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Abstract—Neural networks play an increasingly important
role in many complex decision-making systems. However, their
lack of interpretability make it difficult to analyze and trust
them when applied to critical infrastructure like the power
system. This paper presents visualizations and exploratory
analyses of the internal representations of a graph neural
network based reinforcement learning agent applied to a power
system reliability study. We explore three different dimension
reduction techniques, and use these to demonstrate how agents
with different generalizing capabilities have different internal
representations. We study how the inputs to the agent are
processed through the layers of the neural network components.
Additionally, we use these visualizations to indicate that the
agent can learn general concepts of the power system, and we
hypothesize that the method can be expected to scale well to
larger power systems. We also explore how the agent behaves in
a grid expansion scenario with a power system not experienced
during training.

Index Terms—Power Systems, Graph Neural Networks,
Visualization, Reinforcement Learning

I. INTRODUCTION

The ongoing widespread green transition of the power system
means more production from renewable power sources. Due
to these increased levels of intermittent production, the
system will be more complex and difficult to operate. When
evaluating the reliability of this transformed system, we will
need to quickly find the remedial actions following a power
system failure. In this respect, the use of machine learning
models [1], [2] will be an attractive alternative to the traditional
time-consuming optimization methods [3], [4].

In both [5] and [6], a reinforcement learning (RL) agent was
used in Monte Carlo simulations of the IEEE Reliability 24
bus test system (RTS) [7]1, to find optimal remedial actions
following power system failures. A direct encoding of the
power system state as a single vector input to the policy neural
networks, without any a priori information of the topological
structure of the power system was used in [5]. The Monte
Carlo reliability simulation based on this agent was much
faster and about as accurate as the traditional OPF-based
approach. In [6], the method in [5] was improved, by taking

This work has been funded by the Norwegian Research Council under grant
number 310436.

1We have included an illustration of the RTS in Fig. 12 at the end of this
paper.

advantage of the inherent graph structure of the electrical
power system. The resulting graph based integrated actor-critic
model was additionally able to perform well in power systems
not seen during training.

The internal high-dimensional representation and processing
of information in neural network make these models
challenging to interpret and analyze. In the operation of critical
infrastructure like the power system, it is of utmost importance
to understand and trust the models at hand. One step in this
direction is to visualize these high-dimensional representations
in 2D or 3D. Some classical linear techniques are Principal
Component Analyses [8] and classical Multidimensional
Scaling [9]. Several nonlinear methods have appeared in
the last decades, where the t-distributed stochastic neighbor
embedding (t-SNE) technique [10] and Uniform Manifold
Approximation and Projection (UMAP) [11] have become
popular. In this paper we will mostly use t-SNE but have also
included PCA and UMAP for comparison.

The major difference between the models in [5] and [6]
is that the first uses a deep feed forward neural network and
the latter uses a graph neural network architecture. Since the
underlying graph structure of the electrical power system can
be exploited, we would expect the internal representations of
the model in [6] to be more explainable. In this paper, we
seek to demonstrate how dimension reduction techniques could
help us understand the information processing in graph neural
networks. To illustrate this point, in Fig. 1 we have applied the
t-SNE method to the first hidden layer of the neural network of
the agent policy used in [5] with a perplexity value of 50 and
1000 Monte Carlo simulation time steps. In Fig. 1a the markers
are colored by the relative total available generator capacity.
We see a clustering of the generators states with 100% in the
upper left part, and two sub-clusters with reduced availability
in the lower part. Fig. 1b uses the relative total load as the
marker color, and in this plot we notice a relatively smooth
gradient of the overall load through the individual clusters.
Still, even though this information is interesting on a global
scale, the direct encoding in [5] offers less information about
local phenomena since there are no connection to a graph in
the internal structure of the model. It is also difficult to assess
how and why changes improve the model beyond metrics.

The main research contribution of this paper is to
present visualizations and exploratory analysis of the internal
representations of this graph neural network based RL agent
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(a) Color by available generation capacity

(b) Color by total system load

Fig. 1: Visualizing the hidden layer of the policy of the direct
encoded method of [5] using t-SNE.

applied to a power system reliability study. We use PCA,
t-SNE and UMAP to show that the agent alters and improves
its representation and generalizing capabilities as the input data
to the agent is processed through the internal layers of the
neural network components. We show how these visualizations
can be used to support the view that the trained agent learns
general concepts, indicating that the method presented in [6]
can be expected to scale well to larger power systems where
the agents are able to generalize to marginally larger power
systems such as for reliability studies in a grid expansion
scenario.

