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Abstract—The virtual power plant (VPP) can aggregate mas-
sive distributed resources to participate in power system op-
eration. Different types of resources have been investigated to
construct VPPs. Internet data centers (IDCs) are regarded as flex-
ible power consumers that can potentially cooperate with power
systems. This paper exhibits the insight for constructing VPPs
based on IDCs while comprehensively considering the operational
flexibility of the workloads and power supply devices. On the
workloads, this paper models the temporal and spatial flexibility
of workloads in detail. On the power supply devices, this paper
explores their spare capacity with respect to the power supply
reliability requirement. Then, a day-ahead scheduling method
of the IDC-based VPPs is established based on the operational
flexibility modeling. Case studies validate the proposed approach.
Moreover, because of the coupling of workload dispatch and
power supply device operation, the synergy effect does not equal
the sum of its parts.

Index Terms—Virtual Power Plant, Internet Data Center, Day-
ahead Scheduling, Backup Power

I. INTRODUCTION
A. Motivation & Literature Review

The virtual power plant (VPP) is an effective solution
to aggregate massive distributed flexible resources from the
demand side and the generation side [1]. With the development
of renewable energy integration, power systems need more
flexibility to guarantee operational security and efficiency
[2]. Hence, VPP is regarded as a promising way to enrich
power system flexibility by dispatching distributed resources.
Methodologies for integrating electric vehicles [3], flexible
power loads [4], distributed generation [5], and other resources
into the VPP framework have been studied in the literature.

Internet data centers (IDCs) have the potential to construct
VPPs. First, along with the rapid development of information
and communication technology (ICT), the amount of IDCs
increased quickly. From 2010 to 2018, the global data center
workloads increased more than sixfold [6]. Moreover, because
of the success of large language models (LLM) and other
artificial intelligence (AI) techniques, the need for computation
services will grow explosively, leading to a steep increase in
IDCs [7]. Second, IDCs have operational flexibility so that the
power consumption of IDCs can be dispatched.
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Scheduling and dispatching computation workloads of IDCs
have been widely investigated as a solution to explore flexibil-
ity. Compared with other types of data centers, some of IDCs’
workloads are delayable, such as data compaction, machine
learning, simulation, and data processing pipelines. This fea-
ture enables the scheduling of workloads to different time slots
and different IDCs. The temporal and spatial dispatch potential
of computation workloads is discussed [8]. Also, mappings
from computation workloads to power consumptions in IDCs
are studied [9]. Hence, IDCs can participate in the demand-
side operation of power systems by dispatching computation
workloads. Researchers have studied the workload dispatch on
different time scales towards respective targets [10]. Deng et
al. [11] proposed a mechanism of IDC online power manage-
ment and load scheduling with environmental considerations.
Dong et al. [12] minimized the total power consumption by
optimizing the number of activated servers. Gupta et al. [13]
proposed a method to co-optimize the workloads and cooling
infrastructures of IDCs. Liu et al. [14] studied the online
scheduling of workloads in IDCs considering the information
and energy coupling. Yuan et al. [15] proposed a framework to
schedule the delayable workloads temporally. Zheng et al. [16]
reduced the load curtailment and carbon emissions through
workload dispatch among different IDCs.

The workload dispatch has also been applied to the industry.
Companies build their own scheduling structures to improve
workload management. Typical examples include Borg [17]
for Google, Yarn [18] for Microsoft, Fuxi [19] for Alibaba,
and Mesos [20] for Twitter. These applications are roughly
real-time workload scheduling. Recently, some higher-level
applications have been proposed. Aiming at dispatching com-
putation workloads at the day scale, Google has developed an
in-production system (named the Carbon-Intelligent Compute
Management (CICM) system) [10], which enables interactions
with power systems and reduces carbon emissions.

Moreover, IDCs need uninterruptible power supply (UPS)
services. Thus, energy storage devices are deployed as backup
power. The backup power is designed to provide emergency
electricity during power supply network failures. While pro-
viding UPS services, energy storage devices still have spare
capacity that can be flexibly scheduled [21]. If properly
utilized, the energy storage devices can further enrich the
operational flexibility of IDCs. Wang et al. [22] proposed a
framework to dispatch the energy storage in an IDC based on
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the model predictive control.

