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Abstract—Recently, there has been lot of research on finding
the feasible operating region (FOR) of the active distribution
network (ADN) to provide ancillary services to the transmission
grid. The current focus of research is on finding methods that
can accurately determine the shape of the FOR and have fast
computation time. However, there is little focus on analyzing
how network constraints impact the shape of the FOR. This
paper attempts to address this issue and provides a mathematical
derivation of how network constraints, such as cable loading and
voltage limits, would influence FOR. The approach is based on
a linear distflow mathematical analysis. The relations derived
in the analysis are verified with numerical simulation on radial
low-voltage (LV) and medium-voltage (MV) networks. The results
show that cable loading constraints cut the FOR in a circular
way and voltage constraints cut the FOR with a straight line of
slope −ϵ, which is the ratio Rn/Xn of the path from root node
to the node under analysis of the radial distribution network.

Index Terms—TSO-DSO coordination, distribution system
flexibility, ancillary services, power system planning, active dis-
tribution network

I. INTRODUCTION

Power systems have undergone numerous changes in recent
years as a result of the ongoing energy transition. One of
these changes is the replacement of synchronous generators
in the transmission system by distributed energy resources
(DERs) in the distribution system. Due to these changes, there
is now a lack of controllable reactive power and inertia in the
transmission grid [1], [2]. Similarly, additional developments
in distribution grids like the conversion of overhead lines to
underground cables, the changing nature of loads, installation
of heat pumps, and the use of electric vehicles (EVs) have
created several operational challenges for the system operators,
including congestion[3], voltage fluctuations[4] and flows of
capactive reactive power [5].

Distribution network with high penetration of power elec-
tronics interfaced renewable energy can provide flexibility [6].
Active and reactive power flexibility available from the DERs
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and flexible loads connected in the active distribution networks
(ADNs) can be used to solve local issues in the distribution
grid, and aggregated flexibility of the distribution system can
be used to provide ancillary services to the transmission
system. The ability of the ADN to provide active and reactive
power flexibility to the transmission grid can be presented via
the P-Q capability charts at the TSO/DSO (T-D) interface [7].
This aggregated capacity is normally communicated through
the feasible operating region (FOR). Recently, there have been
lot of research to find FOR for ADNs [8], [9], [10], [11], [12].
A review of methods for finding the FOR at the T-D interface
is given in [13].

The methods available in literature for computing FOR
can be categorized as (i) power flow based methods (ii)
optimal power flow (OPF) or optimization based methods (iii)
geometrical approaches and (iv) analytical methods. Having
fast estimation of flexibility is very important for real time
operation and control of power system [14]. The importance
of fast flexibility assessment is also highlighted in universal
smart energy framework (USEF) [15]. The article [16] presents
a comparison of the computational times for various OPF
formulations used to determine the FORs. This comparison
demonstrates that the LinDistflow method leads to quicker
computation of FOR. In [17], a comparison is conducted
between a random sampling-based approach and proposed
interval constrained power flow (ICPF) in terms of FOR
computation time. The study demonstrates that as the number
of samples increase, ICPF outperforms the random sampling
method on parameters of reduced computation time and %
flexibility area increase. There are very few analytical ap-
proaches for flexibility assessment at T-D interface [11] [18]
but they are normally very fast because analytical approaches
are based on equations and take less time to compute.

The FOR of a network is influenced by many factors, for
example: topology of the network, tap change of transformer,
DER capabilities, and network constraints among others. Most
of the methods available in the literature usually focus on
finding FOR without explicitly analyzing the impact of the
above factors on the shape of FOR. In [19] and [20] attempts
are made to find out how network topology and tap position
of on load tap changer (OLTC) affects FOR. However, there is
very little literature that fundamentally analyzes how network
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Fig. 1. Overview of the method used for analyzing network constraint’s
impact on FOR

constraints influence the shape of FOR. In this work an attempt
is made in this regard to analyze how cable loading and voltage
constraints of the network influence the shape of the FOR.

The main contributions are as follows.
• Finding a simplified mathematical formulation which

can depict influence of both cable loading and voltage
constraints on the shape of the FOR

• Validating the mathematical analysis through numerical
simulation on LV and MV radial distribution network

The rest of the paper is structured as follows: An outline of
the research methodology is provided in Section II. Complete
mathematical formulation along with analytical analysis is
presented in section III. The numerical simulation in Section
IV is used to validate the results of the mathematical analysis.
Section V consists of a conclusion and a recommendation for
future work.

