually not publicy available due to security rea-
sons [5]. In this scenario, two main approaches are considered:
either using georeferenced data directly to create the full
synthetic distribution system; or using statistical tools to fit
real data from real distribution systems to create fully synthetic
distribution systems.

In the exploration of creating synthetic distribution systems,
the literature reveals two predominant strategies influenced by
the dichotomy between the open availability of georeferenced
data and the restricted access to electrical data due to security
concerns [5]. The first strategy involves the direct utilization of
georeferenced data to shape the synthetic network, exemplified
by works such as [1], [6], [7], [8], [9]. However, a common
drawback in these approaches lies in the oversimplification of
the load estimation process, assuming a proportional relation-
ship between the active power of each node and the size of
nearby residences or buildings. This simplification, identified
as a potential limitation, raises accuracy concerns, prompting
the necessity for additional data sources, including statistical
information, to refine load estimation precision. Furthermore,
recognized gaps in the allocation of switches and considera-
tion of electrical characteristics within current georeferenced
approaches underscore the need for future research to address
these critical aspects.

Conversely, a distinct set of works opts for statistical ap-
proaches, fitting real distribution system data and generating
synthetic systems through sampling from statistical models, as
evidenced by studies like [10] and [2]. While these statistical
methodologies demonstrate efficacy in modeling random vari-
ables such as active power and feeder distances, a notable limi-
tation surfaces—they do not incorporate georeferenced data as
a foundational element for synthetic network generation. Con-
sequently, the resultant systems lack geospatial representation,
limiting their suitability, particularly in modeling distribution
systems within urban areas.

It is clear that the existing literature treats statistical and
georeferenced approaches to synthetic distribution system cre-
ation as distinct methodologies, each with its limitations. The
identification of these limitations becomes more pronounced
when considering the methods separately. However, it is ev-
ident that a synthesis of these approaches holds significant
potential for overcoming individual drawbacks. Integrating
statistical models with georeferenced data not only enables
the creation of more accurate and geospatially representative
synthetic power distribution systems but also paves the way
for advancing the field in addressing urban-specific challenges.

III. MATERIALS AND METHODS

The primary objective of this study is to employ a BHM
or the allocation and creation of synthetic distribution sys-
tems, effectively bridging the gap between georeferenced data
and statistical knowledge, including the mean, variance, and
credible interval of key variables, such as power demand and
load deviation, which can be extracted from real-world data..
This approach aims to address the need for a methodology that
takes into account both spatially referenced data and statistical
insights. Therefore, this section will be divided into two parts:
Section III-A demonstrates the utilization of georeferenced
data from a Brazilian city to establish essential topological
parameters relevant to the distribution system. Conversely,
Section III-B showcases how real-world data from power
distribution systems is integrated with a BHM to generate the
final parameters for the power distribution system. Figure 1
shows a complete flowchart of the proposed methodology,
where both the aforementioned steps are detailed, making
reference of each procedure that are detailed hereinafter.

The python Pymc4 library [11] was used to model the BHM.
The PandaPower package [12], an open source tool for power
system modelling, was used to model the synthetic power
distribution system, as well as its individual parameters. The
Networkx library [13] was used to calculate graph properties,
such as distance from elements in the distribution system.

A. Using georeferenced data

This study involves the development of a synthetic power
distribution system originating from a real urban area. The
chosen urban area for this investigation is Sao Paulo, Brazil.
Utilizing georeferenced data accessible on OpenStreetMaps
[3], Figure 2 illustrates the geographical context of the city.
This public available data gives information about the road
network in the form of a Directed Graph, where edges redefine
the streets, and the nodes constitute the intersection between
each lane.

Georeferenced data for substation locations can be accessed
through OpenStreetMaps, resulting in a graph representing the
city with nodes and edges. Following this, establishing the
positions of feeders that depart from these substations involves
several sequential steps:
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Fig. 1. Flowchart of the proposed methodology. In Step 1, the georeferenced data is used to allocate the feeders and electrical paths of each substation
(Procedure 1) and normally closed switches (Procedure 2). In Step 2, real data or expert knowledge can be used to fit the BHM, calcualte the posterior
distribution (Procedure 3) and sample from posterior distribution to allocate the reamining elements of the synthetic distribution system (Procedure 4).
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Fig. 2. Road Network from the city of S3o Paulo, Brazil. The data is
taken from OpenStreetMaps [3], and gives the road network in the form of a
Directed Graph. This georeferenced data is used as a starting point to create
the final synthetic distribution system.

