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Abstract—For a timely decarbonization of our economy, power
systems need to accommodate increasing numbers of clean but
stochastic resources. This requires new operational methods that
internalize this stochasticity to ensure safety and efficiency. This
paper proposes a novel approach to compute adaptive safety
intervals for each stochastic resource that internalize power flow
physics and optimize the expected cost of system operations,
making them “prescriptive”. The resulting intervals are inter-
pretable and can be used in a tractable robust optimal power flow
problem as uncertainty sets. We use stochastic gradient descent
with differentiable optimization layers to compute a mapping that
obtains these intervals from a given vector of context parameters
that captures the expected system state. We demonstrate and
discuss the proposed approach on two case studies.

I. INTRODUCTION

The ongoing deployment of clean but stochastic energy
resources challenges established power system operations by
threatening their ability to ensure system security and eco-
nomic efficiency. To tackle this, numerous effective stochastic
optimizations methods have been proposed, covering, for
example, system scheduling and control [1]–[3] and electricity
markets and the unit commitment process [4]–[6]. However,
the adoption of [1]–[6] and similar proposals is obstructed by
the necessity to significantly alter established operations, an
expensive and risky process for system operators. Moreover,
stochastic approaches to power system operations typically
optimize reserve allocations and control policies implicitly
based on probabilistic models and risk parameters defined
by the system operator. This complicates a transparent com-
munication towards power system stakeholders (e.g., owners
of generation assets, electricity market participants who are
interested in anticipating price formation and scheduling pro-
cedures). To overcome these barriers and further facilitate the
adoption of clean energy technology, actionable methods for
power system operation and planning that smartly internal-
ize resource stochasticity while remaining interpretable and
largely compatible with established processes are required.

Motivated by this requirement, this paper proposes a data-
driven approach inspired by [7] to compute uncertainty sets for
stochastic resources that (i) robustify generation and reserve
allocation, (ii) internalize system physics, and (iii) minimize
risk-adjusted cost while avoiding the need for a stochastic
decision-making process. Extending [7], we introduce an ad-
ditional prescription step to dynamically adjust the uncertainty
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sets for a given problem context. We show that this leads to
significant performance increases.

A. General problem formulation

Consider power system operations as a two-stage opti-
mization problem with uncertain parameters ξ, e.g., real-
time nodal demand or renewable energy injection. Given a
current parametrization of the system ζ (e.g., net-demand
forecast, generator availability, grid topology information), the
first stage computes a resource allocation x (e.g., generation
schedules, reserve allocations). The second stage then decides
on recourse actions y depending on the first-stage allocation
x∗ and the realization of ξ. In current industry practice,
the two stages are solved deterministically and independently
using fixed security parameters θ (e.g., reserve requirements)
in the first stage:

1st stage: P(ζ,θ) = min
x∈X(ζ,θ)

CF(x, ζ,θ) (1)

2nd stage: Q(x∗, ζ, ξ) = min
y∈Y(x∗,ζ,ξ)

CS(x∗, ζ, ξ) (2)

While this process is computationally efficient and transparent,
it ignores any probabilistic information that my be available
from models or historic observations of ξ.

As an alternative to replacing this deterministic two-
step procedure with probabilistic optimization (see discussion
above), this paper proposes an adaptive computation of param-
eters θ that internalizes information on the stochasticity of ξ
and is aware of ζ. We highlight that vector ζ can be considered
richer than just containing problem parameters, but may also
contain additional covariates of ξ (e.g., weather information,
forecasts). We therefore call ζ context parameter. Given ζ, the
optimal choice of θ in the first stage is

θ∗(ζ) ∈ argmin
θ

E(ξ|ζ)
[
P(ζ,θ) +Q(x∗, ζ, ξ)

]
, (3)

Following [8], we call θ∗ prescriptive in the context of ζ, as
it provides a parametrization that minimizes the conditional
expectation over ξ. To avoid re-solving (3) every time (which
might be hard or impossible), the objective of this paper is to
obtain a mapping M that computes θ∗ from ζ, i.e.:

min
M

E(ζ,ξ)

[
P(ζ,M(ζ)) +Q(x∗, ζ, ξ)]. (4)

Solving problem (4) is hard in general and its tractability
depends on the definition of the operational problem P , Q and
the mapping M. This paper studies the following approach:
• For P , Q we study a DC optimal power flow (OPF) problem

where the first stage computes a reserve allocation alongside
a second-stage control policy that ensures system safety for
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predefined uncertainty regions given by θ. The resulting
problem is a robust optimization problem for which we com-
pute uncertainty sets that avoid being overly conservative
through a decision-aware tuning of θ. We deliberately chose
to study a DC OPF with affine recourse in this paper due
to its popularity and wide range of applications [1], [3], [9],
[10], allowing us to focus on the derivation and analysis
of the prescriptive and decision-dependent uncertainty set
tuning. Section II explains the model in detail.

