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Abstract—The Optimal Power Flow (OPF) problem is inte-
gral to the functioning of power systems, aiming to optimize
generation dispatch while adhering to technical and operational
constraints. These constraints are far from straightforward; they
involve intricate, non-convex considerations related to Alternating
Current (AC) power flow, which are essential for the safety
and practicality of electrical grids. However, solving the OPF
problem for varying conditions within stringent time-frames
poses practical challenges. To address this, operators often resort
to model simplifications of varying accuracy. Unfortunately,
better approximations (tight convex relaxations) are often still
computationally intractable. This research explores machine
learning (ML) to learn convex approximate solutions for faster
analysis in the online setting while still allowing for coupling into
other convex dependent decision problems. By trading off a small
amount of accuracy for substantial gains in speed, they enable
the efficient exploration of vast solution spaces in these complex
problems.

Index Terms—Optimal Power Flow, Renewable Energy, Deep
Learning, Convex Relaxations, Learn-to-Optimize.

NOMENCLATURE

N Set of buses
E Set of branches
ER Set of reverse branches

j Imaginary unit j2 = −1

z⋆ Complex conjugate of z
Sd Complex power demand; Sd = pd + jqd

Y s Bus shunt admittance
Y Complex branch line admittance
Y c Complex branch shunt admittance
s̄ Thermal branch limit
pg, pg Active power generation bounds
qg, qg Reactive power generation bounds
v, v Voltage magnitude bounds
b Branch susceptance

Sg Complex power generation; Sg=pg + jqg

Sf Complex power flow; Sf = pf + jqf

V Complex voltage; V = v∠θ

This research is partly funded by NSF award 2112533.

I. INTRODUCTION

The Optimal Power Flow (OPF) problem optimizes gen-
eration dispatch while satisfying physical and engineering
constraints. It is therefore fundamental for many aspects of
power systems operations: market-clearing, unit commitment,
optimal transmission switching, transmission expansion plan-
ning, to name a few. Its alternating current (AC) form [1], [2],
AC-OPF, is a nonlinear, non-convex problem which makes it
challenging to solve in practice, especially when combined
with discrete decisions like unit commitment, line switch-
ing, and bus splitting. Therefore, operators rely on approxi-
mate OPF formulations, typically the DC-OPF approximation
which, although more tractable, may lead to sub-optimal or
unsafe decisions when far from the traditional operating point,
because it does not capture the complexity of AC systems.

These computational limitations have spurred interest in
optimization proxies for power systems, and OPF problems in
particular. Optimization proxies [3]–[5] are machine learning
(ML) models that approximate the input-to-output mapping of
an optimization solver; once trained, they produce predictions
in milliseconds. A large body of work has focused on predict-
ing solutions to OPF problems, especially DC-OPF and AC-
OPF. In this case, the proxy takes the input data of the OPF as
input and outputs a near-feasible, near-optimal solution. This
enables real-time risk assessment at massive scales.

Another stream of research uses optimization proxies to
capture complex interactions, e.g., AC power flow equations,
then embeds the trained proxy in a larger optimization prob-
lem, e.g., an unit-commitment problem [6], [7]. This strategy
replaces the nonlinear component. e.g., the AC power flow
equations, with a mixed-integer representation of a trained
neural network. Although it removes the nonconvexity stem-
ming from the physics, this approach requires the use of
discrete variables, introducing another type of non-convexity,
which reduces its tractability for large-scale systems.

To address this challenge, this paper explores the use of
input-convex neural networks (ICNN) [8] as an alternative to
non-convex Deep Neural Networks (DNNs) for applications
where the neural network must be embedded in a larger
optimization. More specifically, we highlight that DNNs are
typically non-convex in the input parameters, which makes it
difficult to embed them in an efficient way in an optimiza-
tion model. Even state-of-the-art reformulation procedures
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of the DNN architecture using mathematical programming
techniques (e.g., with a representation using binary variables)
raise significant computational challenges. ICNNs, on the
other hand, are convex functions of the input parameters by
construction, thus suitable for embedding within optimization
models, even for large-scale instances. The open question,
which is addressed in the paper, is whether these computa-
tional benefits come with a loss of accuracy or whether ICCNs
preserve high prediction capabilities for a range of applica-
tions. This work is an attempt to answer this question when the
learning task consists in building a tractable approximation
of the value function of an OPF problem. Such ICNNs, if
accurate enough, would provide a highly valuable tool for a
broad range of applications in power systems, including unit
commitment and transmission switching (e.g., through Branch-
and-Cut [8]), as well as a wealth of stochastic optimization
and reinforcement learning [9] methods that implicitly rely on
value functions and their gradients.