Procedure 1

1) For each substation (s € .S) in the georeferenced data,
the road network serves as a starting point for conducting
a Breadth First Search, originating from the substation’s
location. The result of this process is a set of paths (P)
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leaving from the original substation;
2) Considering each path in the path set (p € P), and the switch allocation (meaning their exact position in the final

graph created to represent the city, the closest node to
the original substation is determined, and a feeder is
allocated at that node.

3) The active power of each allocated feeder is determined
by summing the active power of all load buses connected
to it. This ensures that the allocated feeder can meet
the demand under normal operational conditions. The
specific active power of each load bus will be further
defined in Section III-B.

The aforementioned procedure is suitable for defining the
proper location of the feeders in the original georeferenced
data. The next step involves the allocation of normally opened
switches in the network. These switches facilitate the transfer
of active power between nodes. The switch allocation proce-
dure is as follows (for each pair of paths):

Procedure 2

1) For each pair of paths leaving the original feeder
(p1,p2 € P), the closest pair of nodes (one from each
path) is identified based on their distance.

2) It is then verified whether each feeder can accommodate
the combined demand of both downstream sections in
case a power transfer is required. If so, the switch is
allocated at that location.

3) The procedure is repeated for the next closest pair of
nodes (again, one from each path) until all suitable
switch locations are determined.

By adhering to these steps, the optimization of feeder and
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synthetic network) is achieved by ensuring that the sectors
formed by the placement of normally opened switches can
adequately support the demand, a crucial aspect during system
failures. This process significantly enhances the efficiency and
reliability of the distribution system.

B. Using Bayesian Hierarchical Model with real data

After the procedures described in Section III-A, the loca-
tions of substations and feeders are generated. In this Section,
the remaining parameters for the power distribution system
will be modelled by using a BHM. Particularly, the two main
remaining components are as follows:

e Location of each load bus (as well as its active and
reactive power);

o Location of normally closed switches (circuit breakers)
which are used to disconnect sectors in case of failure)

The primary advantage of the BHM, in this context, lies in
its ability to incorporate multiple layers of random variables.
In this modeling approach, variables at the highest level
are considered first, and variables at lower levels take the
distribution of the higher-level variables as a reference. This
hierarchical structure allows for a more comprehensive and
flexible representation of the data, capturing dependencies and
relationships between different variables effectively.

Equations 1 to 7 define the complete BHM proposed in
this study. In Equation (1), a mixture model is introduced,
where the probability distribution of the random variable x
is determined by the same likelihood distribution - f(x) -
but each with its individual weight contribution (w;) and
hyperparameters ;. This mixture model is applied to two
variables of interest: the distance from load nodes to feeder
(drn) and the distance from normally closed switches from
feeder dyc. In both cases, we use the Poisson distribution
as the preferred likelihood function, as shown in Equation
(2), where )\; is the expected rate of occurrences. Mixture
Poisson models have been successfully employed to redefine
heterogeneous characteristics of power systems [14], and as
demonstrated in Section IV, the real-world data used to fit our
model aligns well with this choice.

N

flalw,0) = " wif(x]6:),¥i € {1,2},Va € {dry, dnc}
=1

(D

_>\i xr

flal) = SN

z!

Vi e {1,2},Vo € {drn,dnc}  (2)

After defining the location of each load bus in the distribu-
tion system, the next step is to define its active and reactive
power. In this sense, similar to the work proposed in [15], the
process is divided in three main random variables: fraction of
load nodes in the power distribution system as a whole (FTf)
(where non-load nodes are considered as connection buses),
modelled as a beta distribution function as shown in Equation
(3), where a (or o) and b (or ) are the parameters of the

distribution; load deviation (D;), modelled as a t-location scale
distribution as shown in Equation (4), where v, and o are
the shape, location and scale parameters respectively; power
factor for the whole network (PF’), modelled as a simple
three possibilities as shown in Equation (5), where u is a
random uniform distribution in the closed interval [0, 1]. This
parameterization, as previously employed in the literature [1],
can essentially be interpreted as follows: The protective feature
(PF) has a 16.49% probability of being equal to 0.85, followed
by a (0.27 — 0.1649) - 100 = 10.51% probability of being
equal to 0.90, and finally, a 100 — 16.49 — 10.51 = 73%
probability of being equal to 0.95. Depending on the specific
distribution system (DS) being modeled and relying on either
expert knowledge or real data, this parameterization can be
extended to accommodate additional PF possibilities, each
with its respective set of probabilities.