More specifically, we will

1) Visualize and study two different model versions, where
each model is trained under slightly different conditions
resulting in different generalizing capabilities.

2) Visualize and study how the representation changes
during training stages and how it can be interpreted in
terms of policy changes.

3) Visualize and analyze the representation of a power
system not seen during training.

To the best of our knowledge, this is the first time the internal
representation of the policy of a graph based actor critic acting
on a power system has been studied.

The rest of this paper is organized as follows: In section II
we give a short presentation of power system reliability and
the model developed in [6]. In section III-B, we describe the
PCA, t-SNE and UMAP methods. In section IV, we present
visualizations using the models established in [6]. Finally, in
section V, we discuss our findings and point to future research
activities.

II. GRAPH NEURAL NETWORKS AND REINFORCEMENT
LEARNING

Message passing layer 1

Message passing layer 2

Message passing layer K

State Encoder Action Encoder

Critic DecoderAction Decoder

Encoded state

Power system state Agent actions

Critic valueAgent actions

Fig. 2: Integrated Actor-Critic network architecture.

Graph neural networks are a class of machine learning
techniques applicable to situations where the data structure
can be described by a graph. A power system transmission
network is an example of such a structure, where the buses and
branches can be represented by nodes and edges in a graph. A
key concept in several graph neural network algorithms is the
message passing (MP) framework. In such algorithms, the core
idea is to update the internal representation by aggregating
the information from neighboring nodes, possibly by also
using the edge and global graph features. By doing multiple
updates, information within the graph can be transferred from
a distance and not only from the neighboring nodes. The
internal representations created by each MP layer would then
presumably contain information related to both the physical
data and the local topology of the power system.

Actor-critic methods are popular approaches to train
reinforcement learning agents. The model presented in [6]
is founded on the MP algorithm [12], where information is
distributed through the graph as the depth of the MP layers
are processed in the model. The overall model architecture
is illustrated in Fig. 2. The model consists of input layers,
encoding layers, K MP layers, and the final decoder layers
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giving the actions and the real valued critic value. In the
MP layers there are separate models for the edge, node and
global features which are connected sequentially through a
combination of attention and recurrence mechanisms, inspired
by the generalized updating methods in [13], section 5.3.
Each layer in the model is represented by a graph, with node
features, edge features and global graph features. The actions
of the agent are given as outputs at the nodes of a graph. For
each node in that action graph, the agent has the opportunity to
make two actions, corresponding to adjustments of generator
production output and load curtailment.

In our model, we consider a simple symmetric directed
graph GSTATE = (V, E) with a set of nodes V with cardinality
|V| and a set of edges E ⊆ V × V with cardinality |E|. The
adjacency matrix A ∈ R|V|×|V| = {aij} is defined by aij = 1
if (ui, uj) ∈ E , and 0 otherwise. We denote the node features
by the column vectors xu ∈ Rdn , ∀u ∈ V , and arrange these
into the matrix X = [... xu ...] ∈ Rdn×|V|. We denote the edge
features by the column vectors y(u,v) ∈ Rde , ∀(u, v) ∈ E ,
which are collected into the matrix Y = [... y(u,v) ...] ∈
Rde×|E|. We denote the graph features by z ∈ Rdg . In addition,
we specifically define the action graph GACTIONS as the graph
with the same adjacency matrix A but with node features
XACTIONS ∈ Rda×|V| (no edge or graph features).

For the rest of this paper we will consider the actor part
of the model architecture in Fig. 2. This is the left part of
the figure, leading from power system state input to agent
actions output. This means that the power system state is
represented by an input graph G = GSTATE with node, edge
and graph features. The input graph is then processed by the
State Encoder and the graph G is transferred to an encoded
state graph G∗. The State Encoder consists of a graph feed
forward neural network for the node, edge and graph features,
without any message passing updates.