Another trend is the development of the green IDC concept.
Some IDCs are equipped with distributed renewable energy
(such as solar panels) so that part of the power consumption
can be supplied by local renewable energy. Kwon et al. [23]
proposed the method to operate IDCs with the consideration
of renewable energy utilization. Huang et al. [24] discussed
the role of IDCs in local renewable energy integration.

Although the operational flexibility of IDCs has been widely
discussed, existing literature has the following drawbacks.
First, IDCs are still studied as flexible power consumers,
but there lie difficulties for IDCs to directly participate in
the power system operation. The VPP is regarded as an
effective methodology for demand-side resource integration,
so IDC-based VPPs should be further investigated. Second, the
operational flexibility of IDCs has yet to be comprehensively
studied, especially from the power supply side. By combining
the operation of backup power devices and the workload
dispatch, the feasible region of IDC-based VPP scheduling
can be enlarged.

B. Contributions

In this regard, this paper exhibits the insight for constructing
VPPs based on IDCs considering the flexibility of workloads
and backup power. Then, for IDC-based VPPs cooperating
with power systems in the day-ahead horizon, this paper
establishes the scheduling framework for IDC-based VPPs to
develop operation schemes and participate in the day-ahead
market. The main contributions of this paper compared with
existing literature are listed as follows:

1) A framework is established to quantify the potential
flexibility of backup power to participate in the operation
of IDC-based VPPs while guaranteeing the power supply
reliability requirement.

2) The coordination between the backup power operation
and computation workload dispatch in IDCs is realized
to further enhance flexibility.

3) A novel day-ahead scheduling framework is proposed
for IDC-based VPPs combining the power and compu-
tation dispatch.

C. Paper Organization

The remainder of this paper is organized as follows. Section
IT states the proposed framework and methodology. Section
IIT investigates the operational modeling of IDCs in detail.
Then, Section IV proposes the formulation of the day-ahead
scheduling problem of the IDC-based VPPs. Further, we
conduct case studies in Section V to validate the effectiveness
of the proposed framework. Finally, Section VI draws the
conclusions.

II. FRAMEWORK AND METHODOLOGY

In this section, we first discuss the framework of IDC-
based VPPs. Then, we introduce the roadmap to model the
operational flexibility of different parts of IDCs. Based on
this, the scheduling approach for IDC-based VPPs is stated.

ﬁﬁ Data Center #N
/ ey
[
/ |
g;Data Center #2 | ﬁ/
A ! Data Center #3

Data Center #1 ﬁ; -
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Fig. 1: The framework of IDC-based VPPs

As shown in Fig. 1, IDCs are deployed at different nodes in
power systems. The VPP operator plays the role of coordinator
between power systems and IDCs. It is essential for the
VPP operator to conduct day-ahead scheduling so that the
VPP operator can obtain the operation schemes for the next
day and participate in the day-ahead market. Several steps
are needed to fulfill the day-ahead scheduling of IDC-based
VPPs. First, each IDC first forecasts the workloads of the
next day. Reference [10] provides a practical method for
workload forecasting. Based on the forecasting results, the
operational boundaries of IDCs can be quantified and sent
to the VPP operator. Then, the VPP operator conducts the
day-ahead scheduling and bids in the day-ahead market. After
the market clearing process, the VPP operator allocates the
planned schemes to each IDC for the operation of the next
day.

Aiming at fully utilizing the operational flexibility of IDCs
to enlarge the feasible operation region of IDC-based VPPs
and improve the cooperation with power systems, we propose
the following methodology for IDC-based VPP scheduling.

First, the operational flexibility of IDCs is comprehensively
modeled. In this paper, we classify the flexibility sources of
IDCs into two categories. One is from the power consumption
of IDCs; the other is from the power supply equipment. For the
power consumption, we establish the temporal-spatial dispatch
model of computation workloads and build the relationship
between computation workloads and power consumption. For
the power supply equipment, we adopt a framework to estimate
the spare capacity of backup power devices with respect to
the reliability requirement. According to the spare capacity
estimation, we propose the operation model of backup power
devices. The details are introduced in Section III.

