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Abstract—We propose a control scheme via a non-cooperative
linear quadratic differential game to coordinate the inverter
dynamics of Distributed Energy Resources (DERs) in a microgrid
(MG). The MG can provide regulation services in support to
the upper-level grid, in addition to serving its own load. The
control scheme is designed for the MG to track a power reference,
while each DER seeks to minimize its individual cost function
subject to learned inverter dynamics and load perturbations. We
use a nonlinear high-fidelity model developed by Sandia National
Laboratories to learn inverter dynamics. We determine a Nash
strategy for the DERs that uses state estimation of a Loop
Transfer Recovery. Results show that the control scheme enables
savings up to 9.3 to 208 times in the DERs objective cost functions
and a time-domain response with no oscillations with up to 3
times faster settling times relative to using droop and PI control.

Index Terms—Ancillary services, control of voltage-source
inverters, learned inverter dynamics, non-cooperative differential
game, smart grid.

I. INTRODUCTION

Distributed Energy Resources (DERs) can be harnessed to
tackle local operational issues such as voltage and frequency
fluctuations in a microgrid (MG) or in a distribution grid [1],
[2]. In addition to addressing local issues, they can also assist
the upper-level grid, e.g. the transmission grid, in solving
operational challenges.

Although DERs are geographically dispersed and belong
to different owners, they can be coordinated to work as a
Virtual Power Plant (VPP) [3] to provide regulation services in
support to the upper-level grid operation [4], [5], [6]. Indeed,
governments are increasingly fostering the integration of DERs
in microgrids into ancillary service markets for the provision
of regulation services to the transmission grid at the system
operator’s request [7].
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A body of work on the control of DERs for the provision of
regulation services has been proposed from the optimization
perspective. For instance, the work in [8] proposes an online
algorithm that drives DERs’ power outputs so that the net
power delivered from the distribution grid to the transmission
grid tracks a power reference. This online algorithm is based
on an AC Optimal Power Flow formulation using primal-
dual-gradient methods in which the distribution grid pursues
the optimal trajectory while satisfying the power reference
tracking. In [9], the authors develop a bidding strategy for a
VPP in which the customer load is satisfied and simultaneously
the VPP is able to sell load-following ancillary services to
Western Australian grid. The work in [10] proposes a linear
programming model to maximize the profit of a DER aggre-
gator by controlling the charge of electric vehicles (EVs) and
by providing day-ahead reserve services to the transmission
grid or other stakeholders. For further references on this topic
the reader may refer to [11], [12], [13].

While optimization-based methods hold promise for online
implementation and fast computation, these approaches rely on
optimizing global economic satisfaction for both the operator
and DERs. This approach can disregard the fact that DERs
belong to different owners who may be selfish and seek
to optimize their individual economic interests. One way to
address this limitation is by using non-cooperative game theory
to coordinate DERs to provide regulation services. In fact,
the extensive survey in [14] remarks that non-cooperative
games, among other game-theoretic approaches, is the most
widely used coordination method (in academia) for demand
response and DERs in electricity markets. The works in [15],
[16] propose game theoretic-based frameworks to coordinate
the charging/discharging power of EVs such that the EVs’
aggregators can trade that amount of energy with the upper-
level grid to support frequency regulation. For a more complete
literature review on the coordination of DERs to provide
ancillary services using Game Theory, we refer the reader to
[17], [18]. Moreover, for local regulation services, the work
in [19] develops a Nash equilibrium-based control scheme
to coordinate DERs in an islanded MG to bring frequency
deviations back to zero. The authors of [20] propose a non-
cooperative differential game control scheme to steer the state
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of a MG to nominal operating conditions by controlling the
input impedance of storage units.

However, to the best of our knowledge, non-cooperative
game-based work for control of DERs does not: (i) consider
nonlinear high-fidelity dynamics of the voltage-source inverter
(VSI) with its associated control loops, or (ii) implements the
resulting controllers in a grid with VSIs.

The increasing deployment of DERs opens the question
on how to coordinate DERs for the provision of regulation
services to the upper-level grid considering nonlinear high-
fidelity dynamics of VSIs. To the best of our knowledge, there
is no previous work addressing this challenge from a non-
cooperative game theory perspective.

