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Abstract— In this paper, we present an efficient continuation 

method that can reconstruct solution branches and locate branch 

points in power flow problems. For this purpose, we propose the 

construction of an integral approximation using points from a 

solution branch interval obtained using conventional power flow 

software. This is in contrast to single-point Padé approximation 

methods, where the power flow problem must be embedded in a 

complex plane and therefore requires a new type of software. The 

paper presents simulation examples designed to explain how the 

proposed algorithm works, as well as to demonstrate the accuracy 

and computational efficiency of the method. 

Index Terms—analytic continuation, static voltage stability, 

power flow problem  

I. INTRODUCTION 

The system of polynomial equations is used to 
mathematically model steady-state conditions of power grids. 
Solution values of these equations are magnitude and phase 
angle of voltages on all network buses. This is the power flow 
problem, and it has multiple solutions [1]. If we vary some 
parameters of the model (e.g., the state of network loading), 
multiple solutions of bus voltage magnitudes move along 
algebraic curves (i.e., solution branches). Apart from stable 
solution branches, there are some branches that are practically 
infeasible because of constraints in system operation (e.g., low 
voltage branches) and others that represent a set of locally 
unstable points. It is possible, especially for heavy loaded grids, 
that different solution branches come close to each other. In this 
case, iterative Newton’s method as well as the semidefinite 
relaxation method, might switch from stable branches to some 
other neighboring branches, as illustrated in [2]. Solution 
branches are terminated with singular points of branching type 
(branch points). It is of great practical value to determine 
location of branch points on the stable solution branches. These 
are points where voltage collapse phenomenon occurs, and 
distance to these points is used to determine a static voltage 
stability margin [3].  

When approximating a solution branch with a rational 
function, it was noticed that poles and zeros lie on a branch cut 
and they are exponentially clustered at branch points. This is 

used to locate branch points [4]. The Padé method is commonly 
used to find poles and zeros of the rational approximation. In 
the Padé numerical method, a rational function is constructed 
from the approximation by Taylor series expansion at a point. 
The Taylor series coefficients are calculated by embedding the 
power flow problem in the complex plane. The first technique 
proposed in this framework is the holomorphic embedding load 
flow method (HELM) [5]. An alternative approach is based on 
discrete Fourier transform (DFT), where Newton iterations are 
used to solve the power flow problem for a varying complex 
parameter (e.g. load parameter) on a circular contour around a 
center point which is a point of approximation with Taylor 
series [6,7]. While HELM requires new coding, DFT-based 
method can reuse existing software by adding complex-
parameter computing capabilities. In the case when the solution 
branches are rational functions, the Padé method is a tool for 
obtaining the exact analytical continuation and accurate 
location of branch points; but the power flow equations are 
quadratic, and thus the quadratic approximation is expected to 
give an improved continuation result, as discussed in our 
previous work [7]. 

In this paper, we investigate another possibility: the 
approximation of solution branches using values obtained by 
conventional power flow program (not embedded in the 
complex plane) for variation of load parameter within a certain 
interval, away from singularities. We will show that an analytic 
continuation based on such an approximation is possible and 
that the accurate location of branch points can be achieved. 
Staying within this framework, the paper will introduce the 
integral approximation method and compare its performance 
with “adaptive Antoulas-Anderson” (AAA) rational 
approximation [8] and DLog-transformed AAA rational 
approximation.  

First, in section II we present the fundamental idea of 
integral approximation method. This approximation has a form 
of initial value solution of a linear inhomogeneous differential 
equation of order one with coefficients represented by 
polynomials. This is the closed-form solution expressed by 
using integrals. Singularities, including branch points, are roots 
of a polynomial coefficient next to the first derivative in the 
differential equation. In part B of section II, we explain greedy 
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iteration algorithm that is used to construct integral 
approximation from data obtained through solving a sequence 
of power flow problems using a conventional software 
(MATPOWER in our case). Finally, in part C of section II, we 
show how to find roots of a polynomial coefficient next to the 
first derivative, and to obtain locations of branch points. Section 
III presets simulation examples that illustrate performance of 
the proposed method. We use a simple 2-bus power system to 
compare accuracy of the integral approximation with direct and 
DLog-transformed AAA rational approximation. A comparison 
with MATPOWER continuation power flow, using 9-bus 
network, reveals the potential for computation acceleration, 
which is especially important for large-size systems. 