Remark 1: Other types of flexible power consumers are also
equipped with energy storage to provide UPS services, such as
cellular base stations [21]. However, the power consumptions
of cellular base stations are determined by the communica-
tion demands of wireless network users. The communication
demands are usually real-time. On the contrary, some of
IDCs’ workloads have temporal and/or spatial flexibility. The
scheduling of workloads will also influence the energy reserve
requirement of backup power devices. As a result, the spare
capacity of backup power devices changes. Therefore, IDCs
need to conduct coupled scheduling of workload and backup
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Fig. 2: The operational flexibility of IDC clusters

power devices.

Then, based on the comprehensive modeling of the opera-
tional flexibility of IDCs, we establish a day-ahead scheduling
model for the IDC-based VPP. In the framework, both com-
putational workloads and backup power devices of IDCs in
the VPP are dispatched. Specifically, flexible computational
workloads are apportioned spatially and temporally, while the
behaviors of backup power devices and renewable energy are
also optimized. Therefore, with an optimized power consump-
tion scheme, the IDC-based VPP can improve its bidding
strategy in the day-ahead market. The details are presented
in Section IV.

Scheduling IDC-based VPPs would benefit both power
systems and IDCs. For IDCs, operational flexibility is explored
to optimize the power consumption behaviors and reduce cost.
For power systems, the dispatch potential of the demand side is
extended. With appropriate price signals, IDC-based VPPs can
contribute to power system applications like peak shaving and
congestion management. Moreover, compared with existing
works that only optimize computational workloads, dispatch-
ing backup power devices enriches operational flexibility and
further improves the scheduling results.

III. OPERATIONAL MODELING OF IDCs

This section discusses the operational flexibility of IDCs and
establishes the corresponding modeling approach. As shown
in Fig. 2, the operational flexibility of IDCs comes from
multiple sources. The local flexibility comes from the temporal
dispatch of the computation workloads and the operation of
backup power devices. Moreover, the dispatch of workloads
among different IDCs provides spatial flexibility for the VPP
scheduling.

A. Operational Flexibility from Computation Workloads

Though parts of the computation tasks of an IDC should
be responded to on the clock without delay tolerance (such
as searching, mapping, and video streaming), other tasks that
can be delayed provide temporal flexibility. Typical delayable
tasks are data compaction, machine learning, simulation, and
data processing pipelines. It is acceptable as long as these
tasks are completed within a given period (e.g., 24 hours) [10].
Moreover, some of the compaction tasks can be transferred

Type 1:
Temporally Flexible
Spatially Flexible

Type 2:
Temporally Inflexible
Spatially Flexible

Type 3:
Temporally Flexible
Spatially Inflexible

Type 4:
Temporally Inflexible
Spatially Inflexible

Spatial Perspective

Temporal Perspective

Fig. 3: The classification of IDC workloads

among IDCs [16]. Hence, these tasks are spatially flexible and
can be arranged to different IDCs.

Also, it should be mentioned that although tasks of IDCs
are allocated by the computing resource management system
in real-time [17], [18], scheduling workloads day-ahead is
practicable using some higher-level mechanisms. Reference
[10] provides a mechanism named virtual capacity curve
(VCC) to realize the day-ahead workload scheduling. This
mechanism determines the maximum capacity that can be used
for an IDC at each time slot. Then, in real-time operation,
the computing resource management system allocates tasks
according to the virtual capacity instead of the physically
available capacity.

In this paper, we categorize the computation workloads of
IDCs into four parts from the temporal and spatial perspec-
tives, as shown in Fig. 3. Type 1 refers to workloads that
are both temporally and spatially flexible. Type 2 refers to
workloads that are temporally inflexible but spatially flexible.
Type 3 refers to workloads that are temporally flexible but
spatially inflexible. Type 4 refers to workloads that are both
temporally and spatially inflexible. Therefore, workloads of
Type 1 and Type 2 can be dispatched among different IDCs,
while workloads of Type 1 and Type 3 can be scheduled to
different time slots of a day.