II. CONTRIBUTIONS

The contributions of this work are:
• To propose, for the first time, a non-cooperative game

framework that incorporates learned VSI dynamics of
DERs from a nonlinear high-fidelity model to represent
their participation in a VPP to meet regulation services in
support to the upper-level grid. We illustrate this frame-
work in the context of regulating real power injections.

• To show the cost effectiveness and time-domain perfor-
mance of our proposed control scheme compared with
classic control techniques such as droop control and
proportional-integral (PI) control.

• To provide guidelines to the system operators to develop
and implement non-cooperative differential games that
incorporate VSI dynamics.

III. PROBLEM FORMULATION

A. Overview

We consider a MG that consists of photovoltaic (PV) panels,
Battery Electricity Storage Systems (BESS), loads, and a
connection with the upper-level grid. The control scheme we
propose consists of a controller for each DER to steer the VSI
using dq-frame control loop dynamics. This control scheme
enables the MG to provide a regulation service for the upper-
level grid. This regulation service consists of a power reference
that the MG’s power output must track. We use the term upper-
level grid because a MG can supply power to the distribution
or transmission network.

First, we formulate a state-space representation of the MG
that groups the learned VSI dynamics of DERs and a com-
pensator. The compensator models the tracking error dynamics
of the MG’s power output relative to the power reference. We
use system identification (SI) to learn transfer functions from a
high-fidelity model of each DER considering its VSI dynamics
using a dq-frame control loop.

Second, we design a control scheme for DERs via a non-
cooperative linear quadratic differential game. Under this
approach, each DER seeks to minimize its individual linear
quadratic cost subject to the MG’s state-space representation.

Third, we find the Nash equilibrium of the non-cooperative
game, and then, we determine the state feedback control for
each DER. Since all the states of each DER are not accessible,

we use Loop Transfer Recovery for each DER that estimates
all DER’s state. We feed the DERs’ estimated states and the
dynamic compensator’s states into the controller of each DER.

Fourth, we validate the control scheme by checking parity
in cost solutions and simulation performance of: (i) the MG’s
state-space representation that has learned DERs dynamics,
and the three-phase MG with high-fidelity DERs dynamics.
Each high-fidelity DER model has a VSI and uses a dq-frame
control loop, which was designed in [21], [22], [23] by Sandia
National Laboratories.

Lastly, we compare the cost effectiveness and time-domain
performance of the control scheme we propose against the
classical droop control and PI control across a set of MGs
with different numbers of DERs.

B. Assumptions

In this work, we assume that the MG connects with the
upper-level grid which imposes frequency and voltage at
nominal values at the point of connection. The DERs engaged
in the provision of regulation service communicate complete
information about their states to each other. The matrix pair
(Ai, Bi) of the state-space realization of each DER is control-
lable, which is a design choice.

C. Control Scheme Design

1) Learned voltage source inverter (VSI) dynamics: In this
work, we assume a PV panel or BESS that uses a dq-frame
control loop for its VSI that regulates the DER’s active/reactive
power output according to a reference input [24].

We use SI to represent the dynamics of the VSI and its
dq control loop into one dynamical system for each DER.
SI is a method that identifies the transfer function of a
dynamical system from observed input-output data [25]. We
use the SI approach under a non-linear least squares with
automatic line search method to learn the dynamics of each
DER instead of deriving its full white-box model because:
(i) DERs’ owners may not disclose the full model of their
DER due to privacy concerns, and (ii) each DER may contain
multiple control loops resulting in a state-space representation
with high computational complexity.

2) Virtual power plant and compensator: A learned time-
invariant state-space representation models the VSI-based
DER dynamics. In this learned model generated by SI, the state
xi(t) ∈ Rd does not necessarily represent physical quantities.
The i-th DER can regulate its active power output yi(t) ∈ R
by regulating the control input ui(t) ∈ R. From here onwards
we will drop the explicit dependence with time t when it can
be inferred from the context, e.g., in our notation xi(t) is
equivalent to xi. The dynamics of each DER are expressed as
follows

ẋi = Aixi +Biui (1)
yi = Cixi, (2)

where Ai ∈ Rd×d, Bi ∈ Rd×1, Ci ∈ R1×d. The DERs
are connected in parallel to a single bus in the MG. Fig. 1
illustrates a MG with two DERs and a load. In this way, the
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state-space representation of the VPP (augmented dynamics)
that groups the DERs can be expressed as ẋ1