I'(a+b)z* (1 — )0t

F b) = 3
f( L‘av ) F(a)F(b) ( )
F(Ll) v+ (ﬂ) il
D — 2 a — 1 F
f( l|V7,UJaO') O’\/ﬁr(%)[ v ] 2 av €rr
4)
0.85, if 0 < u < 0.1649
PF =<¢0.90, if 0.1649 < u <0.27 (®)]
0.95, otherwise

Finally, additional parameters can be calculated based on
the aforementioned random variables. First, the active power
for each load node (P;,VI € Fp) can be calculated based on
Equation (6), where pp is the mean active power (which can
be defined based in either previous data or expert knowledge).
Additionally, the reactive power can be calculated from Equa-
tion (7), considering the power factor for the whole network
and the active power for each individual load node.

P =up+D;-pup,vVle Fr, (6)

Q) = P, - tan(arccos(PF)),Vl € F, (7

After properly modelling the variables of interest as random
variables, with their respective distribution functions, the next
step is to define the value of each hyperparameter of the chosen
distributions. In order to do so, either expert knowledge or real
data can be used. Given such data, the following procedure is
used to fit the data into the BHM:

Procedure 3

1) For each feeder in the network, calculate the fraction
of load nodes (given all nodes). This will be used into
Equation (3);

2) For each load node in the network, calculate the distance
from it to its respective feeder. Use this data to fit into
Equation (1) with = = dn;
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3) For each normally closed switch in the network, calcu-
late the distance from it to its respective feeder. Use this
data to fit into Equation (1) with x = dy¢;

Calculate the mean active power for the system as a
whole. Store it in up. For each load node in the network,
calculate the difference between its actual power and the
mean (D; = P, — up). Use it to fit into equation (4)

4)

Procedure 3 enables the definition of the posterior dis-
tribution for each parameter of interest. This essentially in-
volves fitting the statistical model to real data, allowing these
distributions to serve as a basis for sampling data for new
systems. Although synthetic in nature, these new systems
retain characteristics derived from the data of a real system.

The subsequent and crucial step involves utilizing the pos-
terior distribution of the real-world data to generate the syn-
thetic distribution system. However, due to potential significant
variations between the distribution system where the data was
collected and the georeferenced location where the synthetic
distribution system will be created (including differences in the
number of loads, substations, and the active power demand of
each load node), a normalization procedure is necessary. This
normalization procedure will be described as Procedure 4.

Procedure 4

1) Initially, define as a parameter: the number of normally
closed switches to be allocated: Nyc¢;

Calculate the mean path length distance for all feeders
in the georeferenced data: dg.,; calculate the mean path
length distance for all feeders in the original real data
(or define it through expert knowledge): d;eq;

Sample dy¢ from equation (1). Try to find a edge from
the georeferenced data whose distance from feeder is
equal to dy¢ - % (normalization procedure that takes
into account possible distinct scales between real data
and the synthetic system). Allocate a normally closed
switch in such a node. Repeat this procedure for Nyc¢
times;

Given the partial distribution system with feeder lo-
cations generated in Section III-A: calculate the total
number of nodes (/V;). Sample F from Equation (3).
Consider N;, = F, - Ny as the normalized number of
load noads;

Sample drn from equation (1). Try to find a node from
the georeferenced data whose distance from feeder is
equal to dy . Allocate a load in such a node. Repeat
this procedure for NV times;

Define the PF of the noad using Equation (5);

Define pp that is desired for the power distribution sys-
tem. For each allocated load node, sample its deviation
from Equation (4), and use Equations (6) and (7) to
define its active and reactive power

Finally, define the demand of each feeder of the network
as the total sum of active power from all load nodes
connected to it.

2)

3)

4)

5)

6)
7

8)

After this final procedure, the output of the model is a
synthetic distribution system with normally opened and closed

switches; load nodes with active and reactive demand and
substations with connected feeders.