The total workload capacity is the sum of the four types
of workloads. Moreover, according to the empirical results in
[10], the relationship between the power consumption of an
IDC and its computation workload can be approximated by a
linear expression:

PT(n,t) = an + Bn - L'°%(n, 1) (1)

where P (n,t) is the power consumption of IDC 7 at time t,
L'™C(n, t) is the workloads, and «,, and 3, are the coefficients,
respectively.

B. Operational Flexibility from Backup Power

Energy storage devices are deployed for IDCs to play the
role of backup power. When power supply network failures
happen, the power supply of computation devices of an IDC
can be switched from the power grid to energy storage devices.
In [21], we have extensively discussed the spare capacity
of energy storage devices that work as backup power. In
this paper, we also establish the procedure to quantify the
operational flexibility of backup energy storage according to
[21]. The backup energy storage should first reserve enough
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Fig. 4: The procedure to establish the energy storage operation
model

energy to guarantee the power supply reliability and then use
the spare capacity to provide flexibility. Therefore, before
the day-ahead scheduling, it is necessary to determine the
operational boundaries of energy storage with the prerequisites
of power supply reliability. The procedure can be summarized
as four steps, as shown in Fig. 4. First, we construct the power
supply reliability model. Then, we provide the analytical
approach to calculate the power supply reliability index. Based
on the analytical equations, we further evaluate the minimum
reserved duration and energy of the backup energy storage to
satisfy the reliability requirement. According to the evaluation
results, the operation model of backup energy storage can be
established.

1) Step 1: The power supply reliability modeling consists
of two parts: the topology modeling and the uncertainty
modeling. The topology modeling considers the configuration
of the studied distribution network. In order to fully capture
the influence of potential failures on the studied IDC, we adopt
the graph model proposed in [25], which comprehensively
considers the topology of distribution networks and the op-
eration characteristics of protection devices. Then, we use the
Markov repairable model to represent the uncertainty of each
component in the studied distribution network. The Markov
repairable model is a two-state homogeneous stochastic pro-
cess with a failure rate A and a repair rate p. It is widely
applied in power system reliability analysis [26].

2) Step 2: The power supply reliability of an IDC is deter-
mined by some components of the studied distribution network
instead of all. Hence, we apply the depth-first search (DFS)
algorithm on the graph model to acquire all the components
that potentially influence the power supply of the IDC. Then,
we utilize the corresponding Markov repairable models of
the acquired components to construct the aggregated Markov
model. We partition the state space of the aggregated Markov
model into four groups and introduce a semi-Markov analysis
method to obtain the analytical power supply reliability index
calculation equation. Because of the page limit, the deduction
details can be referred to in [25].

3) Step 3: The analytical equation can be regarded as a
mapping from the reserved duration of energy storage and the
distribution network parameters to the power supply reliability
index:

where [, is the reliability index, D,, is the reserved duration
of energy storage, and ®,, represents the distribution network
parameters. With the distribution network parameters fixed,
the power supply reliability index is only determined by the
reserved duration. Therefore, the minimum reserved duration
D™Min 1o satisfy the power supply reliability requirement 17
can be evaluated using the Newton-Raphson search based on
the analytical expression of Eq. (2).

4) Step 4: Once the minimum reserved duration D™ is
acquired, the minimum reserved energy R™™(n,t) can be
calculated as follows:

) t4Dmin
R0t = |
T=t

Then, the state of charge (SoC) of the energy storage should
always be scheduled above R™™(n, t). Moreover, the charging
and discharging power should also be constrained.

P (n,1)dr 3)

Remark 2: Eq. (3) contains the integral operation, which
cannot be directly incorporated into an optimization model.
Therefore, we can discrete Eq. (3) according to the time
step of the scheduling problem and use the discrete form in
optimization.

Remark 3: Compared with our previous research, the power
consumption P'T(n,t) can be dispatched. Hence, the min-
imum reserved energy R™"(n,t) is also adjustable in the
optimization model, enlarging the feasible operation region.