...
ẋN

 =

A1

. . .
AN


x1

...
xN

+

B1

. . .
BN


u1

...
uN


(3)

y =
[
C1 . . . CN

] x1

...
xN

 , (4)

where N is the number of DERs in the MG. In a more compact

Fig. 1. Microgrid (MG) with two VSI-interfaced DERs: one PV system and
one BESS. The MG has a load and a connection with the upper-level grid.

form, the state-space representation of the VPP is denoted by

ẋ = Ax+Bu (5)
y = Cx, (6)

where x =
[
x1 . . . xN

]⊤ ∈ RN ·d, A, B and C are the
corresponding block matrices from (3) and (4). In (6), y(t) is
the active power output of the VPP. Since a load, d(t) ∈ R,
is connected to the MG, the net power delivered to the upper-
level grid is y(t)− d(t).

We represent the power reference of the regulation service
by preq(t) ∈ R. In this regulation service, the MG’s power
delivered to the upper grid y(t)−d(t) must track the requested
power preq(t). Equivalently, the VPP’s power generation y(t)
must track the reference r(t) = preq(t) + d(t).

In order for the MG to comply with the power regulation
service, we propose a compensator of the form

ẇ = Hw +Ge (7)
v = Dw, (8)

where w(t), v(t) ∈ R, and e(t) represents the tracking error
of y(t) with respect to r(t) defined as follows

e(t) := r(t)− y(t) = r(t)− Cx(t). (9)

The matrices H , G, and D ∈ R are chosen according
to the desired structure of the compensator. Using (5)-(9),

the augmented state-space representation that includes the
dynamics of the VPP and compensator can be written as[

ẋ
ẇ

]
=

[
A 0

−GC H

] [
x
w

]
+
[
B̄1 ... B̄N

]
u+

[
0
G

]
r (10)[

y
v

]
=

[
C 0
0 D

] [
x
w

]
, (11)

where B̄i =
[
0 ... Bi ... 0

]⊤
.

3) Deviation form of the augmented system: We introduce
auxiliary states for the DERs and the compensator defined as

x̃(t) = x(t)− xss (12)
w̃(t) = w(t)− wss, (13)

where xss and wss are the states achieved when the tracking
error e(t) becomes zero. In the same manner, we express ẽ(t)
as follows

ẽ(t) = e(t)− ess = r(t)− Cx(t)− (r(t)− Cxss)

= −Cx̃(t).
(14)

Using (12) - (14) and similarly defining ũ(t), ỹ(t) and ṽ(t),
we construct the state-space representation of the augmented
system in deviation form as follows[

˙̃x
˙̃w

]
= Ā

[
x̃
w̃

]
+

[
B̄1 ... B̄N

]
ũ (15)[

ỹ
ṽ

]
= C̄

[
x̃
w̃

]
, (16)

where Ā =

[
A 0

−GC H

]
, B̄i =

[
0 ... Bi ... 0

]⊤
, and

C̄ =

[
C 0
0 D

]
.

We also note that when the original augmented system (10) -
(11) begins to track an input reference r(t), its corresponding
deviation system (15) - (16) is out of the equilibrium since
x(t0) − xss ̸= 0 and w(t0) − wss ̸= 0. Finally, when the
tracking error is zero at t∗, then x̃(t∗) = x(t∗)− xss = 0 and
w̃(t∗) = w(t∗) − wss = 0 which indicates that the deviation
system is at the origin. Therefore, a tracker problem for the
augmented system is actually equivalent to a regulator problem
for its corresponding deviation system [26].

4) Non-cooperative linear quadratic differential game for
DER coordination: We consider DERs that belong to different
owners, i.e., players, such that each DER seeks to minimize its
individual linear quadratic cost Ji(x̃0, w̃0, ũ) during the power
regulation service. This cost is given by

Ji(x̃0, w̃0, ũ) =

∫ ∞

t0

{[
x̃
w̃

]⊤
Qi

[
x̃
w̃

]
+ ũ⊤

i Riũi

}
dt, (17)

where x̃0 is the DER’s deviation state vector (12) at t0, w̃0

is the compensator’s deviation state (13) at t0, and ũ is the
strategy that steers [x̃ w̃]⊤ to the origin.