II. METHODOLOGY

An overview of the methodology used in the paper is given
here. First, the initial FOR of the given ADN is computed.
This initial FOR is the combination of all possible active and
reactive power flows at the beginning of the feeder, also called
interconnection power flows (IPFs) [7] without applying any
network constraints. This initial FOR consists of both feasible
and infeasible IPFs. Feasible here means that no network
constraint is violated resulting in that IPF. Infeasible means
that there are active and reactive values of loads and DERs
which result in the IPF such that a network constraint is
violated. To remove IPFs that are infeasible, cable loading
and nodal voltage constraints are applied on the initial FOR,
which would cut some parts of the FOR. The remaining
approximated area is the final FOR obtained through our
analysis. This procedure is explained in Fig. 1. This final
FOR obtained through analysis is then compared with the
exact FOR, which is calculated by running power flows and
removing all points that result in any network constraints
violations. The algorithm 1, describes the method used for

Algorithm 1 Algorithm for determining the exact FOR
Require: Network constraint, flexible loads and generation

Create n ∈ N load and generation (p,q) operation points
uniformly by changing their p, q values from 0 to 1 pu
for n← 1 to N do

Run power flow and find IPF
if any network constraints are violated then

Discard IPF
else

Add corresponding IPF to the FOR
end if

end for
Output: FOR
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Fig. 2. Single line diagram of a simplified distribution feeder

finding exact FOR. The analysis which is the main contribution
of this work is presented in the next section.

III. MATHEMATICAL ANALYSIS

In this section, we will derive the analytical expressions
for the boundaries of the FORs due to cable capacity and
voltage constraints in a radial distribution network. The lin-
earized distflow approach [21] is selected because it results in
faster computation and has a reasonable level of accuracy for
distribution system. First, analytical equations are derived for
the power flows in the branches and the voltages at the nodes.
Then we impose cable capacity constraints and voltage con-
straints and interpret the resulting inequalities geometrically
in terms of the FOR. The analysis is divided into two parts.
First, an analysis is presented for a simple network without
branches. Subsequently, the analysis is generalized to radial
distribution networks.

A. Analytical solution to the linearized Distflow equations

Let’s assume that in the beginning we have a three phase
balanced simplified radial network as shown in Fig.2. The
network consists of N nodes and N − 1 branches. All nodes
have active and reactive power loads or injections represented
as (pn, qn) except for the node 1 which is the root node.
The power flows of the nth branch in the network are
represented as Pn and Qn. The nodal voltages in the network
are represented as vn. The impedance of each branch is given
as rn+ jxn. If we use linearized Distflow , the powerflows in
the branch n+ 1 can be expressed as

Pn+1 = Pn − pn+1 (1)

Qn+1 = Qn − qn+1 (2)

v2n+1 = v2n − 2rnPn − 2xnQn (3)
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Fig. 3. Cable constraint cut of the FOR (green) as a result of equation (7)

Here, we adopted the convention that for e.g. the consumption
of active power at node n we have pn ≥ 0, qn ≥ 0, and that
power flowing away from the root node is positive.

To derive an analytical expression of the grid constraints
for FOR, we should express Pn, Qn and vn in terms of P and
Q. Subsequently, we can visualize the equations in the P −Q
plane. We can first solve the above equation for active and
reactive power flows. We can write power flows for any nth

branch as

Pn = P −
n∑

m=1

pm (4)

Qn = Q−
n∑

m=1

qm (5)

Where P and Q here represent the P −Q of the FOR plane
which is sum of all flows at the beginning of the feeder.