IV. SCHEDULING PROBLEM FORMULATION

In this section, we propose the scheduling model for the
IDC-based VPPs. The model follows the assumptions of [27],
[28], [29] that VPPs are treated as price takers. By applying
this model, the IDC-based VPPs can conduct the day-ahead
self-scheduling to build offering curves for the day-ahead
market based on the prediction of market clearing prices and
load demands [28].

Remark 4: We present a deterministic scheduling model
in this section. This is because this paper mainly focuses
on establishing the operational models to explore the flexi-
bility of IDCs comprehensively and constructing IDC-based
VPPs. Nevertheless, more sophisticated optimization tech-
niques, such as stochastic optimization, robust optimization,
adaptive robust optimization, and other methods, can be easily
applied to our framework with minor modifications.
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A. Optimization Target

It is assumed that the scheduling model has K time slots
in total. Then, the optimization target is to minimize the total
operational cost of the VPP:

K N K N
minC =" w(k)- Y PNT(n,k)+> > PPH(n, k)
k=1 k=1n=1
4)

where 7 (k) is the predicted price at time slot k, PNET(n, k) is
the net power consumption of IDC n, and PPES(n, k) is the
battery degradation cost of IDC n caused by the charging and
discharging operation. The net power consumption of IDC n
is calculated as follows:

n=1

PNEY(n, k) = P (n, k) + (P°(n, k) — P(n,k)) — PRE(n, k)
(5

where the first term P'T(n, k) is the power consumption
of the computation devices in the IDC, the second term
P¢(n, k)—P%(n, k) is the net output of the energy storage, and
the third term PRE(n, k) is the scheduled renewable energy.
PPES(n, k) is the battery degradation cost.In this paper, we
adopt the degradation cost model proposed in [30]. This model
uses the charging and discharging mileage to allocate the
investment cost of the energy storage into the whole lifecycle:

PPS(n, k) = A, - (P(n, k) + P%(n, k)) (6)
where )\, is the unit degradation cost coefficient.
B. Energy Storage Operation

The operational constraints of the energy storage of IDC n
is stated as follows:

1
SoC(n, k+ 1) = SoC(n, k) +ny, - P°(n, k) — — - P(n, k)

n

(7

0 < Pé(n, k) < PO (n, k) - 2¢(n, k) (8)

0 < P¥(n, k) < P™(n k) - 2%(n, k) )
SoC™ (n, k) < SoC(n, k) < SoC™(n, k)  (10)
z°(n, k) + 2%(n, k) <1 (11)

where SoC(n, k) is the SoC of storage of IDC n, 1 and
nd are the charging and discharging efficiency, P¢(n, k) and
P%(n, k) are the charging and discharging power, respectively.
Hence, Eq. (7) is the energy conservation equation of the
storage. Eq. (8), (9), and (10) depict the feasible region
of the energy storage, where P®™(n k), P&™aX(p k),
SoC™"(n k), and SoC™*(n, k) are the operational bound-
aries quantified using the method presented in Section III-B.
Scheduling the energy storage within the feasible region
satisfies both the physical constraints and the reliability re-
quirement. Moreover, x¢(n, k) and x¢(n, k) are binary vari-
ables representing the operation status of the energy storage.
Eq. (11) avoids the energy storage charging and discharging
simultaneously.

C. Workload Dispatch

According to Section III-A, the power consumption of
the computation devices is approximated linearly with the
corresponding workload:

PT(n, k) = an + By - L'™C(n, k) (12)

where «,, and 3, are coefficients, and L°¢(n, k) is the

scheduled workload. The scheduled workload is composed of
four parts, as discussed in Section III-A:

LIDC(n7 k‘) :LIDC,l(n7 k‘) + LIDC’2(TL, k‘)

+LIDC’3('I’L7 k/,) + LIDC,4 (n’ k)

where  LPSl(n k), LPC2%(n k), L™3(n,k), and

L'™C4(n k) are the Type 1, 2, 3, and 4 workloads

discussed in Section III-A, respectively. Then, different kinds
of workloads should satisfy the following constraints:

N K
Z ZLIDC’I(H, k) _ EIDCJ

13)

(14)

n=1k=1

N A~

ZLIDC’Q(TL,]C) — LIDC,Z(k) (15)
n=1

K A

ZLIDC’S(TL,]C) — LIDC,3(n) (16)
k=1

L™ (n, k) = L% (n, k) (17)

where L'°C! ig the predicted Type 1 workload of the whole
VPP among the whole scheduling period, L'™S2(k) is the
predicted Type 2 workload of the whole VPP at time slot k,
L™C3(n) is the predicted Type 3 workload of IDC n among
the whole scheduling period, and L'°%4(n, k) is the predicted
Type 4 workload of IDC n at time slot k.

In addition, the scheduled workloads of IDC n should not
exceed its capacity, and all types of workloads should be non-
negative:

0 < LIDC(n,k) < LlDC,max(n’k)
L% n, k) >0 i=1,2,3,4

(18)
(19)

D. Renewable Energy Scheduling

The scheduled power of renewable energy of IDC n is no
greater than the predicted power:

PRE(n, k) < PRE(n, k) (20)

Mathematically, this model is a mixed-integer linear pro-
gramming (MILP) problem, which academic or commercial
solvers can efficiently solve.

V. CASE STUDIES

This section conducts case studies on three test systems to
validate the proposed framework. First, the proposed flexibility
modeling and scheduling framework is illustrated on a single
IDC. Then, the coordination among IDCs is explored using a
dual IDCs case. Finally, the benefits of scheduling IDC-based
VPPs are studied.
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A. Single IDC Case

We investigate the cooperation of the workload dispatch and
power supply device operation in a single IDC. The basic set-
tings of this case are established as follows. The rated power of
the IDC is set as 6000kW, with coefficients «,, and (3,, of Eq.
(1) estimated according to [10]. The studied IDC is deployed
with 6000kW backup energy storage. The energy capacity is
three hours, and the changing/discharging efficiencies are both
95%. The installed capacity of the photovoltaic panels is set as
2000kW. The workloads of the studied IDC are constructed
based on the Google cluster-data.The electricity price curve
is obtained from the locational marginal price (LMP) of the
South Power Pool (SPP).

According to Section III-A and Section III-B, the opera-
tional flexibility of workloads and backup power is quantified
first. Then, the scheduling model in Section IV is applied. The
scheduled workloads of the studied day are shown in Fig. 5.
The spatial flexibility cannot be considered for a single IDC,
so workloads of Type 3 and Type 4 are studied in this case. The
workloads with and without the proposed scheduling method
are both exhibited in Fig. 5. Comparing the two results, we can
find that the flexible workloads are scheduled to time slots with
relatively low prices. Correspondingly, the scheduled power of
the studied IDC is presented in Fig. 6. Here, Fig. 6a shows the
power consumption without optimization, while Fig. 6b shows
the power consumption with optimization. Since the workloads

.

21277 —
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Fig. 7: The SoC of the backup energy storage

of the studied IDC are scheduled, the power consumption of
the computation devices is reshaped. In addition, the spare
capacity of the backup energy storage is also utilized to charge
at time slots with low prices and discharge at time slots with
high prices. Therefore, the net power consumption can be
optimized from the curve in Fig. 6a to that in Fig. 6b. The
original operational cost without any optimization is 2648.8$.
By considering the workload scheduling, the operational cost
is reduced to 2482.93%. Then, the charging and discharging of
backup energy storage further reduce the cost to 2379.4%. As
a result, the operational cost of the studied day is reduced by
10.2%.

Moreover, the SoC of the backup energy storage is shown
in Fig. 7 to illustrate the coupling of the workload dispatch
and power supply device operation. Here, two scenarios are
discussed. In Scenario 1, the backup energy storage is opti-
mized coordinately with the workloads. In Scenario 2, only
the operation of the backup energy storage is optimized.
Because the scheduled workloads would determine the power
consumption of the computation devices and further influence
the minimum reserved capacity (as in Eq. (3)), the spare
capacity changes. Therefore, the feasible operation region of
the energy storage varies. Accordingly, the SoC curves of
Scenario 1 and Scenario 2 are also different. In addition, the
operation of the backup energy storage makes the SoC changes
with time. Compared with keeping the SoC at the highest
level for all time, the power supply reliability index decreases.
However, because the spare capacity is evaluated according to
the predefined reliability requirement, the operation of backup
energy storage could still keep the reliability level above the
requirement.