The main objective of the paper is thus to determine whether
ICNNs, despite their more limited expressive power, can match
the performance of DNNs for approximating the value of OPF
problems. This is a pre-requisite to using ICNNs in larger
optimizations and an open issue in the representation power
of neural networks. The main contributions of the paper can
be summarized as follows.

1) The paper derives strong theoretical guarantees on the
performance of ICNNs. In particular, it provides bounds
on the generalization error of ICNNs that only depend on
the ICNN performance on the training data.

2) The paper explores specific ICNN architectures and trains
it to learn three OPF formulations: the AC-OPF, the SOC
relaxation, and the DC-OPF.

3) The paper reports the performance of the resulting ICNNs
on large-scale systems, that are 50 times larger than prior
research. The results demonstrate that ICCNs are capable
of learning the value function of OPF problems, at least
as effectively as DNNs on traditional test cases, with
optimality gaps almost always lower than 0.5%.

The rest of the paper is organized as follows. Section II
reviews related works in the literature, Section III describes
the OPF formulations considered in the paper. Section IV
presents the input-convex architecture used in the paper, and
provides strong generalization bounds for this class of models.
Section V presents and analyses the results of the proposed
comparison, and Section VI concludes the paper.

II. RELATED WORK

The decomposition of intricate problems through value
function approximations has found widespread application
both in industry and academic literature. This approach has
been instrumental in achieving tractable solutions for vari-
ous practical scenarios, including multistage decision-making
problems.

In multistage problems, such as those encountered in storage
management and long-term asset investment, decision-makers
often seek optimal policies. They do so by employing a

spectrum of function approximations that range from simple
parametric forms [10] to more intricate piece-wise models
[11], [12]. Some of these advanced models may involve a
substantial number of individual function evaluations to reach
convergence [13]–[15].

DNNs have emerged as a standout player in approximating
solutions, particularly in the domain of Optimal Power Flow
(OPF) problems [16]–[18]. Furthermore, He et al. [19] have
successfully employed neural networks to approximate the cost
function of unit commitment problems, streamlining constraint
screening processes and improving solution efficiency.

ICNNs have also found applications in energy-related chal-
lenges, such as unit commitment [7] and voltage regulation
[20]. These networks offer a unique advantage by ensur-
ing convexity within specific regions of their input domains
through parameter constraints, thereby reducing the complex-
ity of identifying convex mappings.

A notable contribution by Zhang et al. [21] involves training
convex neural networks to predict the objective values of
DC-OPF. This innovative approach enables the derivation of
dual solutions, aiding in the identification of active sets of
constraints. Leveraging the convexity of these ICNNs, this
method augments the training process and provides valuable
generalization bounds. Similar investigations by Chen et al.
[22] extend this approach to systems with up to 118 buses,
highlighting its applicability.

In another pioneering effort, Wu et al. [7] harness the power
of ICNNs to map pre-fault operation conditions to transient
stability indices. This enables the formulation of transient
stability constraints, with numerical experiments conducted on
systems featuring 39 and 118 buses validating the effectiveness
of their methodology.

Machine Learning (ML) techniques, including ICNN-based
approaches, have shown promise in discovering convex ap-
proximations and relaxations for optimization problems. In
the context of Optimal Power Flow (OPF) applications [23],
methodologies utilizing ICNNs have exhibited significant po-
tential [24]. These collective advances underscore the growing
role of advanced neural network techniques in enhancing
optimization methodologies, promising more efficient and
effective problem-solving strategies.