1) Cable Constraints in the P − Q plane: The cable
constraints of the network can be written as

P 2
n +Q2

n ≤ s2n (6)

where Pn, Qn are the active power and reactive power flows
in the branch and sn is the cable rating for that particular
branch. This equation can be written to express cable loading
constraints on the P −Q region using eq.(4) and eq.(5) as:

(P −
n∑

m=1

pm)2 + (Q−
n∑

m=1

qm)2 ≤ s2n (7)

This equation is similar to (x− a)2 +(y− b)2 = r2 which is
the equation for the circle in which center point is (a, b) and
r is radius. Equation 7 represents cable loading as a circle in
which the radius of the circle is the cable capacity sn and the
center of the circle is (

∑n
m=1 pm,

∑n
m=1 qm). If we plot this

on FOR we can see how cable loading constraints impact the
FOR. Fig.3 shows that cable loading constraints would cut the
FOR in a circular way. Note that there would be a set of circles
given by equation(7), here for visualization only one circle
is shown. To remove an infeasible point due to violation of
cable loading constraints, we will check its distance from the
center of circle, if it is more than sn it would be an infeasible
point and will not be the part of the FOR. For illustration, we
can draw a rectangle with length of

∑n
m=1 p

max
m and width of∑n

m=1 q
max
m as shown in Fig.3 and measure the distances from

the center of the circles to the point. All powerflows outside
the circle would result in exceeding cable loading limits and
hence would not be the part of the FOR.
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Fig. 4. The voltage constraints cuts the FOR with slope −Rn/Xn

as in equations (13),(14)

2) Voltage constraints in the P − Q plane: For voltage
constraints we assume that same voltage limits vmin and vmax

holds for all nodes in the network. We then have the following
set of voltage constraints:

v2min ≤ v2n ≤ v2max (8)

For voltages, we express voltages in downstream nodes with
respect to voltage at root node which is node 1, assuming
v1 = v is the transformer lower side voltage. The voltage at
any nth node can then be expressed based on Eq.(3) knowing
v1

v2n = v2 − 2

n−1∑
m=1

rmPm − 2

n−1∑
m=1

xmQm (9)

The sum terms in eq.(9) contains sum of linear voltage losses
until nth node. It can be interpreted as the voltage at the nth
node being the voltage at the beginning of the transformer
minus the linear voltage losses. We again can write Pm, Qm

in eq.(9) in terms of P and Q based on eq.(4) and eq.(5) as
follows:

v2n = v2−2
n−1∑
m=1

rm(P−
m∑

k=1

pk)−2
n−1∑
m=1

xm(Q−
m∑

k=1

qk) (10)

After substituting Rn =
∑n−1

m=1 rm, Xn =
∑n−1

m=1 xm which
is sum of all resistances and reactances until the nth node in
above equation we get

v2n = v2−2RnP−2XnQ+2
n−1∑
m=1

rm

m∑
k=1

pk+2
n−1∑
m=1

xm

m∑
k=1

qk

(11)
Let’s assume ϵ = Rn

Xn
is the R/X ratio of the feeder from root

node to the nth node. Dividing eq(11) by 2Xn and rearranging,
we can represent voltage in the form P and Q as

v2 − v2max

2Xn
≤ (ϵP − P ′

n) + (Q−Q′
n) ≤

v2 − v2min

2Xn
(12)

where P ′
n = 1

Xn

∑n−1
m=1 rm

∑m
k=1 pk and Q′

n =
1

Xn

∑n−1
m=1 xm

∑m
k=1 qk. Eq.(12) describes linear cuts in the

P-Q plane. Rewriting the equations in terms of Q to get linear
cut equations, we get:

Q ≤ Q′
n +

v2 − v2min

2Xn
+ P ′

n −
Rn

Xn
P (13)

Q ≥ Q′
n +

v2 − v2max

2Xn
+ P ′

n −
Rn

Xn
P (14)
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Fig. 5. The oriented tree graph with the notations used throughout the paper.

Fig.4 shows how voltage constraints would cut the FOR.
The voltage cuts have intercepts given by Q′

n+
v2−v2

min

2Xn
+P ′

n

and Q′
n +

v2−v2
max

2Xn
+ P ′

n, while the slope is −Rn

Xn
P .