II. THE PROPOSED METHOD 

In this section, the integral approximation formula is 
devised as a solution of inhomogeneous linear differential 
equation for a specific initial value. Greedy-type iterative 
algorithm is used to calculate parameters of integral 
approximation formula using a small number of power flow 
problem solutions. Finally, we show how to get branch points 
from this approximation. 

A. Integral Approximation 

When the quadratic algebraic equation defines a node 
voltage 𝑣 as an implicit function of the load parameter 𝜆 [7],  

 𝐴(𝜆)𝑣2 + 𝐵(𝜆)𝑣 + 𝐶(𝜆) = 0 ,  () 

then in [9] it is shown that the following inhomogeneous linear 
differential equation is a valid alternative to that implicit 
function: 

 𝑃(𝜆)𝑣′ + 𝑄(𝜆)𝑣 + 𝑅(𝜆) = 0 . (2) 

The terms 𝐴(𝜆), 𝐵(𝜆), and 𝐶(𝜆) in (1) are polynomials. When 
(1) and (2) both represent implicitly the same relation between 
𝑣 and 𝜆, the following expression relates the polynomial 𝑃(𝜆) 
in (2) to polynomials 𝐴(𝜆), 𝐵(𝜆), and 𝐶(𝜆) in (1): 

 𝑃(𝜆) = 𝐴(𝜆)𝐷(𝜆)  () 

where the polynomial  

 𝐷(𝜆) = 𝐵(𝜆)2 − 4𝐴(𝜆)𝐶(𝜆)  () 

is the discriminant of the quadratic algebraic equation (1). This 
expression together with the expressions for 𝑄(𝜆) and 𝑅(𝜆) in 
terms of 𝐴(𝜆), 𝐵(𝜆), and 𝐶(𝜆) are derived previously in [9]. 
The real roots of 𝑃(𝜆) correspond to the equation singularities 
including the branch points. The branch points are roots of (4).  

The polynomials 𝑃(𝜆), 𝑄(𝜆) and 𝑅(𝜆) can be estimated by 
fitting the implicit equation (2) to data generated using a 
standard power flow software. The integral approximation is 

the solution of (2) for a specified initial value 𝑣(𝜆0) = 𝑣0 
(usually 𝜆0 = 0 corresponds to the base load) [10], 

 𝑣̂(𝜆) = exp [−∫
𝑄(𝑡)

𝑃(𝑡)
𝑑𝑡

𝜆

𝜆0
] {𝑣0 − ∫

𝑅(𝑡)

𝑃(𝑡)
exp [∫

𝑄(𝜇)

𝑃(𝜇)
𝑑𝜇

𝑡

𝜆0
]

𝜆

𝜆0
𝑑𝑡}. 

  () 

B. The Greedy Algorithm 

The input data are a bus voltage values 𝑣ℓ for a load 
parameter sequence 𝜆ℓ of length 𝑚, within a specified interval. 
These input values are obtained using a conventional power 
flow program without any numerical difficulties (interval 
chosen is not near singularity). For load parameter sequence 𝜆ℓ 
we use Chebyshev nodes and the barycentric Lagrange 
interpolation is applied to represent 𝑣(𝜆) within the chosen 
interval [11]. The derivative 𝑣′ is obtained directly from the 
barycentric Lagrange interpolant of 𝑣, as described in [11]. To 
summarize: the input data consists of three vectors  

𝛌 = [𝜆1…𝜆𝑚]
𝑇 (𝑚 Chebyshev nodes),  

𝐯 = [𝑣1…𝑣𝑚]
𝑇, and  

𝐯′ = [𝑣′1…𝑣′𝑚]
𝑇.  