With G∗ as the input to the K message passing layers,
within each message layer k, we define a sequential updating
of edge hk

(u,v), node hk
u and graph features hk

G in the common
message passing layers k = 1 . . .K:

hk
(u,v) = UPDATEedge(h

k−1
(u,v),h

k−1
u ,hk−1

v ,hk−1
G ) (1)

mk
N (u) = AGGRnode

(
hk−1
v ,hk

(u,v),h
k−1
G ∀v ∈ N (u)

)
hk
u = UPDATEnode(h

k−1
u ,mk

N (u))
(2)

hk
G = UPDATEgraph(h

k
u,h

k
(u,v),h

k−1
G ∀u ∈ V, (u, v) ∈ E)

(3)
Here, the learnable UPDATE functions establish the

relationship between previous message passing layers and the
current. The AGGR function collects information for each
node u in its neighbor N (u).

We initialize the message passing layer using the features
of graph G∗ where

h0
u = x∗

u, ∀u ∈ V,
h0
(u,v) = y∗(u,v), ∀(u, v) ∈ E ,
h0
G = z∗,

(4)

where x∗
u, y∗(u,v) and z∗ are the node, edge and graph features

of the state encoded graph G∗. In section IV we visualize the
input layer and the K message passing layers of this model.
We refer to [6] for further details concerning the architecture.

The model is trained using a prioritized replay buffer D [14]
where we integrate the critic and target networks as in [15].
The critic loss is defined through L(θ) = ED[δi] where δiis
given by

δi = (Qθ1
θc
(gi, ai)− ŷi)

2
+ (Q2

θc
(gi, ai)− ŷi)

2
. (5)

Here gi and ai are sampled graph states and actions,
respectively, ŷ are target values, and Qθi

θc
, i = 1, 2 are the

two critic networks each with parameters θic. The actor loss is
defined through

J(θa) = −ED[Qθ′(gi, πθa(gi))], (6)

where θ′ is the target critic network parameters and πg is the
policy and θa its parameters. As in [15] and [6], we define the
combined actor and critic loss as Z(θ) = L(θ)+λJ(θa), where
λ is an adaptively updated parameter weighting the balance
between actor and critic updates.

III. DIMENSION REDUCTION TECHNIQUES

In this section we will summarize the linear PCA method and
the non-linear methods t-SNE and UMAP.

A. The PCA method

The standard Principal Component Analysis (PCA) is a
linear reduction technique based on performing eigenvalue
decomposition of the symmetric covariance matrix S =

1
N−1X

TX . Here, we have ordered the normalized N high
dimensional observations xi ∈ Rd into an N×d matrix X such
that each column has mean zero and standard deviation one. S
has d orthonormal eigenvectors u1, . . . , ud corresponding to a
set of sorted eigenvalues λ1 ≥ . . . ≥ λd. For the PCA analysis
we then select the k first eigenvectors which forms the d× k
projection matrix P . The reduced low-dimensional N×k data
matrix Y are then calculated by Y = XP .

B. The t-SNE method

The t-SNE method is a statistical tool for visualizing high
dimensional data. The main idea is to find data representations
in a low dimensional space such that points that have a high
probability of being close in the high dimensional space also
have a high probability of being close in the low dimensional
space. The t-SNE method builds on the SNE method [16].
Both methods use a Gaussian kernel in the high dimensional
space, but t-SNE uses the first order Student t-distribution
for the low dimensional kernel. This means that if we have
N high dimensional objects x1,x2, . . . ,xN , the conditional
probability of a data point xj of being close to xi is given by
the probabilities

pj|i =
exp

(
−||xi − xj ||2/2σ2

i

)∑
k ̸=i exp (−||xi − xk||2/2σ2

i )
, (7)
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where σi is the variance for the Gaussian centered at xi.
Assuming symmetry, we get pij =

pj|i+pi|j
2N . The low

dimensional probabilities are then given by the map into N
low dimensional objects yi ∈ Rd, where d typically is 2 or 3,
given by

qij =

(
1 + ||yi − yj ||2

)−1∑
k ̸=l (1 + ||yk − yl||2)−1 . (8)

The low dimensional probability distribution Q is then
found by minimizing the Kullback-Leibler divergence of the
two distributions:

C =
∑
i

∑
j

pij log
pij
qij

, (9)

where P is the probability distribution of points in the high
dimensional space.

There are many pitfalls when using the t-SNE method, see
for example [17]. One important parameter in this respect
is the user-specified perplexity. The t-SNE method finds the
variance σi through a binary search that results in Pi with
a fixed value of perplexity, defined as Perp(Pi) = 2H(Pi),
where the Shannon entropy H(Pi), which describes the
expected amount of information in the pj|i distribution, is
defined by H(Pi) = −

∑
j pj|i log2 pj|i.