• ForM we focus on an interpretable linear modelMw(ζ) =
Mζ + m parametrized by w = (M ,m) similar to the
approach in [11]. We will refer to w as weights throughout
this paper to avoid confusion with parameters ζ and θ.

• The resulting problem is a bi-level program that we solve
using stochastic gradient descent with differentiable opti-
mization layers. We discuss this in Section III.

B. Related literature

Robust optimization for OPF has been studied alongside
numerous proposals for general stochastic OPF. Mainly in-
troduced by the seminal work in [5], robust OPF can pro-
vide security with manageable computational complexity and
transparent communication of the considered uncertain region
for each resource. More recent variants include data-driven
approaches [12] and tractable extensions to AC-OPF [2],
[13], [14]. However, defining uncertainty sets that ensure
high-quality decisions remains tricky [15]. Adaptive robust
programming approaches, e.g., [5], [16], [17], allow constraint
violation estimates, but cannot internalize the impact of the
set definition on the decision outcome and cost. Popular
chance-constraint approaches, e.g., [3], that rely on pre-defined
ellipsoidal sets have the same weakness.

Adoption barriers for stochastic optimization in power
systems have been previously highlighted in [18], [19] and
options for approximating their performance with no or little
alteration of current industry practice have been explored in
[11], [18]–[21]. While [19], [20] study more flexible reserve
products and reserve requirements informed by an auxiliary
stochastic program, respectively, [11], [18], [21] propose
methods that prescribe intentionally biased input parameters
(forecasts) to the first stage problem. This approach fits our
formulations in (3) and (4). In [18] the authors solve a bi-
level program for each instance of the first stage to obtain
a (prescriptive) alternative wind power forecast. Building on
this idea, [11] computes a mapping from the original to
a prescribed net-demand forecast. To this end, the authors
include the first stage optimality conditions in the second
stage to compute the map using in a single stochastic pro-
gram. Pursuing the similar objective of obtaining optimally
biased forecasts that reflect the asymmetric power system cost
structure (generation excess can typically be handled more
cheaply than shortage), [21] propose a bi-level program with
a scaleable solution heuristic.

Models (e.g., for forecasting) that minimize the loss of a
downstream optimization task have gained general popularity
as end-to-end learning [22] or smart predict-and-optimize

TABLE I
NOMENCLATURE

Operation model:
D Number of uncertain parameters
K Number of constraints
G Number of generators
V Number of nodes (vertices) in the network
A Matrix of balancing control variables
B Linear maps from net-injections to line flows
c Vector of cost parameters
d Vector of active power demand
f Vector of power flows
p Vector of active power generation

r+/r− Vector of upward/downward generation reserves
u Vector of forecasts of uncertain injections
x Vector collecting model decision variables
ξ Vector of forecast errors

Other variables and parameters:
G Subgradient of loss function
H Empirical CVaR
L Loss function
M Affine part of linear prescription map
Mw Prescription map parameterized by w
N Number of samples
m Constant part of linear prescription map
w Parameters (weights) of prescription map
Σu Covariance matrix of ξ conditional to u
γ Target probability of exceedance
ζ Vector of context parameters
κ Step size for Lagrangian in CVaR loss
λ Lagrangian multiplier for CVaR loss
µ Center of box uncertainty set
ρ Learning rate
σ Vector collecting width for each dimension of

the box uncertainty set
τ Auxiliary variable for CVaR
θ Uncertainty set parameters

Other notation:
·v /·z Superscript indicating iteration epoch/batch
[·]+ max{0, ·}
1X Vector of ones of dimension X

[23]. Many exciting results in this direction have been un-
locked by differentiable optimization frameworks, e.g., [24],
that enable efficient iterative model training procedures that in-
ternalize optimization layers. For example, [25] train a demand
forecast model that minimizes the expected cost of generation
excess and shortage, [26] train a generative network to obtain
adversarial forecast scenarios to improve reserve allocation,
[27] create a wind power forecast model that minimizes wind
spillage, and [28] tune their wind power prediction model to
minimize forecast errors in resulting electricity prices.