IV. RESULTS AND DISCUSSIONS

The results are organized into sections to enhance reader
comprehension. In Section IV-A, we present data from a real
Distribution System (DS) and justify its use. Section IV-B
showcases the posterior distribution of the Bayesian Hierarchi-
cal Model (BHM) fitted into real data, including its parameters
and visual representation. Moving on to Section IV-C, we
provide an example of a synthetic distribution system created
using the proposed methodology, along with a validation of
the main results. Finally, in Section IV-D, we present the
computational time associated with the proposed methodology.

A. Real Data

In this work, in order to demonstrate the effectiveness of
the BHM to deal with real world data, a Brazilian power
distribution system is used. For more details regarding the
real data applied, please refer to the work done in [16]. The
system has over 40000 buses, 3800 switches and 36000 loads.
In this power system, the connections between buses, feeders
and substations are well-known, as well as the active power
of each load node.

To validate our hypothesis of applying a mixture model for
the hop distance from switches to feeders, the hop distance
was calculated for each bus in the Brazilian DS. A histogram
was created, as shown in Figure 3 a). While there is a peak
frequency at around 800, frequencies around 200 and 400 also
appear at a considerable ratio, which seems to indicate that
a single distribution is not enough to model the variable’s
behaviour, thus serving as a motivation to model the maximum
hop distance from feeders as a Mixture Poisson Model. In
Figure 3 b), the same procedure is done with load nodes
distance. It is clear that a mixture behavior is also presented in
such variable, which was also modelled as a mixture poisson.
Both closed switches distance and load nodes distance are rep-
resented in Equation 1. Moreover, the lower values observed
in the central part of Figure 3 a) and b) can be attributed to
the dual purposes of closed switches. They are strategically
positioned: either in close proximity to the feeder, facilitating
disconnection from the rest of the network, or at a relatively
greater distance to isolate loads in the event of disruptions.
As a result, middle distances are less common, with a higher
concentration towards the tails of the distribution.

Finally, in Figure 3 c), we define the distribution of active
power for each load node in the real data. The plot reveals that
this variable predominantly consists of values concentrated
at low active power levels (close to 0), with the probabil-
ity decreasing as active power increases. Due to the nature
of this variable, which can only have positive values, and
the heterogeneous distribution observed in the real data, the
procedure outlined in Section III-B and adapted from [15] is
well-suited. This adaptation is essential because the t-location
scale distribution is useful for modeling data distributions
with heavier tails (more prone to outliers) than the normal
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distribution, and can become a normal distribution depending
on the values of its parameters. Such adaptability to real-world
data is crucial for the BHM to effectively fit the data.
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Fig. 3. Histogram for the real dataset obtained from a Brazilian Power
Distribution System, serving as the basis for fitting the Bayesian Hierarchical
Model (BHM) proposed in this work. The data from (a) and (b) were fitted to
a mixture Poisson model, while the data in (c) was fitted to a t location-scale
distribution. In this representation, distance refers to the number of edges in
the shortest path connecting each element from the feeder. The blue curve
overlaid on the histogram represents the kernel density estimate (KDE) plot,
enhancing the visual understanding of the distribution of observations within
the discrete histogram.

B. Fitting real data into BHM

After exploring the real data from a Brazilian power dis-
tribution system, procedure 3 detailed in Section III is used
to properly fit the data. Table I shows the final values of
hyperparameters for the Fraction of Load Nodes and Load
Deviation. Table II shows the hyperparameters for the mixture
model used to fit the distance from normally closed switches
to feeder (dpy). Table III shows the mixture model for
nodes with power (dr,n). For the mixture Poisson models, the
Highest Density Interval (HDI) is also shown, since this is the
output of a BHM, and as such, each parameter is considered
as a random variable.

By comparing the mean values presented in Table II with the
histogram from real data in Figure 3 a), it is possible to observe
that the mixture Poisson properly fitted the real data into the
mixture poisson model. The first Poisson distribution has a
much higher mean value (685.60 for \g), with a higher weight
mean (0.78 for wq). The second Poisson distribution has a
mean value of 56.05 (\1), but with a much higher standard
deviation of 99.78. This type of result is coherent with the
real data, where a majority of switches have a large distance
from feeder (between 600 and 1000), while a smaller (but
significant) number of switches have its distance between 0
and 500.