In the original t-SNE paper [10], the authors state that
the “performance of SNE is fairly robust to changes in the
perplexity, and typical values are between 5 and 50.” However,
“the perplexity is closely related to the size and density of the
data” [18], which is also evident from the definition of the
perplexity. The perplexity parameter could thus be interpreted
as how much weight to put on local versus global data.

C. The UMAP method

The UMAP method is described in [11], see also [19]
and [20]. One difference between t-SNE and UMAP concerns
the initialization of the low dimensional distribution, where
UMAP uses spectral embedding of the graph Laplacian,
instead of a random initialization. In addition, the low
dimensional optimizer use stochastic gradient descent instead
of general gradient decent used by t-SNE. This leads to UMAP
being generally faster and also being able to handle more than
2D/3D for the low-dimensional representation such that in can
also be used within other clustering algorithms and not just
for visualization.

Similarly to t-SNE, UMAP is also based on using the data to
construct a high-dimensional distribution P and then find a low
dimensional distribution Q that is similar to P. By the use of
Riemannian geometry and fuzzy sets, the UMAP methodology
establish a relationship between local metrics and the data
through a graph consisting of the k nearest neighbors, where
k is a hyperparameter (related to perplexity for t-SNE).

In UMAP, we calculate high dimensional unnormalized
probabilities (related to the weights of edges in a fuzzy graph)
by

pj|i = exp(−
max(0, d(xi, xij )− ρi)

σi
), (10)

where 1 ≤ j ≤ k, 1 ≤ i ≤ N , and ρi is defined as the distance
to the nearest neighbor of xi,

ρi = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}. (11)

The parameter σi is found by using binary search for
the relation log2(k) =

∑k
j=1 pj|i, and the symmetric

unnormalized probabilities pij are defined by pij = pi|j +
pj|i − pi|j ∗ pj|i. The low dimensional distance probabilities
are given by

qij = (1 + a(yi − yj)
2b)

−1
, (12)

where the parameters a and b are found by least-squares fitting
to

qij ≈

{
1 ifyi − yj ≤ min dist,

e−(yi−yj)−min dist ifyi − yj > min dist.
(13)

Here min dist is a hyperparameter determining the minimum
distance between points in the low dimensional embedding.
Finally, the loss function is defined by the binary cross entropy

C =
∑
i

∑
j

pij log

(
pij
qij

)
+(1− pij) log

(
1− pij
1− qij

)
. (14)

IV. VISUALIZATION

In this section we will visualize the high dimensional
embeddings of the graph neural network model presented
and described in [6].2 We also use the RTS as the power
system case, and we use the same model parameters as in [6].
All training was done at the NTNU Idun HPC cluster [21]
using a single V100 Nvidia 32 GB GPU card. We have
used the Julia package ”MultivariateStats.jl” for the PCA
calculations, the Julia package ”TSNE.jl” and the Python
package ”openTSNE” for the t-SNE calculation, and the
Python package ”UMAP” [22] for the UMAP calculations.

The PCA, t-SNE and UMAP methods are applied to a
power system reliability Monte Carlo simulation with 1000
time steps, giving approximately 24 000 data points3, as buses
disconnected from the power grid will not be included in
the time series. We have used a perplexity value of 200 for
t-SNE and a k = 200 for number of nearest neighbors and
min dist = 0.5 for UMAP. The only exception is in Fig. 3
and Fig. 4 where we have used 10 000 time steps with a total
of approximately 240 000 data points, and a perplexity value
of 50 and k = 50 for number of nearest neighbors, illustrating
the robustness of the perplexity parameter.

A. Two groups of models

In [6], one group of models was trained by using some variant
of a data augmentation strategy, Gaussian noise with µ =
0.0 and σ = 0.1 was added to the curtailment costs which
were then randomly permuted among the buses at each point
in time when the load or system state changed. Each cost

2Code for some of the visualizations can be found at
https://github.com/oysteinsolheim/pscc2024-visualizations.