The output data are 𝑛 support points stored in the vector  

𝐬 = [𝑠1… 𝑠𝑛]
𝑇 ,  where  𝑠1 = 𝜆1 , 

and the weights 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝑖 = 1,2, … , 𝑛, (stored in the vectors 
𝜶, 𝜷, and 𝜸) of the polynomials  

 𝑃(𝜆ℓ) = ∑ 𝛼𝑖
𝑛
𝒾=1 𝐶𝒾(𝜆ℓ)   

 𝑄(𝜆ℓ) = ∑ 𝛽𝑖
𝑛
𝒾=1 𝐶𝒾(𝜆ℓ)   

 𝑅(𝜆ℓ) = ∑ 𝛾𝑖
𝑛
𝒾=1 𝐶𝒾(𝜆ℓ) ()  

The basis functions of these polynomials are  

 𝐶𝒾(𝜆ℓ) = 𝐶ℓ,𝒾 = 1 (𝜆ℓ − 𝑠𝒾)⁄  ()  

and they are stored in the Cauchy matrix 𝐂. 

The greedy algorithm chooses support points one by one; a 
new support point 𝑠𝒾 is selected that has the largest absolute 
approximation error, i.e., difference between the interpolant 
𝑣(𝜆) and the integral approximant 𝑣̂(𝜆) that is based on 
previously selected support points. We start these iterations 
with the support point 𝑠1 = 𝜆1. Integral approximants are 
obtained via numerical solutions of (5). We use Clenshaw-
Curtis quadrature: the FFT transforms data on Chebyshev nodes 
to coefficients of Chebyshev expansion and then the procedure 
integrates the expansion term by term [12]. Implementation of 
interpolation and integration algorithms are available in the 
Chebfun toolbox for MATLAB [12,13]. 

For each new support point chosen, the weights are 
recalculated by fitting (2). Initially selected, the first support 
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point 𝑠1 = 𝜆1 is excluded from the data used in fitting (2). The 
weights are calculated by solving a homogenous 
overdetermined system of equations: 

 [𝑑𝑖𝑎𝑔(𝐯′)𝐂   𝑑𝑖𝑎𝑔(𝐯)𝐂   𝐂 ] [

𝜶
𝜷
𝜸
] = 0 .  (8)  

According to [14], the least squares solution of (8) is the last 
column of the matrix 𝐕 obtained via the singular value 
decomposition: [𝑑𝑖𝑎𝑔(𝐯′)𝐂   𝑑𝑖𝑎𝑔(𝐯)𝐂   𝐂 ] = 𝐔𝚺𝐕𝑇. 

We stop the greedy iterations when the maximum 
difference between the bus voltage interpolant and its integral 
approximant (𝑚𝑎𝑥|𝑣(𝜆) − 𝑣̂(𝜆)|) is below a specified 
threshold (e.g. 10−12). Then the roots of 𝑃(𝜆) are calculated 
and the branch points are obtained. 

C. Branch Points 

To find roots of 𝑃(𝜆) and determine branch points we need 
to solve the following equation: 

 ∑ 𝛼𝑖 (𝜆 − 𝑠𝒾)⁄𝑛
𝒾=1 = 0 . (9) 

Here we use a method based on the generalized eigenvalue 
problem [15]. The roots of (9) are the eigenvalues of the 
following companion matrix pencil: 

 ([
0 −𝟏𝑇

𝜶 diag(𝐬)
] , [ 0

𝐈
]), (10) 

where 𝟏 is a vector of ones and 𝐈 is an identity matrix. 