This paper extends these lines of research in several direc-
tions. First, it demonstrates, for the first time, that ICNNs can
provide state-of-the-art results in predicting value functions
for large-scale OPF problems involving thousands of buses.
The OPF problems studied in the paper also go beyond the
DC model and include the SOCP relaxation and the AC-OPF.
Second, the paper contributes strong generalization bounds
for ICNNs that significantly expand existing work.

III. OPTIMAL POWER FLOW

The Optimal Power Flow (OPF) problem [25] is a fun-
damental problem in power systems operations. The OPF
problem finds the most economical generation dispatch so
as to serve electricity demand while satisfying physical and
engineering constraints. The paper considers the AC-OPF
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Model 1 The AC-OPF Model
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Model 2 The SOC-OPF model
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formulation, its second-order cone (SOC) relaxation, and its
DC-OPF linear approximation, which are presented next. For
ease of reading, the presentation omits transformer tap ratios,
phase angle difference constraints, and reference voltage (slack
bus) constraints. All are implemented and considered in the
experiments of Section V

A. The AC-OPF Formulation

Model 1 presents the AC-OPF formulation, in complex
variables. The objective (1a) minimizes total generation costs.
Constraints (1b) enforce power balance (Kirchhoff’s current
law) at each bus. Constraints (1c) and (1d) express Ohm’s law
on forward and reverse power flows, respectively. Constraints
(1e) enforce thermal limits on forward and reverse power
flows. Finally, constraints (1f)–(1h) enforce minimum and
maximum limits on nodal voltage magnitude, active gen-
eration, and reactive generation, respectively. The AC-OPF
problem is nonlinear and non-convex and is typically solved
using interior-point algorithms.

Model 3 The DC-OPF Model

min
∑
i∈N

cip
g
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s.t. p
g
i +
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|pf
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B. The SOC-OPF Formulation

The Second-Oder Cone (SOC) relaxation of AC-OPF pro-
posed by Jabr [26] is obtained from AC-OPF by introducing
the additional variables

wi = v2
i , ∀i ∈ N (3)

wr
ij = vivj cos(θj − θi), ∀ij ∈ E (4)

wi
ij = vivj sin(θj − θi), ∀ij ∈ E (5)

and the non-convex constraint

(wr
ij)

2 + (wi
ij)

2 = wiwj , ∀ij ∈ E . (6)

The SOC relaxation is then obtained by relaxing Eq. (6) into

(wr
ij)

2 + (wi
ij)

2 ≤ wiwj , ∀ij ∈ E . (7)

Model 2 presents the SOC-OPF formulation, in real vari-
ables. The objective function (2a) is equivalent to (1a). Con-
straints (2b) and (2c) enforce, at each node, Kirchhoff’s current
law for active and reactive power, respectively. Constraints
(2d)–(2f) capture Ohm’s law on active and reactive, forward
and reverse power flows. The γ parameters that appear in
the constraints are constant terms derived from (1c)–(1d),
after substituting variables w,wr,wi. Constraints (2h) enforce
thermal limits on forward and reverse power flows. Constraints
(2i) is Jabr’s inequality (7). Finally, constraints (2j)–(2l), like
constraints (1f)–(1h), enforce minimum and maximum limits
on nodal voltage magnitude, active and reactive generation.

The SOC-OPF formulation is nonlinear and convex. This
makes it more tractable to solve than AC-OPF using, e.g.,
polynomial-time interior-point algorithms. Furthermore, since
it is a relaxation of AC-OPF, solving SOC-OPF provides valid
dual bounds on the optimal value of AC-OPF.

C. The DC-OPF Formulation

The DC-OPF formulation is a linear approximation of AC-
OPF. The approximation assumes that all voltage magnitudes
are one per-unit, voltage angles are small and losses are
negligible, and it ignores reactive power [27], [28]. The DC
approximation underlies virtually all electricity markets and
is widely used in, e.g., unit commitment and transmission
network expansion planning problems.

Model 3 presents the resulting linear programming (LP)
formulation of DC-OPF. The objective (8a) minimizes to-
tal generation costs. Constraints (8b) enforce (active) power
balance at each node. Constraints (8c) approximate Ohm’s
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(a) Example DNN (left) and its Output (right). The DNN defines a non-convex
function.
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(b) Example ICNN (left) and its Output (right). All ICNN weights are positive
and it defines a convex function.