3The exact number will vary from simulation to simulation. In the IEEE 24
bus case, bus 7 is a radial bus and experiences disconnections most frequently.
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had a cut-off at 2.0 times the original cost. Gaussian noise
with µ = 0.0 and σ = 0.2 was also added to the maximum
generator capacities and the loads. Finally, the noise-adjusted
loads were randomly permuted among the load buses. The load
flow and state of the power system were calculated based on
these adjusted input variables. In this visualization section we
will use both the noise-free model and the model obtained by
using the data-augmentation strategy. Thus, we will consider
the following two models:

• Model 1: Normally trained.
• Model 2: Trained by using noise/data augmentation.
Additionally, we have trained each set of the two RL-agents

(model 1 + model 2) two times. One set of trained agents have
been used in Fig. 3, Fig. 4, Fig. 8 and Fig. 9, another for the
rest of the figures. The RL agents have been trained to the
same level of accuracy in the Monte Carlo simulations, but
due to different random initialization and the stochastic nature
of the training process, the agents does not display identical
results. However, both set of trained agents display similar
generalizing capabilities.

B. Visualizing models with different generalizing capabilities

In Fig. 3 we visualize the last message passing layers for
model 1 for three different dimension reduction techniques,
PCA, t-SNE and UMAP, where each bus (1-24) is given a
separate color. As expected, the PCA plot in Fig. 3a does
not reveal any clustering of buses and the distribution of
the individual bus node representations tend to overlap. This
visualization is very similar to 2D PCA visualizations of
the MNIST dataset [23], for example as presented in [24].
The t-SNE and UMAP visualizations in Fig. 3b and Fig. 3c,
show both a strong clustering by bus and the t-SNE and
UMAP representations look very similar, although for these
hyperparameter settings, UMAP seems to keep the clusters
larger and less divided.

In Fig. 4 we visualize the node embeddings for model 2,
using t-SNE at three different model layers. Similarly, as in
Fig 3, each bus is given a separate color. Considering the
input layer in Fig. 4a, we notice two striking features. First,
the long lines are the representations of load buses, where the
only feature that changes value is the actual load at the bus.
We hypothesize that the reason for this shape it because it is
inherently one-dimensional, and the t-SNE-representations of
these nodes reflect this. Second, the two circular point clouds
near the middle and in the upper right part of the plot are
representations of bus 11, 12, 17 and 24. These are buses
which have neither load nor generator output connected, and
thus none of the input feature values of these buses change
during the simulations. The t-SNE-presentation thus represents
only random noise around a single point. The rest of the
buses are clearly grouped together, although many buses are
split in several subgroups, and these are buses with either
generation or both load and generation units connected to it.
One important point to make here is that neither of the features
in the input layers are updated or influenced by information
in neighboring nodes.

In Fig. 4b and in Fig. 4c, visualizing the internal
representation of the first and last MP layers, these initial
modes of straight lines and ellipsoids disappear. Starting from
MP layer 1, the internal representation of a bus includes
information from neighboring nodes. As noted above, one
striking feature of these plots are the clustering of the
individual nodes. However, we also expect similar nodes
(functionally and topologically) in the power system to have
similar representations in the graph neural network. In the
RTS case, bus 1 and 2 are two such buses, with similar
installed generator capacities (2x10MW + 2x70MW) and
approximately similar maximum load (108MW vs. 97MW),
and their local grid structure bears great resemblance. These
two buses are shown as red and green in Fig. 4 for model 2,
which was trained with noise and in [6] proven to generalize
better. Going from MP layer 1 in Fig. 4b to MP layer 4 in
Fig. 4c we can see that as one proceeds through the MP
layers, the internal representations of these two buses become
almost indiscriminable. This stands in stark contrast to the
representations of these two buses seen in Fig 3b.

In Fig. 5 we visualize the representation for model 2,
showing the t-SNE projection colored by the load value of
each bus. The observations where load is zero is omitted from
the figure. In the input layer, clusters of buses with only load
connected are line shaped, and the lines are ordered by bus
load value. We see the same ordering in some clusters of buses
with both load and production connected, but not all. The
pattern of increasing load across a cluster is also apparent
in MP layer 2. As seen in the previous visualizations of the
node input layer, the buses only connected to load are mainly
grouped together in clusters shaped like thin lines in the t-SNE
projection. The buses connected to both load and production
are mostly wider clouds. Coloring observations by bus load
reveals that the lines are ordered by the value of bus load. The
direction of increasing load varies between buses. The fact that
the ordering within a cluster is not a global feature should be
expected since t-SNE axes are not directly interpretable and
since global features are not necessarily preserved in a t-SNE
projection.