A similar interpretation can be done regarding the results
presented in Table III. In this case, once again, the first poisson
curve has a higher value for the mean of the poisson hyperpa-
rameter (\g) as well as its weight (wg). This is coherent with
real data presented in Figure 3 b), where the distance from

load nodes to feeder can be splitted into two main groups:
between 0 and 500 (which was fitted into A; and from 500
onwards (which was fitted into Ag).

The significance of employing a BHM becomes evident in
both the presented mixture Poisson models, as detailed in
Tables II and III. The inclusion of Highest Density Interval
(HDI) calculations for each parameter, including weights,
proves crucial. This not only enhances our understanding
of the fitted data but also provides a range of intervals for
utilization in constructing the synthetic distribution system. In
contrast to previous approaches that utilized a single static
value for each parameter, our method offers a more nuanced
and adaptable approach. By incorporating the BHM, we gain
the flexibility to explore diverse intervals, such as the mixture
poisson to model distributions with heterogeneous characteris-
tics, thereby refining the precision of the synthetic distribution
system and offering a more comprehensive representation of
the underlying data characteristics.

TABLE I
DISTRIBUTION CURVES (AND THEIR RESPECTIVE PARAMETERS) FITTED
TO HISTORICAL DATA FROM A BRAZILIAN POWER DISTRIBUTION SYSTEM,
REGARDING THE ACTIVE POWER OF EACH LOAD NODE.

Property

Distribution

Parameters

Fraction of Load Nodes (F7)
Load Deviation (D;)

Beta
tLocationScale

a=2303,8=14954
p=—0.001,0 =0.002,v = 1.46

TABLE II
MEANS (1), STANDARD DEVIATIONS (¢), AND THEIR HIGHEST DENSITY
INTERVALS (HDI) FOR THE MIXTURE POISSON USED TO MODEL THE
DISTANCE FROM NORMALLY CLOSED SWITCHES TO FEEDERS (dx¢). THE
DATA OF A BRAZILIAN POWER DISTRIBUTION SYSTEM WAS USED TO FIT

THE MODEL.
Parameter m o HDI (3%) | HDI(97%)
Ao 685.60 | 72.95 651.15 825.54
A1 56.05 99.78 0.73 250.64
wo 0.78 0.06 0.62 0.83
w1 0.22 0.06 0.17 0.38
TABLE III

MEANS (i), STANDARD DEVIATIONS (o), AND THEIR HIGHEST DENSITY
INTERVALS (HDI) FOR THE MIXTURE POISSON USED TO MODEL THE
DISTANCE FROM LOAD NODES TO FEEDER (d7,n). THE DATA OF A
BRAZILIAN POWER DISTRIBUTION SYSTEM WAS USED TO FIT THE MODEL.

Parameter I o HDI (3%) | HDI(97%)
A0 672.291 113.766 401.471 754.581
A1 24.115 28.444 0.552 65.631
wo 0.485 0.131 0.257 0.627
w1 0.515 0.131 0.373 0.743

C. Creating a synthetic system from data

To demonstrate the effectiveness of our proposed approach
in creating synthetic power distribution systems based on the
posterior distribution of real data, Figure 4 illustrates the
histogram for a single sample of the synthetic distribution
system constructed using Procedure 4, as explained in Section
III-B. For this particular case, we fixed the number of normally
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closed switches at Nyc = 50. It is essential to note that the
main path length of each feeder in the network is considerably
smaller than that of the original real data used to fit the
BHM. Consequently, the values of distances for the real data
(Figure 3 a) and b)) are significantly smaller compared to
the synthetic distribution system (Figure 4). This discrepancy
is expected and results from the normalization technique
detailed in Procedure 4. The normalization procedure enables
the creation of the synthetic distribution system based on
georeferenced dgata of varying sizes, even if it differs from
the real data used to derive the posterior distributions.

Conversely, Figures 3 ¢) and 4 c) present comparable shapes
and scales. The congruence arises from the absence of normal-
ization in the active power for each node within our proposed
approach. This shape similarity underscores the efficacy of our
method in drawing samples from the posterior distribution.
Yet, nuanced differences emerge, inherent to the Bayesian
nature of our model. The sampling process considers the
posterior distribution of each parameter rather than a singular,
static value. Consequently, even with a substantial number of
samples, each synthetic distribution sample exhibits relative
distinctions from the actual distribution of real data. Further
exploration into quantifying this dissimilarity geometrically or
mathematically would provide a more precise measurement.