Fig. 1. Illustration of Input-Convex Neural Networks.

law using a phase-angle formulation. Note that, DC-OPF
does not consider reverse power flows, unlike AC-OPF and
SOC-OPF; this is because losses are neglected in DC-OPF.
Constraints (8d) enforce thermal constraints on each branch.
Constraints (8e) enforce minimum and maximum limits on
active power generation. Finally, recall that constraints on
phase angle differences and slack bus are omitted from the
presentation for readability, but are implemented in all the
numerical experiments.

IV. METHODOLOGY

The goal of the paper is to train an ML model that takes
the nodal demand vector Sd as input, and outputs the optimal
solution of its corresponding OPF problem. This section
presents the input-convex neural network (ICNN) architecture
and its training, and establishes its generalization guarantees.

A. The Input-Convex Neural Network Architecture

An ICNN is a special type of DNN that computes a convex
function of its input [29]. ICNNs are well-suited when one
seeks to represent or approximate convex functions since they
are convex by design, unlike general DNNs. ICNNs achieve
their convexity by combining convex activation functions with
convexity-preserving operations [29].

The simplest ICNN architecture consists of fully-connected
layers of the form h(x)= ReLU (Wx+ d), where x∈Rn

denotes the layer input vector, d∈Rm is the bias vector, and
W ∈Rm×n is a weight matrix with non-negative coefficients,
to ensure convexity. The Rectified Linear Unit (ReLU) activa-
tion function ReLU(x)= max(0, x) is applied element-wise.
Figure 1 illustrates the difference between DNNs and ICNNs
on a small example, and showcases ICNNs’ convexity.

To learn the value function of OPF problems, this paper
considers ICNN architectures with skip-connections, which
allow the approximation of convex functions with decreasing
slopes, and have been shown to improve performance [21],

...

...

Fig. 2. Fully Connected ICNN

[29]. The overall architecture is illustrated in Figure 2. Its k-
th layer is of the form

xk = hk(xk−1) = ReLU(W kxk−1 +Hkx0 + dk), (9)

where xk and xk−1 denote the outputs of layer k and k−1, x0

denotes the input of the ICNN, i.e., x0 =(pd, qd), dk is the bias
vector, and W k, Hk are weight matrices. Skip-connections
feed the ICNN input x0 to each layer. The coefficients of W k

are non-negative, whereas Hk may take positive or negative
values without affecting convexity [29].

B. The Training of ICNNs

The DNNs weights were optimized using the ADAM opti-
mizer with a learning rate of 0.01 without incorporating any
regularization techniques. ICNNs cannot directly be trained
with traditional gradient descent algorithms, because some of
their weights must be non-negative. So the training used pro-
jected gradient descent, which clips gradients before updating
the weights (a common choice for bounding the weights). Each
model underwent a maximum of 5000 epochs, with periodic
validation checks at epochs 200, 600, 1500, and 3000 to ensure
attainment of the predefined threshold (below a 0.3% gap)
on the validation set. The best-performing model following
these checks was retained. A batch size of 32 was utilized
throughout training.

While it converges under the same assumptions as tradi-
tional gradient descent algorithms, projected gradient descent
requires special attention to avoid slow convergence. Pre-
liminary experiments showed that, for larger learning rates,
gradient clipping results in a considerable slow-down, when
compared to the training of regular DNNs. This stems from
the greater impact on the loss that happens when projecting
back onto the feasible region. In fact, appropriate learning
rates (e.g., [30]) also depend on the relative distance to
the constraint barriers - which can be very small when
approaching the local optimum the algorithm is converging
to. Unfortunately, dynamically adapting learning rates is not
an easy task when post-clipping gradients from a standard
gradient descent algorithms. Scheduling parameters had to
be tuned in hyper-parameter optimization over the validation
set. The best scheduling found was the following: every 100
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epochs, when no progress is detected, the learning rate is
reduced by 2%. Furthermore, if no progress is observed after
1000 epochs, the batch size was halved iteratively (starting at
32) until reaching a minimum size of 8.