In Fig. 6 we investigate the representations of three load
buses situated in the 138kV part of the power system. Bus 4
and 5 have maximum load of 74MW and 71MW, respectively,
whereas bus 6 has 136MW. The local topological structure is
also relatively similar, as they all have 2 neighboring nodes
and are all connected to either bus 1 or bus 2. The main
difference between these buses is that bus 6 is connected to one
of its neighboring nodes through a cable and not an overhead
line. From Fig. 6a and 6b we see that only model 2 clearly
represents bus 4 and 5 similarly in the first MP layer. We
also notice here that neither of the models represent bus 6 as
particularly similar to bus 4 and 5. However, this changes as
we proceed through the layers. In Fig. 6c and 6d we see that
model 2 represents bus 6 much more in line with bus 4 and 5.
Model 1 still keeps bus 6 at a distance although in the smallest
cluster in the lower part of Fig. 6c there does seem to be a
stronger connection.
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(a) PCA. (b) t-SNE. (c) UMAP.

Fig. 3: PCA, t-SNE and UMAP visualization of for MP layer 4, model 1. Each color represent one bus.

(a) Input layer. (b) MP layer 1. (c) MP layer 4.

Fig. 4: t-SNE visualization of for model 2. Each color represent one bus.

Similar observations are apparent for bus 9 and 10,
visualized in Fig. 7. These two buses are also load buses with
maximum active load at 175 MW and 195 MW, respectively.
As with bus 4, 5, and 6, they share some local properties. For
example, they are directly connected to each other and are both
connected to either bus 4 or bus 5. They are both connected to
five other nodes and are also both connected to transformers
with identical properties. The clustering structure in the first
MP layer appears quite similar, but when it comes to the last
MP layer, the models clearly distinguish themselves. Model
2 represents these two buses in an almost indistinguishable
manner. Model 1 does not have any noticeable overlap in its
2-dimensional t-SNE representation of these two buses.

In Fig. 8 and Fig. 9 we show how PCA and UMAP
represent the different models. Although the distribution of
points are more dispersed in Fig. 8, we can see that in 8d
the bus representations do actually confine themselves to a
narrower region than the corresponding PCA representation
for model 1. Similar observations as for t-SNE are made for
the UMAP plots in Fig. 9, where the different visualizations
for bus 1 and 2 for model 1 and 2 are especially striking.

The visualizations presented so far suggest that the two
models, with different generalizing capabilities, do differ in
their internal representations. In our view, these visualizations
indicate that model 2 at least represents the buses with similar

properties more effectively and comprehensibly. This insight
is helpful in an iterative model-building process.

C. Visualizing development in training

In this section we will investigate how the behavior of the two
models changes through the training stages. For both models,
we collect the model parameters (neural network weights and
biases) after 100 000 training steps (1 hour of training time)
after 900 000 training steps (12 hours) and after 10 100 000
training steps (7 days). We denote these three models as First,
Middle and Last. Fig. 10 visualizes how the final MP layer,
layer 4, is represented for both model version at these different
stages of training.

In Fig. 10a and 10d we show the representations of model 1
and model 2 for MP layer 4 after 1 hour of training, the First
models. This short training time implies that the overall model
is not able to make near-optimal decisions, partly because the
critic part of the model is not accurate enough, and partly
because the model has not had enough time to move away from
the random initialization. To us, the structure of the clusters
in the scatter plot for the first models resembles random noise
around some key areas in the high dimensional space, rather
than that of any specific structure emerging. We do, however,
notice that model 1 and model 2 already at this early stage have
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(a) Input layer.

(b) MP layer 2.

Fig. 5: t-SNE visualization of the input layer and MP layer 2
for model 2 with coloring based on bus load.

(a) MP layer 1, model 1. (b) MP layer 1, model 2.

(c) MP layer 4, model 1. (d) MP layer 4, model 2.

Fig. 6: t-SNE visualizations for bus 4 (light blue), bus 5 (dark
blue) and bus 6 (pink).

different opinions on the representation of bus 6, as discussed
in the previous section.

Moving forward to the Middle models in Fig. 10, we first
notice much more structure in the clusters. For both the low
dimensional representation of bus 1 and 2, and bus 9 and 10,
we see clearly distinct areas of occupation. For example, both
models suggest that bus 9 and 10 have two internal cluster
regions. We further notice that the representations of bus 1
and 2 are now almost inseparable, at least for model 2. Model

(a) MP layer 1, model 1. (b) MP layer 1, model 2.