B. Dual IDCs Cooperation Case

The spatial coordination of workload dispatch can further
improve the scheduling. In this case, two IDCs are considered,
and the basic settings are similar to Section V-A. By applying
the proposed framework, the workloads can be scheduled,
and the corresponding operational cost is shown in Table
I. The operational costs of IDC 1, IDC 2, and the total
cost are presented in the table, respectively. Note that this
case mainly aims at illustrating the effectiveness of temporal-
spatial dispatch of workloads, so the backup power scheduling
is not considered. In Table I, the benchmark cost refers
to the results without any workload scheduling. When the
workloads are scheduled temporally, which means the two
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IDCs optimize their workloads separately, the operational cost
of both IDCs reduces, and the total cost decreases. Moreover, if
we further consider the spatial coordination of IDCs, although
the operational cost of IDC 1 increases, the operational cost
of IDC 2 has a greater decrease, and the total cost is im-
proved correspondingly. This is because the workloads can be
transferred when spatial coordination is enabled. Therefore,
the scheduling scheme can be optimized in a larger space.

TABLE I: The operational cost of the dual IDCs case with
workload scheduling

Benchmark|  Temporal Dispatch Temporal-Spatial Dispatch
Cost Cost Reduce Rate Cost Reduce Rate
IDCI| 2648.83 2482.94 6.26% 2722.74 -2.79%
IDC2| 3806.44 3745.10 1.61% 3408.45 10.46%
Total | 6455.27 6228.04 3.52% 6131.19 5.02%

C. Multiple IDCs Case

In this case, we study the scheduling of the IDC-based
VPPs. We consider a VPP constructed by ten IDCs. The basic
parameters are set as in Section V-A. We adopt the LMP
of a whole year from the South Power Pool to conduct the
scheduling based on the proposed framework. In Table II, we
present the scheduling results of three typical days and the
average cost of the whole year. Here, we adopt the operation
results without any scheduling as the benchmark, and the
workload dispatch, backup power scheduling, and combined
optimization are realized, respectively. Scenario 1 represents
a day with normal prices. The workload dispatch and the
backup power scheduling can both reduce the operational cost.
Moreover, because of the coupling discussed in Section V-A,
the synergy effect of workload dispatch and backup power
scheduling does not equal the sum of its parts. Scenario 2
represents a day with plain prices. Because the price difference
within the day is slight, the benefits of operating energy
storage are less than the degradation cost. Hence, the backup
power is not dispatched in Scenario 2. Scenario 3 represents
a day with congestion periods. During congestion periods, the
prices are exceptionally high, so scheduling the backup energy
storage to discharge and minimize the net power consumption
can significantly reduce the cost. On a yearly average, the
scheduling of IDC-based VPPs can reduce the operational cost
by 11.84% under this case’s settings.

VI. CONCLUSION AND FUTURE WORKS

IDCs are potential flexibility resources for power systems.
Constructing VPPs based on IDCs enables the cooperation
between power and information systems. This paper provides a
novel method to schedule IDC-based VPPs while comprehen-
sively considering the operational flexibility of the workloads
and the power supply devices. The workload dispatch can
exploit the temporal and spatial flexibility of computational
workloads of an IDC group. The backup power scheduling
can take advantage of the spare capacity of the backup energy
storage devices. They both benefit the operation of IDC-
based VPPs. In addition, because of the coupling of the two

flexibility resources, the synergy effect does not equal the sum
of its parts. More scenarios will be studied to further validate
the proposed framework. Future works include incorporating
uncertainties into the scheduling model, considering strategic
bidding of IDC-based VPPs, constructing the corresponding
market mechanisms, and implementing the scheduling frame-
work to IDCs’ daily operation.
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