C. Generalization Guarantees

One fundamental benefit of using ICNNs is their stronger
generalization guarantees. To the best of the authors’ knowl-
edge, the strongest theoretical guarantee for ICNNs in the
context of OPF proxies is from [21] (Theorem 6.5): they show
that the gradient of a perfectly-trained ICNN is bounded over
the convex hull of the training set. While their proof uses
convexity arguments, the result is not specific to ICNNs. For
instance, it also holds for fully-connected DNNs with ReLU
activation (DNN-ReLU for short). Indeed, DNN-ReLUs repre-
sent continuous, piece-wise linear functions, whose gradient is
piece-wise constant. Since DNN-ReLUs have a finite number
of pieces, their gradients are immediately bounded.

This paper improves on the generalization guarantees of
[21]: it provides generalization bounds for general ICNNs
(Theorem 1), and explicit formulae for perfectly-trained IC-
NNs (Theorem 2). The results are presented for a parametric
convex optimization problem Φ(b) that the ICNN f must learn,
and its parametric strong dual Ψ(b). For instance, for the case
of a parametric linear program,

Φ(b) = min
x

{
c⊤x

∣∣ Ax ≥ b
}
, (10)

Ψ(b) = max
y

{
b⊤y

∣∣ A⊤y = c, y ≥ 0
}
, (11)

with primal and dual variables x and y respectively. When
strong duality holds, Φ(b) = Ψ(b). Φ is convex in b and for a
given b, any dual optimal solution is a sub-gradient of Φ [31].
In addition, if the dual optimum y∗(b) is unique, then ∇Φ is
defined and ∇Φ(b) = y∗(b).

The results are expressed in terms of a dataset
D= {(bi, yi, zi)}i=1,...,N where each bi, yi, zi are the right-
hand side, optimal dual solution, and optimal value of instance
i=1, ..., N , respectively. They are also expressed in terms of
B= conv{b1, ..., bN}, the convex hull of the right-hand sides
with diameter diam(B). The first result is a generalization
bound for arbitrary ICNNs.

Theorem 1. Let f be an ICNN, z̃i = f(bi), and ỹi =∇f(bi).
There exists a constant M , whose value depends only on D
and {ỹi, z̃i}, such that

∀b ∈ B, |f(b)− Φ(b)| ≤ M. (12)

Proof. Define f̌ , f̂ over B as

f̌(b) = max
{
z̃i + ỹ⊤i (b− bi)

∣∣ i = 1, ..., N
}

f̂(b) = min
λ

{∑
i

λiz̃i

∣∣∣∣∣ λ ≥ 0, e⊤λ = 1

}

Note that f̌ , f̂ are convex lower and upper envelopes of f .
The constant M is obtained by solving

M = max
b,z

|z − Φ(b)| (13a)

s.t. f̌(b) ≤ z ≤ f̂(b), (13b)
b ∈ B, (13c)

which concludes the proof by convexity of Φ.

Theorem 1 provides a worst-case guarantee on the general-
ization performance of the ICNN, which only depends on the
value of f on the dataset D. The next Theorem 2 provides an
explicit worst-case guarantee when the ICNN perfectly fits the
training data.

Theorem 2. Let f be an ICNN for learning Φ and assume
that, for all i ∈ {1, ..., N},

f(bi) = zi = Φ(bi) and ∇bf(bi) = yi = Φ(bi).

Then, ∀b ∈ B, |f(b)− Φ(b)| ≤ maxi ∥yi∥ × diam(B).

Proof. Let b ∈ B, i.e., b =
∑

i λibi where weights λi are
non-negative and sum to 1. By convexity of f and Φ,

∀i, zi + (b− bi)
⊤yi ≤ Φ(b), f(b) ≤

∑
j

λjzj .

Combining the above inequalities with weights λi yields

|Φ(b)− f(b)| ≤
∑
j

λjzj −
∑
i

λi[zi − (b− bi)
⊤yi]

≤
∑
i

λi(b− bi)
⊤yi

≤ max
i

(b− bi)
⊤yi

≤ max
i

∥yi∥ diam(B)

which concludes the proof.