II. OPERATION MODEL

We consider a short-term generator dispatch problem with
balancing control (e.g., automatic generator control) with un-
certain injections from stochastic wind generators. We model
these uncertain injections as a D-dimensional vector u(ξ) =
u+ξ, where u is a (deterministic) forecast and ξ is a vector of
random forecast errors. Power imbalance caused by forecast
errors ξ is corrected by controllable generators. The generator
output is a G-dimensional vector p(ξ) = p−Aξ, where A is
a matrix of decision variables that defines an affine balancing
control, i.e., it defines how each generator adjusts its output as
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a reaction to imbalance ξ. Ensuring AT1G = 1D, where 1D

is a D-dimensional vector of ones, ensures system balance.

A. Robust optimal power flow with affine recourse

To immunize the system against uncertain injections u(ξ),
p(ξ) and the resulting uncertain power flows, the system
operator defines an uncertainty set U that captures all outcomes
of ξ for which all system constrains should hold. Given a
parametrization ζ (i.e., forecast u and demand vector d—we
assume in this paper that cost and system topology remain
constant) the system operator solves the following robust OPF
problem to decide on the generator dispatch p, generator
reserves r+, r−, and transmission line security margins
fRAM+,fRAM−:

min (cE)Tp+ (cR)T(r+ + r−) (5a)

s.t. 1TGp = 1TV d− 1TDu (5b)

AT1G = 1D (5c)
p+ r+ ≤ pmax (5d)

p− r− ≥ pmin (5e)

BGp+BWu−BBd ≤ fmax − fRAM+ (5f)

− (BGp+BWu−BBd) ≤ fmax − fRAM− (5g)

−Aξ ≤ r+ ∀ξ ∈ U (5h)

Aξ ≤ r− ∀ξ ∈ U (5i)

(BW −BGA)ξ ≤ fRAM+ ∀ξ ∈ U (5j)

− (BW −BGA)ξ ≤ fRAM− ∀ξ ∈ U (5k)

The objective (5a) minimizes system cost given energy cost
and reserve provision cost vectors cE and cR. Energy balance
(5b) ensures that the total generator injections equals the
total system demand d and u. Similarly, (5c) ensures that
all forecast errors are balanced. Constraints (5d) and (5e)
enforce the technical production limits of each controllable
generator. Constraints (5f) and (5g) map the power injections
and withdrawals of each resource and load to a resulting
power flow via linear maps BG, BW, BB, e.g., obtained from
the DC power flow approximation [29]. Vectors fRAM+ and
fRAM− are the remaining available margins for each power
transmission line, i.e., the difference between the power flow
caused by the forecast injections and the upper and lower line
limits. Constraints (5h)–(5k) enforce robust constraints on the
system response to uncertain forecast errors ξ. Constraints
(5h) and (5i) ensure that generator balancing responses do
not exceed the available reserves and (5j) and (5k) ensure that
the resulting power flow changes do not exceed the remaining
available margins on each power line for any ξ ∈ U.

Problem (5) can be re-written in a more concise form. We
collect all decision variables in a vector x, cost vectors cE, cR

in a vector c, denote the feasible space defined by constraints
(5b)–(5g) as F(ζ) and write:

min
x∈F(ζ)

cTx (6a)

s.t. max
k=1,...,K

[aTkξ + bk] ≤ 0, ∀ξ ∈ U (6b)

where ak and bk are, respectively, the k-th row and k-th entry
of the K ×D matrix and K × 1 vector

−A
A

(BW −BGA)
−(BW −BGA)

 and


−r+
−r−
−fRAM+

−fRAM−

 .

Note that (6b) is an exact reformulation of (5h)–(5k) as the
maximum of K affine functions.

B. Uncertainty set formulation

Model (5) cannot be solved directly but requires a definition
of U alongside a tractable reformulation of constraints (5h)–
(5k). This paper focuses on box uncertainty sets, as they
provide a clear safety region for each uncertain resource. Other
formulations are possible [30], [31]. Box uncertainty sets
ensure that constraints are feasible for a security interval along
each dimension of the uncertain vector ξ. We can define such
a set as Ubox(θ) = {ξj |ξj ∈ [µj −σj , µj +σj ], j = 1, ..., D}
parametrized by θ = (µ,σ) with µ = [µ1, ..., µD] and
σ = [σ1, ..., σD]. Parameter µ is the center of the security
interval and can be interpreted as a forecast error bias. Param-
eter σ defines the width of the interval. Using U = Ubox and
introducing auxiliary variable tk, (6b) becomes

aTkµ+ tTkσ ≤ bk, tk ≥ |ak|, ∀k = 1, ..,K. (7)

C. Real-time cost and security

The choice of uncertainty set parameters θ implies a trade-
off between security in real-time and cost in the first-stage
decision. For example, choosing θ such that U is large and
covers all potential outcomes of ξ will lead to high security
in real-time but also to high first-stage cost. A good choice
of θ will balance this trade-off by minimizing the combined
first- and second-stage cost as defined in (3). We consider two
relevant approaches to quantify security of the robust problem
from Section II-A in real-time.