We highlight that the individual cost of the i-th DER (17) is
affected not only by its own strategy ũi, but it is also implicitly
affected by the strategies of the other DERs that participate in
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. . .

Fig. 2. Control scheme for a microgrid (MG) to provide power regulation service in support to the upper-level grid. Although N DERs seek to minimize
their individual cost objective, they work as a virtual power plant such that the MG’s power delivered to the grid complies with the power regulation request.
For each DER i, a state-space representation [Ai, Bi, Ci] models the VSI and dq-control loop dynamics, and a Loop Transfer Recovery [ALi, BLi, CLi]
estimates the state x̂i. A compensator [H,G,D] models the tracking error dynamics of the MG’s power output with respect to the requested power. Each
DER i employs a state-feedback Nash control [Ki, Fi] that is fed by estimated states [x̂1, ..., x̂N ]⊤ and the compensator’s state w.

the regulation service because it considers all the states. The
matrices Qi = Q⊤

i ≥ 0 and Ri ≥ 0 are the state weighting
matrix and the control weighted matrix, respectively.

We can reformulate the individual cost of the i-th DER (17)
to make it easy to interpret by expressing Qi as follows:

Qi =


qi,1C

⊤
1 C1

. . .
qi,NC⊤

NCN

qi,w

 , (18)

where Ci is the output matrix of the state-space representation
of the i-th DER (2), and qi,1, ..., qi,N ∈ R are factors chosen
by the i-th DER. Using (18) and (17) we obtain

Ji(x̃0, w̃0, ũ) =

∫ ∞

t0

{
N∑
j=1

qj ỹj
2+pww̃

2+ũi
⊤Riũi} dt. (19)

Each DER i adjust its factors {qi,1, ...qi,N} according to its
incentive to penalize the departure of the power output vector y
away from the vector yss. The factor qi,w reflects the incentive
of the DER to take a high share of power in the provision of
the regulation service. If the DER i sets qi,w to a high value,
its power share in the power regulation service may be less
than other DERs that set the factor to lower values.

On the other hand, Ri reflects the cost that the i-th DER
assigns to its available energy for the power regulation service.
A high value of Ri means that the DER i regards its energy
source, e.g., solar energy, as expensive for the power regulation
service.

The non-cooperative game consists of the minimization of
the individual linear quadratic cost (17) for i = {1, ..., N},

subject to the dynamical system described in (15) - (16). Each
DER employs a linear feedback strategy given by

ũi =
[
Ki Fi

] [x̃
w̃

]
, (20)

where Ki ∈ R1×N ·d, and Fi ∈ R. Using (12) and (13), we
can express the control strategy as a function of the states x(t)
and w(t) as follows

ui − uss =
[
Ki Fi

] [x− xss
w − wss

]
(21)

ui =
[
Ki Fi

] [x
w

]
. (22)

The set of feedback strategies {u1, . . . , uN} is admissible if
the eigenvalues of the closed-loop system are in the left half-
plane. A necessary and sufficient condition for this set to not
be empty is that (Ā,

[
B̄1 ... B̄N

]
) is stabilizable [27], [28].

We determine the set of admissible strategies {u1, . . . , uN}
of the form (22) using the concept of Nash equilibrium [29],
which requires the equilibrium strategies ũ∗

i to satisfy the
following inequality

Ji(x̃0, w̃0, ũ
∗) ≤ Ji(x̃0, w̃0, ũ

∗
−i), (23)

for i = {1, 2, ..., N}, where ũ∗ = [ũ∗
1 ... ũ∗

N ]⊤, and
ũ∗
−i = [ũ∗

1 ... ũ∗
i−1 ũi ũ

∗
i+1 ... ũ∗

N ]⊤. Inequality (23) means no
DER can improve its optimal individual cost, Ji(x̃0, w̃0, ũ

∗),
by a unilateral deviation from its equilibrium strategy ũ∗

i . As
[30] indicates, the Nash strategy for player i can be explicitly
computed to be

u∗
i = −R−1

i B̄iPi

[
x
w

]
(24)
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for i = {1, ..., N}, where the matrices Pi are the symmetric
stabilizing solution of the coupled Algebraic Riccati equations:(
Ā−