(c) MP layer 4, model 1. (d) MP layer 4, model 2.

Fig. 7: t-SNE visualizations for bus 9 (green) and bus 10 (red).

(a) MP layer 1, model 1. (b) MP layer 1, model 2.

(c) MP layer 4, model 1. (d) MP layer 4, model 2.

Fig. 8: PCA visualizations of bus 1, 2, 4, 5, 6, 9 and 10.

(a) MP layer 1, model 1. (b) MP layer 1, model 2.

(c) MP layer 4, model 1. (d) MP layer 4, model 2.

Fig. 9: UMAP visualizations of bus 1, 2, 4, 5, 6, 9 and 10.

2 also has large overlapping regions of bus 4 and 5, while still
keeping bus 6 close. Model 1 has separate regions for bus 4,
5 and 6, and bus 4 and 5 only have a small region of overlap,
if any.

In Fig. 10c and 10f, the Last models, we see the final MP
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layers having established themselves as discussed earlier. It is
illuminating to see, for both models, how the representation
changes to the better through the training stages.

D. Exposing bus types with higher perplexity

In this section we have studied the effect of extending the
RTS with an extra bus that neither model experienced during
training. As in [6], we have added a new bus between bus
21 and 22, with a load equal to the load at bus 19. The
line characteristics between this new bus and bus 21 and
22 are equal to the characteristics of the line between buses
21 and 22. We set the curtailment cost for this load to
$4 000/MWh, meaning only bus 9 has lower curtailment costs.
Following the discussion of the perplexity in Section III-B, we
have experimented with much higher perplexity values, and
especially a perplexity value of 2 000 has revealed interesting
information.

In Fig. 11, we show an example of these high perplexity
plots for the last MP layer of both model 1 and model 2. The
main difference between these two plots is that for model 2
in Fig. 11b we see four clusters of data points. Each of these
groups represent the bus type in the sense that the upper left
cluster are buses with neither load nor generation connected to
them, in the lower left corner a large cluster of load only-buses,
in the upper right part are the three generator only-buses, and
below this are buses with both generators and load connected
to them. Importantly, model 2 also correctly clusters the new
load bus together with the remaining load buses. The same is
not apparent for model 1 in Fig 11a.

V. SUMMARY AND FUTURE WORK

In this paper we have visualized the internal representations
of a graph-based actor-critic RL agent as it acts within a
power system reliability environment. By using the dimension
reduction techniques method, we have shown how agents
with different generalizing capabilities have different internal
representations, and we have studied how the input data to
the agent is processed through the internal layers of the
graph neural network components. Our visualizations have
also pointed at how the representation changes to the better
through the model training stages. An important question
that we have sought to illuminate is how we can use these
visualizations to guide our choice of graph neural network
architecture and model size. These visualizations can also
help us to understand and build confidence in the models
developed. It is difficult to base the model architecture on
the visualizations alone, but we believe that in an iterative
process, these visualizations can play an important role in
deciding which model has the desired properties, including the
ability to generalize to new power system topologies. In our
experience, the graph neural network is easier to analyze than
a direct encoding, as the topology of the system is available
to support our interpretations.

One future direction for research would be to study these
visualizations for larger power system cases. This would
increase the inherent variability of the input data to the graph

neural network. One hypothesis would be that it might not
be necessary to train the model with a data augmentation
strategy, and visualizations could help decide to what extent
that strategy would be needed.

We would also like to further explore additional grid
expansion scenarios, beyond adding a single load bus. The
visualizations done in this paper could help us find where the
limits of a model’s generalizing capabilities lie.

In this paper we have exclusively studied the internal
representation of the actor part of the integrated actor-critic
network. We think it would also be interesting to study the
representations in the critic part of our model as well as the
representations directly connected to the agent actions. Seeing
the visualizations of all parts of the model could bring attention
to modelling aspects previously not considered.
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(d) First, MP layer 4, model 2. (e) Middle, MP layer 4, model 2. (f) Last, MP layer 4, model 2.

Fig. 10: t-SNE visualizations of bus 1, 2, 4, 5, 6, 9 and 10 during different stages (First, Middle, Last) of training.

(a) MP layer 4, model 1.

(b) MP layer 4, model 2.

Fig. 11: t-SNE visualization of model 1 and model 2 for RTS
with extra bus.
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APPENDIX

Fig. 12: The IEEE Reliability 24 bus test system (RTS) [25].
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