1) Cost of exceedance
We can define the real-time cost as cost of exceedance by

imposing a penalty for insufficient reserves r+, r−, fRAM+,
fRAM−. Using the notation from (6), we compute this cost as

CS(x, ξ) =
K∑

k=1

cviolk

[
aTkξ + bk

]+
, (8)

where [·]+ = max{·, 0} and cviolk is the cost for exceeding the
reserve given by bk. Cost cviolk could, for example, reflect the
cost of procuring emergency resources or load shedding.

2) Probability of exceedance
Instead of minimizing cost of exceedance, the system opera-

tor may be interested in a probabilistic guarantee that real-time
operations do not exceed reserves, i.e.:

P
[

max
k=1,...,K

[aTkξ + bk] < 0
]
≥ 1− γ. (9)

Here, (1 − γ) defines the target probability of no constraint
exceeding its limits and γ is a small risk factor.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — 2024



4

III. SOLUTION APPROACH

We now show an iterative method inspired by the results in
[7] to obtain the desired mapping Mw(ζ) = Mζ + m that
returns uncertainty set parameters θ, which, in turn, optimally
parametrize the first-stage uncertainty set with respect to the
cost and probability of exceedance discussed in Section II-C.

A. Cost of exceedance

The problem to compute the optimal choice of weights
w = (M ,m) that minimize the combined expected first- and
second-stage cost is the bi-level problem:

min
w

E(ζ,ξ)

[
cTx∗ + CS(x∗, ξ)

]
(10a)

s.t. θ =Mw(ζ) (10b)

x∗(ζ,θ)∈

{
argminx∈F(ζ) cTx

s.t. maxk[a
T
kξ + bk]≤0, ∀ξ∈U(θ).

(10c)

We solve (10) using a stochastic gradient descent approach
(see, e.g., [32]) with vmax outer steps (epochs) indexed by v
and zmax inner steps (“mini-batches” [33]) indexed by z. For
each step z we assume having access to an individual context
parameter sample ζz (e.g., obtained from historic observations
or a sample generation mechanism) and a set of Nz samples
Xz = {ξzi }

Nz
i=1 of ξ (again, either obtained from historical

observations or a sample generation mechanism). We note that
Xz may be conditional to ζz . See, for example, [34] who also
provide an approach to sample Xz for a given wind power
forecast uz (which is part of the parametrization ζz). We
provide additional discussion on the relationship between ζz

and Xz in the case study below. We define xz = x∗(ζz,θz)
as the solution to the inner problem (10c). The loss function
L(wz; ζz, ξz) corresponds to the problem objective in (10c)
and we compute it as the empirical mean given Xz:

LC(wz; ζz,Xz)=cTxz+
1

Nz

Nz∑
i=1

K∑
k=1

ck
[
(az

k)
Tξzi +bzk

]+
. (11)

Recall from (6b) that az
k and bzk are part of xz . Following

[7] we estimate the derivative of LC(wz; ζz, ξz) using a
subgradient GC(wz; ζz,Xz) computed over samples of ζ
and ξ. Notably, the computation of GC(wz; ζz,Xz) requires
computing gradient ∇θx

∗(ζ,θ), i.e., the derivative of the
decision variables of the inner problem over the uncertainty
set parameters. We discuss an efficient approach to obtain
this gradient in Section III-C below. Choosing initial weights
(M init,minit) and a learning rate ρ the resulting solution
steps are itemized in Algorithm 1.

B. Probability of exceedance

The problem to compute the optimal choice of weights w
that ensure real-time operations do not exceed their limits with
a probability of at least (1− γ) is the bi-level problem:

min
w

E(ζ,ξ)

[
cTx∗] (12a)

s.t. P
[

max
k=1,...,K

[(a∗
k)

Tξ + b∗k] < 0
]
≥ 1− γ (12b)

Algorithm 1 Stochastic gradient descent to solve (10)
1: given w0 = (M init,minit), learning rate ρ
2: for v = 1, ..., vmax do ▷ outer epoch
3: for z = 1, ..., zmax do ▷ inner mini-batch
4: ζz ← sample context parameter
5: Xz ← sample forecast errors conditional to ζz

6: θz ←Mwv−1(ζz) ▷ prescribe parameters
7: xz ← solve inner problem (10c)
8: gz ← GC(wv−1; ζz,Xz)