We use Schur's complement to prove that the eigenvalues 
of (10) are solutions of (9). The characteristic equation of the 
pencil is 

 det {𝜆 [ 0
𝐈
] − [

0 −𝟏𝑇

𝜶 diag(𝐬)
]} =         

       = det [
0 𝟏𝑇

−𝜶 𝜆𝐈 − diag(𝐬)
] = 0 . (11) 

Applying the 𝐋𝐃𝐔 matrix block decomposition (using Schur's 
complement), (11) is modified as 

 det {𝐋 [
0 + (𝜆𝐈 − diag(𝐬))

−1
𝜶 𝟎

𝟎 𝜆𝐈 − diag(𝐬)
]

⏟                          
𝐃

𝐔} = 0 

  (12) 

The determinants of lower 𝐋 and upper 𝐔 triangular matrices in 
(12) are equal to 1, and the determinant of the block diagonal 
matrix 𝐃 is the characteristic polynomial, and hence, 

 det [(𝜆𝐈 − diag(𝐬))
−1
𝜶] det[𝜆𝐈 − diag(𝐬)] = 0, (13) 

or in different form, this is equivalent to (9). 

The matrices in the companion matrix pencil (10) have 
dimension (𝑛 + 1) × (𝑛 + 1), whereas the degree of the 
polynomial 𝑃(𝜆) is 𝑛 − 1. In this case we have two infinite 
eigenvalues that are rejected. 

III. EXAMPLES 

A. 2-bus Example 

First, we use a simple 2-bus power flow example [7] to 
illustrate potential of the integral approximation method and to 
compare its performance with the AAA rational approximation 
[8] and DLog-transformed rational approximation. There are 
only two possible branches of real solution points (high- and 
low-voltage) in this problem, and the closed form solution is 
available. In this case, accuracy of locating branch points can 
be evaluated exactly. 

In this example two buses are connected via a single line of 
impedance 𝑍 = (0.001 + 𝑗0.1)𝑝𝑢 . Bus 1 is a 𝑃𝑉-type bus and 
a reference bus where the voltage is kept at 1𝑝𝑢. Power factor 
is specified for bus 2: 𝑝𝑓 = 0.97 lagging; and for active power 
𝑝, voltage magnitude 𝑣 of bus 2 is unknown. Equation relating 
bus 2 voltage magnitude and its active power is [7],  

 𝑣4 + [2ℛℯ(𝜎)𝑝 − 1]𝑣2 + (|𝜎|𝑝)2  = 0  () 

where 𝜎 = (1 ± 𝑗√1 𝑝𝑓2⁄ − 1)𝑍∗ (+ indicates lagging, and − 

leading power factor). ℛℯ(𝜎) is the real part of 𝜎 and |𝜎| is its 
absolute value. The branch point of interest in this example is 
𝑝∗ = 3.8712, and it is directly calculated from the equation 
formulated by equating discriminant of (14) with 0. 

The barycentric Lagrange interpolation based on 13 

Chebyshev nodes is used to represent 𝑝𝑣 curve within selected 

interval (0 ≤ 𝑝 ≤ 1). We convert values at Chebyshev nodes 

to Chebyshev expansion coefficients using FFT [12]. Fig. 1 

shows fast convergence of these coefficients. In Fig. 2 values 

of the interpolant at Chebyshev nodes in the selected interval 

are shown as red dots. In the same figure the support points 

calculated using the proposed greedy algorithm are denoted 

using the symbol ‘o’. The initial support point is 𝑠1 = 𝑝1 = 0, 

and the additional two points found by the algorithm are: 𝑠2 =
0.6343 and 𝑠3 = 0.9459. The branch point found using the 

integral approximation method is 𝑝∗ = 3.8748. It is shown in 

Fig. 2 using the symbol ‘∗’. Error of the integral approximation 

result, in this example, is 3.7e-3. 
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Figure 1.  Absolute values of Chebyshev expansion coefficients; 

interpolation of 𝑣(𝑝) in 2-bus example 

 

Figure 2.  Locating a branch point in 2-bus example 

 

Figure 3.  Accuracy achieved in the integral approximation of 𝑣(𝑝) in 2-bus 

example after each of the greedy iterations (accuracy curves are interpolants 

based on Chebyshev nodes shown as dots); support points are shown as 'o' 

Fig. 3 illustrates how the approximation accuracy is 

improved through greedy iterations. Based on the initial support 

point 𝑠1 = 𝑝1 = 0, the first approximation is constructed and 

the error is plotted as a top line in Fig. 3. The largest error is 

indicated using the symbol ‘o’, and that point is a new support 

point 𝑠2. New approximation error is the line in the middle and 

the largest error (symbol ‘o’) indicates another support point 𝑠3. 