To address the potential concern of dissimilarity between
synthetic and real data histograms, it’s crucial to note that
a geometrical or mathematical measure may not be ideal in
this case. The synthetic data represents a small sample from
the posterior distribution learned from real data. Therefore,
the final histogram is expected to exhibit dissimilarity due to
the inherent variability in the Bayesian framework. With an
increased number of samples, the synthetic distribution will
undoubtedly converge to the distribution fitted from real data,
illustrating the robustness of our approach in capturing the
underlying dynamics of the power distribution system.

It is crucial to highlight that the histogram presented in
Figure 4 represents only one instance of a synthetic system.
As per our proposed methodology, several different synthetic
systems can be created based on the same georeferenced data.
This approach is distinct from previous methods, where a
single synthetic system is generated for each georeferenced
data. The ability to create multiple synthetic systems from
the same georeferenced data is made possible by our novel
hybrid statistical and georeferenced approach for the creation
of synthetic power distribution systems, which is the first of
its kind in the literature.

Emphasis should be placed on the resultant synthetic grid
and its corresponding parameters. The generated system con-
sists of 12.538 buses, 25.436 lines, and 9,813 loads, character-
ized by a mean active power of 22.06mW and reactive power
of 8.37MVar. Additionally, the system features 50 normally
closed switches and 183 normally opened switches. All ele-
ments within this synthetic grid are georeferenced, possessing
a well-defined geographical position, as the original urban area
considered is georeferenced. Importantly, the georeferencing
aspect equips the system for simulating problems requiring
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Fig. 4. Histogram for a single synthetic distribution system created by sam-
pling from the posterior distribution of the final BHM. In a) and b), a mixture
Poisson model was used. In c), t location-scale distribution is considered.
The procedure for sampling from posterior distribution is presented in Section
III-B. The blue curve overlaid on the histogram represents the kernel density
estimate (KDE) plot, enhancing the visual understanding of the distribution
of observations within the discrete histogram.

component location, such as Fault Location Isolation and
Service Restoration (FLISR). This capability enhances the
practical applicability of the synthetic grid in diverse scenarios.

Finally, it is essential to clarify that our approach is not
primarily designed for the quantitative prediction of loads
or load profiles. Quantitative evaluation in this context falls
outside the intended scope of our methodology. Instead, the
primary objective is to leverage real data to learn from the un-
derlying distribution, subsequently facilitating the generation
of synthetic systems sampled from the posterior distribution
learned from the data. While a direct quantitative assessment
of load predictions may not be applicable, it can be rea-
sonably asserted that the generated load profiles will exhibit
similar behavioral characteristics to the real data from which
the posterior distribution was derived. This aligns with the
fundamental purpose of our approach, which is to faithfully
capture and replicate essential features of real-world power
distribution systems.

D. Computational Time

The computational performance of our proposed method
holds significant implications for its practical utility. Executed
on a personal computer with 8GB of RAM and an Intel
Core 17-8550U CPU @ 1.80GHz, utilizing Python 3.8.10, all
simulations’ computational times for each step are detailed
in Table IV. It is noteworthy that Procedure 4, involving
the synthesis of distribution systems by sampling from the
posterior distribution, stands out for its exceptional efficiency,
requiring only 10.8 seconds. This efficiency underscores the
method’s practical feasibility for generating multiple synthetic
distribution systems. Leveraging Procedure 4 iteratively with
distinct inputs enables the creation of diverse synthetic systems
from the same georeferenced data, enhancing adaptability for
addressing various scenarios.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 — 7, 2024




In totality, our approach boasts a commendable computa-
tional efficiency, with a total processing time of 460.4 seconds
for all procedures. This streamlined process holds promise for
advancing research, testing, and planning in power distribution
systems, offering valuable data-driven insights for decision-
makers and researchers. Importantly, our focus is not on direct
comparisons between our computational time and state-of-the-
art methods - and for the best of author’s knowledge, previous
work do not explicitily mention the computational time of cre-
ating synthetic power DS - but rather to show the efficiency of
our method in creating realistic synthetic distribution systems
in a matter of seconds is a notable strength. The scalability
of our proposed method is also evident, as demonstrated by
its completion within 460 seconds for a substantial test case
using georeferenced data from the largest Brazilian city.