Observe that Theorem 2 applies to any subset of data points,
which offers tighter guarantees over smaller domains.

V. NUMERICAL EXPERIMENTS

The section reports numerical results for ICNNs that are
trained to learn the value functions of DC-OPF, SOC-OPF,
and AC-OPF. While DC-OPF and SOC-OPF are convex with
convex value functions, AC-OPF is not convex and its value
function is not guaranteed to be convex. In this last case, the
task is thus to approximate (possibly) the OPF value function
with a convex function.

A. Experimental Setup

The proposed approach is evaluated on four test cases from
PGLib [32] with up to 6468 buses. These test cases are 50
times larger in size compared to those in [21]. Moreover, these
prior results only considered DC-OPF.

Table I reports, for each system, the number of buses |N |,
branches |E| and generators |G|, as well as the nominal total
demand (Pd

ref) and its range across the dataset ([Pd, P̄d
]).
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TABLE I
STATISTICS OF THE PGLIB TEST CASES.

System |N | |E| |G| Pd
ref [Pd, P̄d

]

ieee300 300 411 69 263 [ 210, 280]
pegase1k 1354 1991 260 781 [ 625, 820]
pegase2k 2869 4582 510 1522 [1218, 1599]
rte6k 6468 9000 399 1109 [ 887, 1164]

For each system, a dataset of 50, 000 OPF instances is
generated by perturbing the load vectors as follows

pd = α× η × pd
ref, qd = α× η × qd

ref,

where α is the system-wide scaling factor, sampled from a
uniform distribution, η ∈ R|N | is the bus-level uncorrelated
noise vector, sampled from a log-normal distribution with
mean 1 and standard deviation 5%, and pd

ref, qd
ref are the

nominal active and reactive load vectors. The range of α is
selected to avoid regions where AC-OPF becomes infeasible.

The OPF problems are formulated with PowerModels.jl and
solved with Mosek (DC and SOC) or Ipopt (AC). Infeasible
instances are excluded, and the remaining dataset is partitioned
into training (40%), validation (30%), and testing (30%) sets
for appropriate training and model assessment procedures.
For each system and OPF formulation, this paper trains a
DNN and an ICNN to predict the value function of the
considered OPF. Both models use the very same architecture,
the only difference being that DNN weights are unrestricted.
All ML models are implemented in Julia using Flux.jl [33].
Experiments are carried out on Intel(R) Xeon(R) Gold 6226
CPU @ 2.70GHz machines with NVIDIA Tesla A100 GPUs
on the Phoenix cluster [34].

B. ICNN Performance

The paper uses relative absolute optimality gap to measure
the performance of the DNN and ICNN models. Let z∗ and z̃
denote the ground truth (obtained by the optimization solver)
and the predicted optimal value by a ML model, respectively.
The relative absolute optimality gap, henceforth referred to as
optimality gap for simplicity, is defined as

gap =
|z̃ − z∗|
|z∗|

. (14)

Note that the prediction z̃ may over-estimate or under-estimate
the ground truth z∗, which is why the absolute value is
needed. Unless specified otherwise, reported averages use the
geometric mean µ(x1, ..., xn) = n

√
x1 × ...× xn.

Table II reports, for each system and model architecture
(DNN or ICNN), the geometric mean optimality gap, and
the worst-case optimality gap across the testing set. First,
observe that, except for SOC on the pegase2k system
(for which ICNN training did not converge), ICNN always
yields a mean optimality gap below 0.5%, and DNN yields
mean gaps below 1%. Overall, predictions for DC-OPF tend
to be slightly more accurate than those for SOC- and AC-
OPF, which may be explained by the fact that DC-OPF is a

Fig. 3. Illustrating how instances are selected to analyze the behavior of AC-
OPF operational cost. The idea is to select two extreme points of the convex
hull of load instances and generating instances between them.