9: gv ← 1
zmax

∑zmax

z=1 gz ▷ update gradient
10: wv ← wv−1−ρgv ▷ update variables
11: return wvmax

[
θ and x∗(ζ, θ) as in (10b) and (10c)

]
. (12c)

Constraint (12b) is generally non-convex and complicates the
solution of (12). To create a tractable problem, we reformulate
(12b) using conditional value-at-risk [7], [35]:

P
[

max
k=1,...,K

[aTkξ + bk ≤ 0
]
≥ 1− γ

⇔ VaRγ

(
max

k=1,...,K
[aTkξ + bk]

)
≤ 0

⇐ CVaRγ

(
max

k=1,...,K
[aTkξ + bk]

)
≤ 0

(13)

where VaRγ and CVaRγ are the value-at-risk and conditional
value-at-risk at risk level γ. Reformulation (13) utilizes the
fact that limiting CVaR implies a limit on VaR [36]. CVaR
further allows the convex reformulation [36]

CVaRγ = inf
τ

{
E
[ 1
γ

[
max

k=1,...,K
[aTkξ+ bk]− τ

]+
+ τ

]}
, (14)

which we use to define

h(x∗, τ, ξ) =
1

γ

[
max

k=1,...,K
[(a∗

k)
Tξ + b∗k]− τ

]+
+ τ, (15)

and to reformulate (12) as [7]:

min
w,τ

E(ζ,ξ)

[
cTx∗] (16a)

s.t. E(ζ,ξ)

[
h(x∗, τ, ξ)

]
= 0 (16b)[

θ and x∗(ζ, θ) as in (10b) and (10c)
]
. (16c)

We note that (16) has an additional auxiliary variable τ related
to the CVaR reformulation (14). Also, following the logic in
[7], we note that (16b) is an equality constraint, because zero is
the optimal CVaR target given (13) and the convexity of (14).
Finally, we note that for fixed x∗ the term maxk[(a

∗
k)

Tξ+ b∗k]
in (15) computes the constraint violation resulting from a given
ξ and may be larger than zero.

Similar to he procedure outlined in [7], [37] we can now
solve the equality-constrained problem (16) by introducing
Lagrangian multiplier λ and defining the loss function

LP((w, τ);λ, ζ, ξ)=E(ζ,ξ)

[
cTx∗]+λE(ζ,ξ)

[
h(x∗, τ, ξ)

]
. (17)

Using the notation introduced in Section III-A above, we
compute (17) in each step z as

LP((wz, τz);λz, ζz,Xz) = (18)
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robust opfprescription

forward pass

loss function
backward passcvxpylayer

data

Fig. 1. Computation pipeline for the steps itemized in Algorithms 1 and 2.
The differentiable optimization layer using cvxpylayers [24], allows the
computation of subgradient G = ∇wL with a single backwards pass.

cTxz+λz 1

Nz

Nz∑
i=1

( 1

γ

[
max

k=1,...,K
[(az

k)
Tξzi +bzk]−τz

]+
+τz

)
︸ ︷︷ ︸

H((wz,τz);ζz,Xz)

.

Denoting GP((wz, τz);λz, ζz,Xz) as the gradient of (18),
τ init, λinit as initial values for τ , λ, and κ as the step size
for λ the resulting solution steps are itemized in Algorithm 2.

Algorithm 2 Stochastic gradient descent to solve (12)
1: given w0 = (M init,minit), τ0 = τ init, λ0 = λinit, ρ, κ
2: for v = 1, ..., vmax do ▷ outer epoch
3: for z = 1, ..., zmax do ▷ inner mini-batch
4: ζz ← sample context parameter
5: Xz ← sample forecast errors conditional to ζz

6: θz ←Mwv−1(ζz) ▷ prescribe parameters
7: xz ← solve inner problem (10c)
8: gz ← GC((wv−1, τv−1);λv−1, ζz,Xz)
9: Hv ← H((wz, τz), ζz,Xz) ▷ See (18)

10: gv ← 1
zmax

∑zmax

z=1 gz ▷ update gradient
11: (wv, τv)← (wv−1, τv−1)−ρgv ▷ update variables
12: Hv = 1

zmax

∑zmax

z=1 Hz ▷ compute current CVaR
13: λv ← λv−1 + κHv ▷ update Lagrangian multiplier
14: return (wvmax

, τv
max

)

Remark 1. We highlight that the mappingMw is only used to
define the uncertainty set U. Once this set is obtained, problem
(5) can be solved by off-the-shelf solvers using reformulation
(7). This guarantees optimality and feasibility for a given U.