B. Generalized analysis for radial distribution networks with
branches

In the previous section, we found analytical expressions
for network constraint’s impact on FOR in simple networks
without branches. In this section, we generalize the analysis for
radial distribution grids. We consider a balanced three-phase
radial feeder represented by an oriented simple tree graph
G = (V,E) with vertices V and edges E. Let r ∈ V be the
root node, which is at the beginning of the feeder. With every
node we associate a voltage magnitude vn and a dispatchable
load (pn, qn) in some compact (bounded and closed) operating
region Sn ⊂ R2. With each edge, representing a cable, we
associate an impedance rn + jxn, capacity sn, active power
flow Pn, and reactive power flow Qn, where n denotes the
edge node closer to the root node r as shown in Fig. 5. We
also denote the flows through the root node simply by P
and Q and its voltage by v. Note that we adopt the same
notation conventions as in Section III-A. For the relation be-
tween vn, pn, qn, Pn and Qn we consider again the linearized
distflow equations for all n ∈ V , similar to equations (1)-(3),
but now for general radial networks:∑

k:n+1→k

Pk = Pn − pn+1∑
k:n+1→k

Qk = Qn − qn+1

v2n+1 = v2k:k→n+1 − 2rnPn − 2xnQn

(15)

where e.g. k : k → n+ 1 denotes the (unique) node which is
the start of a cable to node n+ 1.

If we take some node n and iterate the first two equations
of (15) we realize that Pn and Qn are the sum of the loads in
the subtree of node n, where the subtree T (n) ⊂ V of node
n refers to the set of nodes behind n with respect to r (see

Fig. 5). From this result again follows that P and Q are the
total sums of the loads, and we can express Pn and Qn in
terms of P and Q by subtracting the sum over all loads in the
complement of T (n):

Pn = P −
∑

m∈V \T (n)

pm ∀n ∈ V

Qn = Q−
∑

m∈V \T (n)

qm ∀n ∈ V,
(16)

which is the more general form of equations (4)-(5). For the
voltages, we iterate the voltage law in equation (15) from the
root node along the path from the root node to n. Note that in
tree graphs there is only one unique path between two nodes.
Let the nodes within the path between two nodes n and m be
denoted by π(n,m). We then obtain a similar equation to (9):

v2n = v2 − 2
∑

m∈π(r,n)

rmPm − 2
∑

m∈π(r,n)

xmQm ∀n ∈ V. (17)

We can now plug equations (16) in equation (17), but it is
insightful to split the nodes in the set V \T (n) in nodes being
part of π(r, n) and the ones that are not. Note that the nodes
part of π(r, n) are always part of V \ T (n), because they
are never in the subtree of node n. The remaining nodes V \
(T (n) ∪ π(r, n)) are all nodes in other branches than n is
part of (see Fig. 5). Let us also define the quantity Rn =∑

m∈π(r,n) rm, as the total resistance between the root node
and node n. If we then focus on the second term on the right-
hand side of equation (17) we obtain:

2
∑

m∈π(r,n)

rmPm = 2RnP − 2
∑

m∈π(r,n)

rm

 ∑
l∈π(r,m)

pl


− 2

∑
m∈π(r,n)

rm

 ∑
l∈V \(T (m)∪π(r,m))

pl

 (18)

This equation simply shows that the voltage drop due to active
power flow between nodes r and n can be calculated by
assuming that all power flow in the network goes through the
cable along the path, corrected for the voltage drop due to the
loads in the path, and with the power flowing to other branches
in the network. The last part is not present in the analysis of
section III-A. A very similar relation can be obtained for the
voltage drop due to reactive power. We now will apply these
relations to study the line and voltage constraints in the P −Q
plane for a branched network.

1) Cable Constraints in the P − Q plane: The cable
constraints for the network can again be written as:

P 2
n +Q2

n ≤ s2n, ∀n ∈ V (19)

which can be written as a similar set of constraints on P and
Q as (7) using equation (16) as follows:P −

∑
m∈V \T (n)

pm

2

+

Q−
∑

m∈V \T (n)

pm

2

≤ s2n ∀n ∈ V

(20)
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for all possible loading conditions of loads m ∈ V \ T (n).
Geometrically, these equations represent a set of circles in the
P − Q plane of radius sn with its centers at the sum of the
loads not in the subtree of node n. Given some FOR, this set of
equations cuts away points in the region if there is no n ∈ V
and no circle center for which the point satisfies equation (20).
Notice that the main intuitions behind the cable constraints do
not change compared to the linear network case discussed in
III-A1. We note that if the cable capacity sn is large enough,
all points within the original FOR satisfy the cable loading
constraint, and that no points get cut away. Also note that if
we consider nodes closer to the feeder that the region SN\T (n)

becomes smaller as more nodes lie in its subtree, but the cable
capacities typically become larger.