The bottom curve in Fig. 3 shows error of the integral 

approximation based on three support points. Iterations stop 

when the largest error is around 10−15 (below prescribed 

tolerance).  

In Fig. 2 we also show results obtained using direct and 

DLog-transformed AAA rational approximation of the 𝑝𝑣 

curve (interval 0 ≤ 𝑝 ≤ 1). Implementation of the AAA 

algorithm is available in the Chebfun toolbox [13]. The smallest 

real pole of direct rational approximation gives the estimated 

location of a branch point (diamond symbol in Fig. 2). Error of 

the rational approximation is 0.9346. In the DLog-transformed 

rational approximation we use again the AAA algorithm to 

approximate,  

 
𝑑

𝑑𝑝
log(𝑣(𝑝)) =

𝑄(𝑝)

𝑃(𝑝)
 . () 

This is equivalent to the representation based on the 

homogeneous differential equation, 

 𝑃(𝑝)𝑣′ − 𝑄(𝑝)𝑣 = 0 . (16) 

Roots of the polynomial 𝑃(𝑝) are singularities including branch 
points. The branch point location estimated with DLog 
approach is shown in Fig. 2 using symbol ‘□’. Error of the 
DLog approximation is 0.1327. The polynomials 𝑃(𝑝) and 
𝑄(𝑝) have the form (6), and the greedy type algorithm is used 
to determine support points and weights in the AAA rational 
approximation [8]. Roots of 𝑃(𝑝) are calculated using the 
method explained in section II.C. 

B. Comparison with MATPOWER Continuation Power Flow 

In this section we compare the proposed method with the 
continuation power flow that is implemented in MATPOWER 
[16]. In this way, we can get an idea about the effectiveness of 
the proposed method. For that purpose, we show how many 
Newton iterations (solutions of linear system of equations) are 
required to solve the problem by either using the proposed 
method or continuation power flow algorithm. Solution of 
linear system in each iteration is by far the most time-
consuming for large networks. Data for the new proposed 
method are generated using Newton iterations in 
MATPOWER. In both algorithms the tolerance for Newton 
iterations is 10−8. The example we use here is the 9-bus test 
system. The base case data are provided in MATPOWER under 
the name ‘case9’. This system has 3 generators, 3 loads and 9 
branches. The load parameter 𝜆 is scaling up active and reactive 
power of loads and generation. 
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The following are relevant setting parameters in the 
MATPOWER continuation power flow: 

- pseudo arc length parametrization [17], 

- adaptive step size to balance between speed and 
robustness, minimum step size is 10−4 and maximum 
step size is 0.2, adapt step damping is 0.7, 

- tolerance for nose point detection is 10−5, 

- active and reactive power generator limits as well as 
bus voltage and branch MVA limits are not enforced.  

To reach the branch point (nose point), continuation power 
flow requires 24 prediction-correction steps, as shown in Fig. 4 
Voltage at bus 9 is critical. In total, 73 solutions of the linear 
system of equations are required: 

24 solutions with augmented Jacobian matrix in prediction 
steps, and 49 solutions in correction steps. 

The branch point found is 𝜆∗ = 1.0942. 