C. Implementation

We implement Algorithms 1 and 2 in Python using state-of-
the-art machine learning packages (PyTorch) and results from
[24] (package Cvxpylayers) that allow numerical differentia-
tion through the inner optimization (10c). The computation
steps are illustrated in Fig. 1. The differentiable optimization
layer obtains the required gradient ∇θx

∗(ζ,θ) by differenti-
ating through the Karush-Kuhn-Tucker conditions of the inner
problem at optimality. This is performed efficiently by utilizing
the implicit function theorem and by solving an inner quadratic
program to obtain the required matrix inversion [38].

We add the following implementation remarks:

IR1: Formulation (5) limits the decision variables A to the
interval [0, 1]. This leads to A taking small values compared
to the other decision variables causing conditioning prob-
lems in the Cvxpylayers solver ECOS [39]. Introducing a
scaling factor for A solves this problem consistently.

IR2: The inner problem has to be always feasible. To ensure
this, we add a slack variable to (5b) to allow the curtailment
of wind power u if needed, and a slack variable to (6b)
to account for the case that the required uncertainty set
can not be met with the available reserves. Both sets of
slack variables are penalized in the problem objective and
conditioned using a scaling factor as in IR1.

IR3: Formulation (5) is a linear problem and as such may
not generally be differentiable with respect to its parameters
[40]. This can be avoided by introducing a regularization
π ∥x∥22 with regularization factor π to the objective of the
problem. We note that in contrast to [40], our problem is
linear with continuous variables and adding a regularization
term with a small π did not significantly impact our results.
Lastly, we note that we implement Mw as two linear

models Mµ = Mµζ +mµ and Mσ = Mσζ +mσ .

IV. NUMERICAL EXPERIMENTS

A. Illustrative 5-bus case

We first illustrate the suggested approach using synthetic
data on the small-scale “case5” data set from MATPOWER
[41]. The system topology with two configurations of wind
generators is shown in Fig. 2. Its parameters follow [35]
with fmax = (3.2, 1.52, 1.76, 0.8, 0.8, 1.92) p.u., cE =
(14, 15, 30, 40, 10)$/MW, and cR = (80, 80, 15, 30, 80)$/MW.

For training and testing the proposed approach we create
a collection of N = 2000 samples of ζ = (d,u) with
corresponding samples of ξ as follows. First, we define the
nominal demand as d0 = (0.0, 3.0, 3.0, 4.0, 0.0) p.u. and the
nominal wind forecast as u0 = (1.0, 1.5) p.u.. We then create
N samples of d by uniformly drawing from the set {d ∈
R | 0.5d0 ≤ d ≤ 1.1d0} and N samples of u by uniformly
drawing from the set {u ∈ R | 0.5u0 ≤ u ≤ 1.1u0}. Next,
for each available sample of ζ = (d,u) we draw a sample
of forecast errors ξ from a multivariate normal distribution
with a uniform correlation coefficient of ϕ = 0.5 between
all wind farms. Following the observations in [34], we model
the forecast error standard deviation to be conditional to the
forecast and the forecast error mean to be zero. The resulting
normal distribution is given as:

ξ |u∼N (0,Σu), Σu=

[
(0.15u1)

2 0.152ϕu1u2)
0.152ϕu1u2) (0.15u2)

2

]
. (19)

Finally, we set the maximum wind farm capacity to umax =
(2.0, 3.0) p.u. and truncate all generated samples of ξ |u such
that ξ ≥ −u and ξ ≤ umax − u. The resulting collection of
samples of ζ with a single sample of ξ corresponds to what
would be available in practice. We use 1500 of these generated
samples for training and 500 for testing.

We define the following 5 cases that we use to demonstrate
the proposed prescribed robust sets:
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Fig. 2. Schematic of the 5 bus test system in configuration A (wind farms at
buses 3 and 5) and B (wind farms at buses 2 and 3).

• Full: Reference case for which the security interval of each
wind farm covers the entire empirical forecast error support.

• 90 Perc: Reference case for which the security interval
of each wind farm is fixed between the 10 % and 90 %
percentile of the forecast error training data.

• Single: Learning a single fixed uncertainty set without
prescription, i.e., Mµ = mµ and Mσ = mσ .

• P-All: Learning w using all available forecast errors. As a
result, the training is ignorant to the error distribution being
conditional to u.

• P-Cond: Learning w assuming access to samples from the
true conditional distribution. In each step z, given uz , we
generated 200 new samples of ζ using (19).