2) Voltage Constraints in the P −Q plane: For the voltage
constraints, we again assume equation (8) holds. To express
these constraints in terms of P and Q, we use equations (17),
(18) and its similar version for reactive power to obtain:

v2 − v2max

2Xn
≤ (ϵP − P ′

n) + (Q−Q′
n) ≤

v2 − v2min

2Xn
, (21)

which is the same as equation (12). However, P ′
n and Q′

n are
now expanded with an extra term due to the network being
branched:

P ′
n =

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈π(r,m)

pl


+

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈V \(T (m)∪π(r,m))

pl

 ,

(22)

and:

Q′
n =

1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈π(r,m)

ql


+

1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈V \(T (m)∪π(r,m))

ql

 (23)

The equation (21) thus represents the same linear cuts given as
(13) and (14) as derived earlier in section III-A2. Notice that
again the slope of the linear cuts is given by −Rn/Xn. The
intercept of the cuts is different now as for the linear network
case as P ′

n and Q′
n contain an additional term. Again, the

voltage cuts should remove the points of the FOR if there is
a condition that violates the grid constraints. This implies that
we should apply the loosest voltage cuts to the FOR that still
satisfy equations (13) and (14). We observe that this requires
us to the maximum/minimum intercept for the linear cuts
for the minimum/maximum voltage constraints in the nodes
respectively, and hence the maximum/minimum values for P ′

n

and Q′
n for the linear cuts for the minimum/maximum voltage

constraints in the node respectively. Let us now assume that
all Sn are rectangular operating regions such that all linear
combinations of operating regions are rectangular regions as
well. For the minimum voltage constraints (13) this means

that both P ′
n and Q′

n should be at their maximum value
(maximum consumption) to provide the weakest bound on the
FOR. For the maximum voltage constraints (14), this means
that both P ′

n and Q′
n should have a minimum value (maximum

generation). Let pn,min, pn,max and qn,min, qn,max denote the
minimum and maximum values of active and reactive power
in a rectangular operating region Sn at node n ∈ V . In that
case, we have the following.

Q ≤ Q′
n,max +

v2 − v2min

2Xn
+ P ′

n,max −
Rn

Xn
P (24)

Q ≥ Q′
n,min +

v2 − v2max

2Xn
+ P ′

n,min −
Rn

Xn
P (25)

where:

P ′
n,min =

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈π(r,m)

pl,min


+

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈V \(T (m)∪π(r,m))

pl,min


P ′
max,n =

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈π(r,m)

pl,max


+

1

Xn

∑
m∈π(r,n)

rm

 ∑
l∈V \(T (m)∪π(r,m))

pl,max


Q′

n,min =
1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈π(r,m)

qn,min


+

1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈V \(T (m)∪π(r,m))

qn,min


Q′

n,max =
1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈π(r,m)

qn,max


+

1

Xn

∑
m∈π(r,n)

xm

 ∑
l∈V \(T (m)∪π(r,m))

qn,max



(26)

C. Result of Mathematical Analysis

In this subsection we summarize the results of our mathe-
matical analysis. The summary of the analysis is as following:

• Cable loading constraints can be represented by a set of
circles. The radius of these circles is the cable loading
capacity sn. If the powerflow in the cable is within the
limit there would be not cut on the FOR. If the cable is
loaded beyoned its capacity the cable loading constraint
would cut the FOR in a circular way.

• The FOR is limited by voltage constraints in the shape
of a straight line. The gradient of this line is -ϵ, which
is the R/X ratio of the path from the root node to the
node under analysis.
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Fig. 6. LV network used for numerical simulation and FOR analysis

IV. NUMERICAL VERIFICATION OF THE MATHEMATICAL
ANALYSIS BY POWER FLOW BASED FOR

In this section, numerical simulations are performed to
verify the results of mathematical analysis.