N∑
j ̸=i

SjPj

)⊤
Pi+Pi

(
Ā−

N∑
j ̸=i

SjPj

)
−PiSiPi+Qi = 0

(25)
for i = {1, ..., N}, where: Si = B̄iR

−1
i B̄i

⊤. Moreover, the
optimal cost solution of DER i in the Nash equilibrium is
given by

Ji(x̃0, w̃0, ũ
∗) =

[
x̃0

w̃0

]⊤
Pi

[
x̃0

w̃0

]
. (26)

We remark that the Nash strategy (24)) steers the deviation
state [x̃ w̃]⊤ to the origin. Due to the equivalence of the
regulator problem and the tracker problem that we explain in
Section III-C3, the Nash strategy (24)) also results in y(t)
tracking the reference input r(t). Hence, the MG complies
with the power regulation service when the DERs employ the
Nash strategy (24)).

There have been extensive efforts [27], [31], [32], [33], [34],
[35] to solve the coupled Riccati equations (25). In this work,
we employ an iterative algorithm based on the reference [35].
We finds stabilizing solutions P k

i of the iteration k of the N
non-coupled Riccati equations

(Ak−1
i )⊤P k

i + P k
i A

k−1
i − P k

i SiP
k
i +Qi = 0 (27)

for i = {1, ..., N}. The matrices Ak−1
i := Ā−∑N

j ̸=i SjP
k−1
j

are calculated using the stabilizing solutions of a previous
iteration. The algorithm stops when σ(Ā−∑N

i=1 SiP
k
i ) ∈ C−.

5) Loop Transfer Recovery (LTR) for DERs: Since the
proposed controllers are state feedback controllers and the
states of the DERs are inaccessible, we design a LTR for
each DER to estimate the state xi. The system parameters
[ALi BLi CLi] of the LTR are the following

ALi = Ai +∆Ai − Li(Ci +∆Ci) (28)
BLi = [Bi +∆Bi Li] (29)
CLi = Idxd, (30)

where the gain Li is a Kalman filter gain iteratively tuned
so that the closed-loop DER system loop gain using Li

approaches the loop gain using full state feedback. In this
manner, despite the parameter perturbations ∆Ai,∆Bi, and
∆Ci, the LTR can recover the robustness and performance
granted by the state feedback control, which could have been
lost if we had used only the Kalman filter [36]. For more
details about LTR, the reader may refer to [26], [37].

IV. SIMULATIONS AND RESULTS

We implement the proposed control scheme in MAT-
LAB/Simulink [38] and run EMT (Electromagnetic Transient)
simulations with a time sampling of 10−4 s. We design four
scenarios with different numbers of DERs in the MG. Then,
we validate our results using a MG with high-fidelity DER
models to determine if the control scheme we propose achieves
parity with respect to optimal individual costs and performance

when compared to a case where the MG has learned DER
models. We perform this comparison across all four scenarios.

Second, we compare the cost effectiveness and time-domain
performance of three strategies across all four scenarios using
high-fidelity DER models: droop control, PI control, and the
control scheme we propose.

A. Scenarios description

The four scenarios correspond to 10-kV MGs with different
numbers of DERs: (i) 1 PV system and 1 BESS, (ii) 1 PV
system and 2 BESS, (iii) 3 PV systems and 3 BESS, (iv)
4 PV systems and 6 BESS. Fig. 1 illustrates scenario 1’s
MG. The upper-level grid is a 60-Hz stiff grid. All scenarios
consider different qi,j and Ri for each DER. For example, in
the scenario with 2 DERs, R1 = 1, q1,1 = 0.5, q1,2 = 0.2 and
R2 = 1, q2,1 = 0.3, q2,2 = 0.5, in this manner, the DERs in
competition have different incentives to regulate their power
injection as it is explained in Section III-C4. The scenarios
simulated consider that the load has the profile shown in the
bottom panel of Fig. 4, that the DERs start delivering 10 MW
in total, and that the power regulation service starts at t =
0.25 s and ends at t = 6 s. The data we use to generate all the
scenarios is publicly available online1.

B. High-fidelity models and learned models of DERs

We consider a high-order nonlinear PV system model and
a BESS model, each has six to eight states, from the Flex-
Power Plant model used in [21], [22], [23]. Both high-fidelity
DER models include the following Simulink power system
devices: a DC-side voltage source, an average VSI model,
feed-forward compensation, and a phase-locked loop (PLL).
Each DER also includes a current-control loop designed with
dq-frame PI controllers and feed-forward compensation. The
current-control loop receives a power reference input, and then
generates PWM signals for VSI to regulate the active power
output of the DER.