• P-Bins: Learning w with each set of forecast error samples
Xz obtained by separating the available training samples of
u into 10 bins of equal width, as in [34], collecting the
forecast error of each bin, and assigning each sample uz

the set of forecast error samples corresponding to its bin.
Cases Full, 90 Perc., and Single offer a comparison to meth-

ods with fixed robust sets. We set vmax = 100, although we
typically observed satisfying convergence within 40 iterations.
We used a mini-batch size of zmax = 20 and a learning rate
of τ = 10−6. Finally, we set winit such that all entries of
Mµ, Mσ , and mµ are zero and the entries mσ correspond
to two times the empirical standard deviation of the training
data. All experiments are implemented in Python (see also
Section III-C) and available online [42]. We used a standard
PC workstation with 16 GB memory and an Intel i5 processor.

1) Cost-based box uncertainty set
We first train Mw to optimize the expected cost of

constraint exceedance (see Section III-A). We set cviolk =
20k $/MW, ∀k, which corresponds to the value of lost load
estimated by New York ISO [43]. The average computation
time for each epoch across all cases was around 0.25 s,
including sampling, solving the inner optimization problems,
and computing the loss function and its gradients.

Fig. 3 shows the out-of-sample (OOS) average cost for
the studied cases. The fully robust approach (Full) is overly
conservative, which we can infer from the fact that the lowest
cost on this case are around the 25-percentile of all other
cases. Also, it is often infeasible, leading to higher cost from
infeasibility penalties (see Section III-C IR2). The fixed 90

Fig. 3. Out-of-sample (OOS) results for 5-bus system in configuration A.
Optimized for expected cost of exceedance. The boxes extend from the first
quartile to the third quartile. Red line shows the median. The whiskers extend
from the box to the farthest data point within 1.5 times the inter-quartile range
from the box.
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Fig. 4. Prescribed sets from case P-All (optimized for cost of exceedance)
for (a) ζ = (d0,u0) and (b) ζ = 0.7(d0,u0), each for the two network
configurations shown in Fig. 2.

Perc. case is less conservative and mostly avoids infeasibility,
but is outperformed by the other cases. The Single uncertainty
set improves average cost relative to 90 Perc, but the set
remains too small, as it tries to avoid infeasibility penalties.
Introducing the prescription step overcomes this problem. The
prescriptive cases P-All, P-Cond, and P-Bins further improve
upon Single by 12.2 %, 12.7 %, and 10.5 %, respectively. Case
P-Cond with access to the true conditional distribution slightly
outperforms Single. Case P-Bins performs worse than P-
Single, which we attribute to the loss of correlation information
in the binning of the forecast errors. Re-running the experiment
without correlation (ϕ = 0) confirms this. Now, P-All, P-Cond,
and P-Bins result in average OOS cost of 14,899 $, 14,851 $,
and 14,981 $, with P-Bins now outperforming P-All and only
being slightly worse than the ideal P-Cond.

Fig. 4 shows how a change of the system topology impacts
the prescribed uncertainty set, highlighting the relevance of
making the training problem-aware. By moving wind farm
j = 2 from bus 5 (configuration A) to bus 2 (configuration B),
it can no longer rely on the direct balancing from the generator
at bus 5. As a result, transmission lines are now more likely
to exceed their remaining available margins in real time which
leads to larger required safety intervals for both wind farms.
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Fig. 5. Uncertainty sets for cases P-All and P-Single optimized for probability
of exceedance. For P-All all prescriptions resulting from the test samples of
ζ are shown. (System configuration A.)

2) Constraint-based box uncertainty set
We now train Mw such that the probability of constraint

exceedance remains below 99 %, i.e., γ = 0.01, as described in
Section III-B. For this experiment we increase the learning rate
to ϕ = 10−5 and set λinit = 100 and κ = 0.1. The time per
iteration increased slightly to around 0.67 s per epoch, which
we can mainly attribute to the more complex loss function. For
Single the CVaR at convergence is 0.96 with an in-training
probability of exceedance of 3.1% and a testing probability
of exceedance of 13%. As discussed in Section IV-A1 above,
this unsatisfying result can be explained with the algorithm
avoiding infeasible uncertainty sets resulting in a set that is
too small for many parametrizations (see Fig. 5). For P-All,
on the other hand, the CVaR at convergence is 0.06 and we
achieve an in-training probability of exceedance of 1% and
a testing probability of exceedance of 1.8%. We note that
the exact match of the in-training probability of exceedance
with the target is a coincidence. The actual target of a CVaR
equal to zero would lead to a smaller in-training probability
of exceedance. However, the algorithm converges above this
target as it again tries to avoid to create infeasible sets. Fig. 5
shows the resulting uncertainty sets for Single and P-All and
highlights the improved ability of the set in the latter case to
adapt to the current system state. Comparing Figs. 4 and 5 we
see that the uncertainty sets resulting from the two different
performance targets are qualitatively similar.