TABLE IV
COMPUTATIONAL TIME FOR EACH STEP OF THE PROPOSED APPROACH, AS
DELINEATED IN FIGURE 1. THE PROCESS IS ITERATED 100 TIMES, AND
THE MEAN COMPUTATIONAL TIME IS COMPUTED FOR ROBUST

EVALUATION.
Procedure Computational Time (seconds)
Procedure 1: Breadth First Search to allocate feeders 125.4
Procedure 2: Allocate normally opened switches 108.2
Procedure 3: Calculate Posterior Distributions 216.0
Procedure 4: Sample from posterior distribution 10.8
Total comp ional time 460.4

V. CONCLUSIONS

The increasing complexity of distribution systems, fueled by
factors such as distributed generation, renewable energy inte-
gration, and increasing demand, underscores the need for inno-
vative approaches to generate robust synthetic data for power
system analysis and control. This study introduces Bayesian
Hierarchical Modeling (BHM), emphasizing its strength not
just in delivering high-quality results but, critically, in the
robustness of the Bayesian methodology. Our approach stands
out in the literature by harnessing the methodological power
of BHM, treating each parameter as an independent random
variable with dedicated distribution curves and hyperparame-
ters. This strategic choice ensures a nuanced understanding
of intricacies in power distribution systems, enhancing the
generation of synthetic data that faithfully mirrors real-world
complexities. The results demonstrate the proposed model’s
ability to learn from real data, generate posterior distributions
for various system characteristics modeled as random vari-
ables, and sample from these distributions to create a geo-
referenced synthetic grid. This highlights the efficacy of our
approach in crafting realistic synthetic distribution systems,
making a valuable contribution to the advancement of power
system analysis and control methodologies.

The BHM’s distinctive treatment of parameters, informed by
expert knowledge or real-world data, results in posterior dis-
tributions intricately linked to their respective highest density
intervals (HDIs). The integration of HDI-backed distributions
enhances the versatility of synthetic distribution generation and
furnishes decision-makers with invaluable insights for well-
informed choices. This proves pivotal in guiding investments

and system planning, especially in georeferenced urban areas.
The outcomes of our model underscore its generalizability
and adaptability, driven by two distinct features. Firstly, the
incorporation of urban data from an open-source platform,
such as OpenStreetMaps, imparts a versatility that extends
beyond the confines of any specific city. This flexibility allows
the generation of synthetic networks for a diverse array of
urban environments, eliminating geographic limitations as-
sociated with the choice of Sdo Paulo as a reference city.
Secondly, the Bayesian Hierarchical Model (BHM) employed
in our approach contributes to its generalization. The BHM
exhibits a unique capacity to assimilate new data from any
distribution system, dynamically adapting to varying charac-
teristics and complexities. Moreover, the BHM’s flexibility
allows for modeling based on expert knowledge. By fixing
specific values for the parameters of probability distributions,
the model can be tailored to incorporate the expert’s insights,
offering an intuitive and personalized approach to synthetic
network generation. Thus, the generalist nature of our model
highlights its applicability across a wide range of scenarios,
making it a valuable tool for the analysis of energy distribution
systems in diverse contexts.

Moreover, a noteworthy aspect of our methodology is
its computational efficiency, completing the entire process,
including georeferenced data extraction, BHM learning, and
posterior distribution sampling, in a mere 460.4 seconds. Once
the georeferenced data and the fitted BHM are established,
generating new synthetic power systems requires less than 15
seconds. While computational time is not the primary focus
of our work, this rapid execution facilitates iterative runs for
optimization, contributing to the efficiency of research, testing,
and planning in the power distribution domain.

Finally, our synthetic power distribution system generation
method has limitations. Its accuracy is sensitive to input data
quality, and discrepancies may impact realism. The BHM
introduces uncertainties based on expert knowledge and real-
world data. Future research directions could enhance the
methodology with advanced statistical models, incorporate
machine learning for improved data processing, and address
scalability issues. Extending the application to diverse urban
settings and datasets would bolster generalizability. Addi-
tionally, exploring how the proposed BHM can exploit the
escalating complexity associated with distributed generation
and renewable energy represents a noteworthy avenue for
future investigation. This consideration is vital for the ongoing
evolution and broader applicability of our approach.
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