We learn the dynamics of both high-fidelity DER models
using the SI toolbox of MATLAB [38] under a non-linear least
squares with automatic line search method. For each DER,
the training data consists of input-output timeseries that come
from three step responses for six different initial operating
points. We validate the learned state-space representation using
unseen 18 input-output time-series that come from new step
responses. Table I shows the learned state-space representation
for each DER type.

As system parameters may vary in practice, we intentionally
introduce perturbations (Table II) to the LTR estimator of each
DER across all scenarios.

C. Implementation and validation of the control scheme

For each scenario, we compute the Nash strategies (24)
using the learned DER models (Table I) and the compensator
(H = 0, G = D = 1). We implement the resulting controllers
in: (a) the MG with learned DER models and (b) the MG with
high-fidelity DER models. We underline while (a) simulates

1 https://github.com/REAM-lab/der-control-games
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TABLE I
DERS LEARNED STATE-SPACE REPRESENTATIONS

Parameter PV system BESS

A
[
−263.094 −2.955 · 104

1 0

] [
−258.087 −3.041 · 104

1 0

]
B

[
1
0

] [
1
0

]
C

[
1.589 2.945 · 104

] [
9.712 3.039 · 104

]
TABLE II

PARAMETER PERTURBATIONS INTRODUCED TO THE LTR ESTIMATORS

Parameter PV system BESS

∆A
[
−20 1000
0 0

] [
−100 1000
1 0

]
∆B

[
−0.1
0

] [
−0.1
0

]
∆C [0.1 0.1] [0.1 0.1]

only the control block diagram in Fig. 2, (b) simulates a three-
phase MG with VSIs as we describe in Section IV-B.

We simulate both implementations for each scenario and
then, validate if the proposed control scheme in the MG
with high-fidelity DER models results in cost solutions and
time-domain performance similar to the ones we obtain using
learned DER models.

Fig. 3 shows optimal individual costs Ji(x̃0, w̃0, ũ
∗) for

each DER in each scenario for: (a) the MG with learned DER
models, and (b) the MG with high-fidelity DER models. For
(a), we compute Ji(x̃0, w̃0, ũ

∗) using the expression in (26),
and for (b) we compute it using a trapezoidal integration of
(17).

Fig. 3 reveals that Ji(x̃0, w̃0, ũ
∗) for any DER i in (b) is

slightly greater than its corresponding value in (a). In fact,
as more DERs are integrated into the MG, this difference
increases, although only marginally from 1.98% up to 6.63%.
This confirms that (b) reaches parity in optimal individual
costs with (a).

The top panel of Fig. 4 shows the MG’s power output
trajectory in (a) and (b). Both correspond to a MG with ten
DERs using our proposed control scheme. We observe that
(i) the MG’s power output tracks the power reference despite
transient deviations caused by load perturbations, and (ii) the
trajectory of (a) is very close to the trajectory of (b) throughout
the power regulation service.

To illustrate the two previous observations, the top panel
of Fig. 4 shows the real-time response in more detail. We
also notice that despite the MG’s power output deviating from
the power reference due to load perturbations, the proposed
control scheme is able to steer it back to the reference.
For instance, we see that the (a) and (b) increases from
the -14-MW requested power up to -9 MW and -9.36 MW,
respectively, at t = 4.5 s because of the sudden 8-MW load
decline. Then, (a) and (b) come back to -14MW±5% at t =
4.64 s and t = 4.65 s, respectively.

a b
0.0

1.5

3.0

4.5

6.0

7.5

C
os

t[
$]

No DERs : 2

a b

No DERs : 3

a b

No DERs : 6

a b

No DERs : 10

a: MG with learned DER models
b: MG with high-fidelity DER models

DERs
1 (PV)
2 (BESS)

3 (BESS)
4 (PV)

5 (PV)
6 (BESS)

7 (PV)
8 (BESS)

9 (BESS)
10 (BESS)

Fig. 3. Optimal individual costs for each DER in case: (a) the microgrid (MG)
with learned DER models and (b) the MG with high-fidelity DER models for
all four scenarios.