A. Low voltage network with flexible loads

For a clearer demonstration of how network constraints
affect FOR, we first apply the aforementioned mathematical
analysis to a straightforward low voltage radial distribution
network, shown in Fig.6, which consists of flexible loads. The
network consists of six nodes and five branches. Here, we
assume that the impedance of all branches is the same given
as 0.065 + j0.02 ohms. The voltage of the first node is set
as v1 = 400V . The loads at each node are given as (pn, qn)
with active and reactive power values in kW and kVar. As
illustrated in Fig.1, for analysis, the first step is to find the
network’s initial FOR, which is calculated by increasing the
active and reactive power values of flexible loads from 0 to
1 pu and calculating IPF. Since our network consists only of
flexible loads, we get the initial FOR in first quadrant. The
resulting initial FOR which is the result of all possible IPFs
is shown in Fig.7. Note that this initial FOR consists of both
feasible and infeasible points. We will apply our linear analysis
on top of this FOR to remove points that are infeasible.
Next step is to apply cable loading and voltage constraints.
The voltage constraint analysis would be quite straightforward
because our network is radial and solely consists of loads,
only the constraint vmin given in equation (13) would apply.
Furthermore, due to the properties of the radial network, we
only need to plot the voltage cut of the final node. However,
cable loading constraints of each branch need to be separately
examined for the purpose of analysis.

1) Analysis on branch 5: For analysis on branch 5, first
we plot the inner region which is rectangular shape given by
equations (4),(5) P5 = P −

∑5
m=1 pm, Q5 = P −

∑5
m=1 qm.

The cable loading constraint is then plotted in the form
of circle. The center of circle for branch five is given by
(
∑5

m=1 pm,
∑5

m=1 qm). The resulting analysis results are
given in Fig.8. Actually, there would be infinite circles here
for visualization, only one circle is plotted. The circle radius
would be the loading capacity of the cable. The cable loading
capacities for the network in this example are given in TableI.
All the points inside the circle are following the cable loading
constraints and would be part of the final FOR if they are
not cut by voltage constraint. The points outside the circle do
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Fig. 7. Initial FOR wihtout network constraints applied

TABLE I
PARAMETERS FOR ANALYSIS OF LV NETWORK

Branch no Cable capacity (kVA) Circle center P ′
n Q′

n
1 150 (0,0) 0 0
2 150 (10,5) 6.5 1
3 100 (25,12) 22.75 3.4
4 50 (37,16) 46.8 6.6
5 22 (57,21) 83.85 10.8

not follow cable loading constraints and hence would not be
included in the final FOR. After this, voltage constraints of
the network are applied using equation (13) in which reactive
power is expressed as a straight line in form of active power
with slope of −Rn/Xn. In equation (13), P ′

n, Q′
n, v = 400V

and vmin = 360V are constant values. After calculating P ′
n,

Q′
n and other values given in tableI, the voltage cut is plotted

on the initial FOR. The voltage constraints cut the FOR with
a slope −Rn/Xn = −3.25 as shown in the red line in Fig.8.
The FOR after this stage would be the one cut by voltage
constraints since the area cut by cable loading constraints is
already included in the area cut by voltage constraints.

2) Analysis on other branches and final FOR obtained
through analysis: We don’t need to apply voltage constraints
for other nodes due to network’s radial property. However, for
cable loading constraints, a similar analysis will be applied for
all other branches of the network. The resulting parameters and
center of circles for loading constraints are given in tableI. The
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Fig. 8. Applying loading constraints on branch 5 and voltage constraints on
node 6
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Fig. 9. Comparison of exact FOR obtained by algorithm 1 (top) and FOR
obtained with mathematical analysis for the LV network (bottom)

1 2 4 9 11 14 16 17 19 20 21

3 10 12 15 18 22

5 6 8

7

13

1
V =11 kV

Fig. 10. MV network used for numerical simulation of FOR analysis

resulting FOR after applying all network constraints and the
exact FOR obtained by the power flow method are given in
Fig.9. It can be seen that final FOR obtained by our analysis is
quite similar to the exact FOR obtained by powerflow method.
This shows the efficacy of our method.