 

Figure 4.  MATPOWER continuation power flow result; ‘o’ indicates steps 

and ‘∗’ shows location of the branch point 

The first step in the integral approximation algorithm is to 
interpolate 𝜆𝑣 curves within selected interval (in this example 
0 ≤ 𝜆 ≤ 0.5). Using 16 Chebyshev nodes we construct 6 
interpolants for bus voltages (excluding PV buses) having the 
machine precision. To check the interpolation accuracy, we 
convert values at Chebyshev nodes to Chebyshev expansion 
coefficients [12]. The last coefficient is below 10−14 for all 
interpolations. Coefficients of the interpolant of bus-9 voltage 
can be seen in Fig. 5. Derivatives of voltages at all buses except 
generator buses are found, and bus 9 with the largest gradient is 
selected as the critical bus. In Fig. 6 values at Chebyshev nodes 
in the selected interval are shown as red dots. The greedy 
algorithm has found 2 support points in addition to the initial 
one at 𝑠1 = 𝜆1 = 0. The support points are shown as ‘o’ in Fig. 
6. The branch point found is 𝜆∗ = 1.0957, shown in Fig. 6 
using the symbol ‘∗’. In this example, difference between 
continuation power flow result and integral approximation 
result is 1.5e-3. 

 
Figure 5.  Absolute values of Chebyshev expansion coefficients (bus 9 

interpolant) 

 
Figure 6.  Locating a branch point in 9-bus example (symbol ‘∗’); red dots 

are values at Chebyshev nodes (interpolant), ‘o’ indicates support points.

 

Figure 7.  Accuracy achieved in the integral approximation of bus 9 voltage 

as a function of 𝜆 in the 9-bus example after each of the greedy iterations 

(accuracy curves are interpolants based on Chebyshev nodes shown as dots); 

support points are shown as 'o' 
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Fig. 7 illustrates how the approximation accuracy is 
improved through greedy iterations. Based on the initial support 
point 𝑠1 = 𝜆1 = 0, the approximation is constructed and the 
error is plotted as a top line in Fig. 7. The largest error is 
indicated using ‘o’ and that point is a new support point 𝑠2. New 
approximation error is the line in the middle and the largest 
error (symbol ‘o’) indicates another support point 𝑠3. Finally, 
based on three support points we have integral approximation 
with error shown in the bottom curve. The largest error is below 
10−12 (i.e. below prescribed tolerance) and we stop with 
iterations.  

The integral approximation method requires 64 solutions of 
the linear system of equations (iterations) if at each Chebyshev 
node we start with the flat start and use 4 iterations to reach 
Newton iteration tolerance. This can be reduced to 49 iterations 
if prediction step is incorporated as in the continuation method: 

starting point requires 4 iterations, plus 15 prediction steps 
and 2 iterations in each node when starting with predicted 
values.  

The presented example demonstrates potential of the integral 
approximation to improve computation speed in locating 
branch points compared to the classical continuation method. 
This is especially important for large size power systems.  

In addition, it is possible to use the integral approximation 
to pass through any solution branch in one large step, i.e., to 
jump all the way near a branch point. At a branch point the 
differential equation (2) is singular and we should switch to the 
continuation power flow. This approach is similar to the hybrid 
method proposed in [18]. By using this strategy, we can find 
multiple power flow solutions. 

IV. CONCLUSIONS 

The proposed integral approximation algorithm can be a 
valuable tool for tracking solution branches of the power flow 
problems and locating singular points (i.e., branch points). The 
advantage of this technique compared to the Padé-type 
approximation is that it relies on a conventional power flow 
software (e.g., MATPOWER) and does not require a new 
software to solve the power flow problem embedded in the 
complex plane. Here we summarize the important contributions 
of the paper:  

a) A novel iterative greedy-type algorithm is proposed for 
constructing integral approximations. Order of approximation 
is automatically determined. Interpolation, differentiation, and 
integration steps in this algorithm are implemented using the 
barycentric Lagrange interpolation method. High numerical 
robustness and accuracy are achieved thanks to this 
interpolation method, as well as due to the representation of the 
polynomials in (2) using the pole/residue form (6), (7). 

b) Numerically robust calculation of polynomial roots (and 
locating branching points) is achieved using a new method 
based on the solution of the generalized eigenvalue problem.  

c) Using simulation examples, we demonstrate the 
computational efficiency and accuracy of the proposed method 
in comparison with direct and DLog-transformed AAA rational 
approximations, as well as with MATPOWER continuation 
power flow software. 
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