Table III shows the maximum of each performance param-
eter over the simulation time for (a) and (b) for the four
scenarios. We note that the error columns range between -6.7%
and 0.3%. Hence, the analysis of Fig. 4 and Table III confirms
that (b) reaches almost parity in time-domain performance
with (a).
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Fig. 4. Top panel: Microgrid (MG)’s power output with learned DER models
and MG’s power output with high-fidelity DER models. The MG’s power
output is the power delivered to the upper-level grid that must track a power
reference. Bottom panel: MG’s load during the regulation service.
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TABLE III
MG’S PERFORMANCE USING THE CONTROL SCHEME WE PROPOSE

Overshoot (%) Settling time (s) Steady-state
error (%)

DERs a b error (%) a b error (%) a b error (%)

2 -36.4 -35.7 -1.9 0.42 0.42 0 0 0 0

3 -36.4 -35.1 -3.5 0.26 0.26 0 0 0 0

6 -36.4 -33.9 -6.7 0.21 0.21 0 0 0.2 0.2

10 -36.4 -34.6 -4.8 0.23 0.23 0 0 0.3 0.3

a: Microgrid’s power output with learned DER models
b: Microgrid’s power output with high-fidelity DER models

D. Comparison between droop control, PI control, and the
control scheme we propose

We tune the droop and PI controllers for each scenario as
follows: 1) We run the simulation with the control scheme
we propose, 2) we calculate a power share for each DER
that results from the division of its power injection in steady-
state by the total DERs’ power output, 3) we set the gains of
the droop and PI to the power shares, 4) we slightly tweak
the gains to reduce the steady-state error, and to try to have
an overshoot less than 30% and a settling time less than
0.65 s. The latter step is the most demanding, particularly
when the number of DERs increases, because more gains are
simultaneously tuned with back-to-back simulations.

Table IV shows, most notably, that the proposed control
scheme for a MG with one DER results in saving between 28.3
up to 209 times relative to using droop control, and between
1.3 up to 9.3 times relative to using PI control. We also note
that some DERs can obtain greater savings than others under
the proposed control scheme.

TABLE IV
SAVINGS USING THE CONTROL SCHEME WE PROPOSE FOR ALL 4

SCENARIOS

Savings
relative to:

DERs

1 2 3 4 5 6 7 8 9 10

Droop 28.3 34.2

PI 1.3 1.5

Droop 100 116 123

PI 3.6 4.1 4.3

Droop 209 185 204 189 196 171

PI 9.3 8.3 9.1 8.5 8.8 7.7

Droop 48.5 50.9 54.2 53.3 51.2 37.0 50.5 51.3 48.7 46.8

PI 7.3 7.6 8.1 8.0 7.7 5.7 7.6 7.7 7.3 7.1

The saving relative to droop control is Ji(x̃0, w̃0, ũ
∗)/Ji(x̃0, w̃0, ũ

droop)
The saving relative to PI control is Ji(x̃0, w̃0, ũ

∗)/Ji(x̃0, w̃0, ũ
PI)

Fig. 5 shows the time-domain trajectories of the MG’s
power output for the three control schemes at each scenario,
and Table V reports their maximum performance parameters
over the time simulation. The damping shown in Table V is
the damping of the dominant poles of the third-order transfer
function that estimates the MG’s power output response.

In Fig. 5, the droop and PI control result in a high number of
oscillations in the transient which translates in low damping

ratios ranging from 0.06 up to 0.53 as Table V shows. In
contrast, the proposed control scheme results in having no
oscillations, i.e., a damping ratio equal to 1. Despite this over-
damped trajectory, Table V shows that the proposed control
scheme results in 1.64 up to 3 times faster settling times than
the PI control across all the scenarios.

Table V also indicates that, despite achieving faster settling
times compared to the proposed control scheme, the droop
controller is always outperformed with respect to the steady-
state error. In particular, the steady-state error the droop
controller achieves is, at its best, 15.7%. In Fig. 5, we also
observe that although the proposed control scheme does not
produce any overshoot when power regulation begins at t =
0.25 s and the requested power changes at t = 3 s, it leads
to greater decays (negative overshoot) compared to the PI
and droop control in all scenarios whenever there is a sudden
load increase and decrease at times t = 1.5 s and t = 4.5 s,
respectively.

Therefore, the control scheme we propose outperforms
the standard controllers (droop and PI), since it results in
lower individual costs for the DERs and a better time-domain
performance across the different metrics.