B. RTS 96-bus case

We now test the suggested approach on more realistic data
using the system provided by the Reliability Test System Grid
Modernization Lab Consortium (RTS-GLMC [44]). This up-
date of the RTS-96 test system has 73 buses, 120 transmission
lines, 73 conventional generators, 4 wind farms, and 76 other
resources (hydro, PV). In our experiment we focus on the 4
wind farms as uncertain resources and treat hydro and PV
injections as fixed negative demand, i.e. as part of d. The
RTS-GLMC data set includes data for one year. To have a
richer data set for the wind farms, we use the coordinates
provided in the RTS-GLMC data set to map the 4 wind farms

8 6 4 2 0 2 4 6
forecast error [p.u.]

309_WIND_1

317_WIND_1

303_WIND_1

122_WIND_1

Fig. 6. OOS results for the RTS 96 bus case using the P-All training. Box
plots show the distribution of the OOS forecast errors and red lines show the
various security intervals obtained from the trained mapping. See Fig. 3 for
box plot explanation.

to the closest data points available in the extensive NREL
WIND Toolkit [45]. We scale this data to fit the wind farms
in the RTS-GLMC data set and obtain 7 years of wind power
injections and realistic forecast errors. We select the data from
2012 to replace the wind data from the RTS-GLMC data set,
as the yearly wind structure matches original data most closely
(measured in terms of average deviation of hourly total wind
injections). From the resulting 8760 available samples net-
demand and wind-injection samples of the respective day-
ahead data sets, we select 1500 for training and 500 for testing.
We use all forecast errors for training as in P-All above and
focus on the analysis of the cost of exceedance-based training.

We select the same meta-parameters as for the 5-bus case,
but reduce the mini-batch size to zmax = 10. Training requires
an average of 28 s per epoch and we observe convergence
after around 30 iterations. We note that around half of the
time per iteration is spend on computing the gradient. This
is expected because both larger parameter matrices Mσ , Mµ

and inner optimization overproportionally increase the size of
the computational graph from which the gradient is computed.
However, because Mw has to be trained only once offline,
training time and resources are not a critical limiting factor. In
addition, any relevant parameters that change more frequently
than the time needed for re-training Mw, e.g., potential grid
topology changes, can be included into context vector ζ.

In this case, the reference 90 Perc. leads to a expected out of
sample cost of 3,671,312 $ while the P-All trained prescribed
sets achieve a significant improvement of 1,249,725 $. (We
performed an additional grid search to find a better percentile-
based uncertainty set. The best result was attained for the 78-
percentile with 3,088,187 $). Fig. 6 shows the OOS forecast
errors alongside the collection of prescribed security intervals
for the 4 wind farms in the system. We observe that the
uncertainty sets are biased towards negative forecast errors.
This can largely explained by the fact that the model chooses
to curtail wind if the forecast is very high, which (i) leads to an
insensitivity to upwards forecast errors and (ii) amplifies the
fact that larger negative forecast errors are more likely at high
wind power forecasts. This result highlights the advantage of
internalizing the problem cost structure into the training.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — 2024



8

V. CONCLUSION

This paper demonstrated an approach to compute uncer-
tainty sets for robust optimal power flow that (i) are pre-
scriptive, i.e., minimize the expected cost system cost, and
(ii) are adaptive, i.e., are prescribed individually for each
expected system state given by a vector of context parameters.
Our approach to obtain these sets was inspired by [7] but
additionally achieves property (ii).

The problem in (4) opens a wide range of future research
[46]. For the approach studied in this paper we are pursuing
the following avenues for further research. (i) Including richer
context vectors. For example, in our data for the RTS96 case
study, we observed a clear dependency of the forecast error
distribution on the wind direction. Making the problem more
context aware and better estimate conditional error distribu-
tions from real data should reveal impactful relations between
system security and observable parameters, but is a non-trivial
task [46]. (ii) AC power flow. Higher fidelity operational
models, e.g., along the lines of [2], [14], promise improved
applicability in practice and improved system security. (iii)
Non-fixed recourse. Relaxing the second stage with a decision-
making problem (or a tractable proxy, e.g., a trained neural
network), should allow for a broader set of applications of the
method. (iv) Investigating scalability, e.g., through paralleliza-
tion or differentiable optimization advances, e.g., [47].
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