B. Medium voltage network with flexible loads

In this subsection, mathematical analysis is applied to a
IEEE modified case 22 radial distribution network in MAT-
POWER [22]. The MV network used is shown in Fig. 10. The
base voltage level of this network is 11 kV. The impedance
of all the branches is set as 2.75 + j1 ohms. There is no
load connected on bus 1 which is the root node. Values
of active and reactive power flexible loads connected to the
network are given in the table.II. To simplify the analysis,
the cable capacity is set high enough to avoid any violation
of the cable loading constraint. The primary emphasis of the
analysis is on voltage constraints. A method similar to the

Fig. 11. Comparison of exact FOR for modified case 22 radial network
obtained by algorithm 1 (top) and FOR obtained by analysis (bottom)

method in the previous subsection for LV network analysis is
employed for the analysis. First, the initial FOR of the MV
network is calculated. Then voltage constraints are applied.
Since this network consists only of flexible loads, there would
be a violation of the minimum voltage. For the purpose of
the analysis, vmin is set as 0.9Vbase. Equation (24) derived
from constraints vmin for radial networks is used here to
find the cut in the initial FOR. This equation removes the
part of the initial FOR that would result in a any violation
of the voltage constraints. The final FOR obtained through
analysis along with the exact FOR is outlined in Fig.11. In
FOR obtained through analysis portion of the Fig.11 voltage
cuts for nodes 14, 15, 17 and 21 are also plotted. Similar
cuts could be drawn for all nodes in the network. Nodes
that have a voltage lower than vmin would cut the FOR. To
identify FOR, it is not essential to plot the voltage cut for
each node; instead, only the node with the lowest voltage,
in this case node 21, needs to be shown. The final FOR
obtained through analysis is close to exact FOR. However, if
we look at Fig.11 in detail, we can observe that there is some
mismatch in exact FOR and FOR obtained through analysis.
This is because our analysis is based on the linearized distflow
method, which ignores quadratic losses. In future work, the
accuracy of the method can be increased by adding quadratic
losses to the formulation. Moreover, the exact FOR which is
used in this paper to compare accuracy of our method can also
be further improved. The accuracy of exact FOR is influenced
by the sampling technique and the amount of samples used to
determine it. With increasing the number of samples, the exact
FOR obtained would be much closer to our approximation of

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



TABLE II
MV NETWORK ACTIVE AND REACTIVE POWER LOAD

Bus no PL(kW) QL(kVAR) Bus no PL(kW) QL(kVAR)
1 0 0 12 10 5
2 16.78 20.91 13 82.13 71.65
3 10 5 14 34.71 30.12
4 33.80 37.32 15 34.71 30.12
5 10 5 16 80.31 70.12
6 10 5 17 49.62 47.82
7 10 5 18 10 5
8 10 5 19 43.77 38.93
9 19.31 25.87 20 37.32 35.96

10 10 5 21 37.32 35.96
11 16.27 19.48 22 31.02 29.36

the FOR. This aspect is worth exploring in future research.
1) Computation time comparison: The computational time

calculations were conducted using MATLAB 2023b running
on Windows 11 Enterprise with an Intel Core i7-9750H
processor, operating at 2.60 GHz, and equipped with 16
GB of RAM. For exact FORs, 10,000 uniformly sampled
combinations of (p, q) were used. Initial FOR used for finding
FOR through analysis only used 400 combinations of (p, q)
because the voltage limits and cable loading cuts were cal-
culated by equations obtained through mathematical analysis.
The computation time for LV network case study is only
19 seconds for FOR obtained through analysis compared to
435 seconds for exact FOR. For MV network case FOR
obtained through analysis took only 47 seconds compared
to 874 seconds for Exact FOR. The method proposed does
better in computation time compared to exact FOR due to
less number of samples needed.

V. CONCLUSION

This paper examines the influence of network constraints
on FOR through analytical analysis. According to the results
of analytical analysis, the cable loading constraints would cut
the FOR in the form of circles with a radius equal to the cable
kVA rating sn and the nodal voltage constraints would cut the
FOR with a straight line of slope −Rn/Xn. The mathematical
analysis is then applied to two distribution networks to show
the efficacy of the method. The results show that FOR obtained
through mathematical analysis is a close approximation of
the exact FOR obtained through powerflow based method. In
applications where computation time is important, an approach
based on this analysis can be used to compute the FOR. In
order to increase the accuracy of the FOR found through
analysis, further work would involve approximating quadratic
losses which are neglected in our current approach and adding
them to the mathematical formulation.
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