TABLE V
MG’S PERFORMANCE FOR THREE CONTROL SCHEMES IN ALL FOUR

SCENARIOS

DERs Control Overshoot
(%)

Settling time
(s)

steady-state
error (%)

Damping
(ζ)

2
Droop -65.5 0.09 37.67 0.12

PI -56.02 0.69 1.2 0.12

Proposed -35.67 0.42 0.01 1

3
Droop -61.36 0.1 28.88 0.25

PI -17.74 0.61 0.24 0.13

Proposed -35.09 0.26 0 1

6
Droop -37.37 0.07 28.96 0.06

PI 21.61 0.63 0.69 0.10

Proposed -33.93 0.21 0 1

10
Droop -54 0.19 15.7 0.53

PI 22.15 0.68 0.66 0.09

Proposed -34.6 0.23 0.02 1

V. RECOMMENDATIONS FOR SYSTEM OPERATORS

A practical application of the proposed control scheme is
the control of a DER-populated neighborhood for the provision
of fast ancillary services. In this setting, the PV systems and
BESS of the households can be coordinated by the proposed
control scheme to provide power injections for a horizon of 2
- 5 seconds at the operator’s request. In this manner, the DER-
populated neighborhood can improve the frequency nadir of
the transmission network.

The control scheme we propose requires communication
channels between the DERs to inform the full DERs’ estimated
states in real time. Hence, DERs’ owners should commit to
sharing the full state of their DERs during the provision of
the regulation service, otherwise the control scheme may not
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Fig. 5. Microgrid’s power delivered to the upper grid under three control
schemes (Droop control, PI control, and proposed control scheme) for: (a)
scenario 1 (two DERs), (b) scenario 2 (three DERs), (c) scenario 3 (six DERs),
and (d) scenario 4 (ten DERs).

work since it is not designed to work with partial information
of the DERs’ states. In addition, the communication channels
required by the control scheme may be an open door for
cyber-attacks and communication delays that could degrade
the performance of the control scheme. We identify as an
interesting and impactful future direction to explore how to
reformulate the controller scheme to only rely on partial
information of the systems’ states while still performing well
and providing safety certificates.

Finally, although the proposed control scheme considers
DERs as selfish agents that minimize their individual costs,
it requires all DERs to commit so the MG can comply with
the power regulation service. This latter consideration secures

the matrices (Ā,
[
B̄1 ... B̄N

]
) to be stabilizable which is a

necessary and sufficient condition for the existence of a Nash
equilibrium solution for the control scheme. In the worst case,
when some DERs suddenly abandon the regulation service,
the feedback controller from the other DERs may still bring
the tracking error to zero, which implies that the MG may
still be able to comply with the power regulation. This is
because the nature of the controller we propose is an integral-
action type as we see using (9) and (22): u∗

i = Kix+Fiw =
Kix + Fi

∫
(r − Cx(t))dt. However, there could be capacity

constraints when some DERs suddenly leave the regulation
service. The power injection of the remaining DERs will
increase to try to comply with the regulation service, and
this event may cause overloading on the DERs. In addition,
the controllers may not be able to ensure a Nash equilibrium
solution anymore. In practice, to avoid these consequences, the
operator should inform that the DERs that desire to participate
in the regulation service should not desert in the middle of
the regulation service, otherwise they would be financially
penalized.

VI. CONCLUSIONS

We have introduced a novel control scheme capable of
reducing individual costs for DERs and improving the time-
domain performance of the MG when compared to classical
control techniques like droop control and PI control. Two
virtues of the proposed control scheme are that: (i) it employs
learned VSI dynamics that reduce the complexity of deriving
and computing the full dynamical model of DERs with dq-
control schemes, and (ii) that it considers the potentially
selfish nature of DERs using non-cooperative game theory and
realistic DER dynamics.

The control scheme we design works in time intervals of
seconds. For longer periods of control, e.g., minutes or hours,
future work may focus on including energy constraints such as
the state of charge of BESS, time-varying irradiance for the PV
panels, and installed power rating constraints. Another future
direction may be the design of a differential-game-theory-
based control scheme in which the frequency is a state and
the dynamics of the VSC are incorporated; in this manner,
generators and VSCs will compete to restore the frequency
deviation back to zero.
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