Fig. 4. AC-OPF Operational Cost for 10 sets of loads for ieee300
obtained by the procedure sketched in Figure 3.

linear programming problem, whereas SOC- and AC-OPF are
nonlinear. Second, ICNN almost always outperforms DNN in
terms of mean optimality gap. This holds even for AC-OPF,
whose value function is non-convex. These results suggest
that ICNN models are accurate enough to be used instead
of general, non-convex DNN models to accurately represent
the value functions of OPF problems.

The ICNN effectiveness in approximating AC-OPF seems
to stem from the nature of AC-OPF value functions that are
approximately convex. Indeed, when analyzing a few random
sets of instances of AC-OPF problems, each set consisting of
instances between a pair of extreme points in the convex hull
of load instances, it appears that the value function is mostly
a convex function of load change. This is illustrated in Figure
4 where each line is a set of instances between two points in
the convex hull (a visual explanation is given by Figure 3).
This is consistent with the low optimality gaps between conic
relaxations reported in the literature [35], and in Table II.

It is also important to study the worst-case optimality
gaps, especially if ML models are to be embedded in larger
optimization problems. Interestingly, the worst-case gaps are
highest for the ieee300 system, with both ICNN and DNN
exhibiting worst-case optimality gaps of about 15%, i.e.,
roughly 40 times larger than their mean gap. This demon-
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TABLE II
ICNN PERFORMANCE RESULTS.

Mean gap (%) Worst gap (%)

System OPF ICNN DNN DC SOC ICNN DNN DC SOC

ieee300 DC 0.15 0.19 0.00 - 1.58 1.90 0.00 -
SOC 0.31 0.37 5.43 0.00 5.77 4.96 10.79 0.00

AC 0.39 0.39 7.35 1.98 15.81 14.56 21.95 16.47

pegase1k DC 0.28 0.33 0.00 - 2.35 1.83 0.00 -
SOC 0.33 0.82 1.60 0.00 2.22 2.15 1.88 0.00

AC 0.33 0.68 2.91 1.32 2.37 1.95 3.49 1.89

pegase2k DC 0.22 0.30 0.00 - 3.45 3.21 0.00 -
SOC 1.03 0.32 2.15 0.00 3.15 2.36 2.35 0.00

AC 0.24 0.27 3.02 0.80 8.59 8.89 8.88 9.13

rte6k DC 0.27 0.38 0.00 - 1.76 1.15 0.00 -
SOC 0.29 0.57 2.67 0.00 1.69 5.52 3.17 0.00

AC 0.25 0.33 3.05 0.33 2.71 3.08 3.67 0.36

strates that low mean optimality gaps are not a guarantee
of uniformly good performance. For the larger systems, both
architectures exhibit lower worst-case gaps, ranging around
2–5%, or roughly 20 times larger than the mean optimality
gap. Interestingly, ICNN tends to produce better worst-case
optimality gaps than DNN for SOC and AC-OPF on the two
larger test cases. Designing training procedures that reduce
worst-case performance is an active area of research.

Figure 5 provides a more granular picture of the DNN
and ICNN performance on the rte6k system. The figure
reports, for each OPF formulation, the distribution of relative
optimality gaps over the dataset (left panel) and as a function
of total load (right panel). Note that these results are relative
optimality gaps (z̃ − z∗)/|z∗|: a positive (resp. negative)
gap indicates that the ML model over-estimates (resp. under-
estimates) the ground truth value. Overall, echoing the results
of Table II, the ICNN gaps exhibit lower variance than the
DNN gaps, especially for SOC-OPF. Furthermore, both formu-
lations exhibit similar behavior with respect to the system total
load, with overall higher gaps towards the ends of the range.
The latter is expected as there are fewer training samples
in those regions. This observation aligns with findings in
[36] advocating for training on a broader input domain, thus
underscoring the importance of comprehensive data coverage.
For SOC-OPF and AC-OPF, the plots on the right panels
highlight the benefits of ICNNs.

While ICNNs enjoy strong theoretical guarantees, it is
important to shed more light on the generalization performance
of ICNNs and DNNs. Additional experiments outlined in
Table III demonstrate that DNNs and ICNNs exhibit very
similar performance across instances both inside and outside
the convex hull of the training set, even when the training
set size is significantly reduced, suggesting that DNNs do not
overfit in this setting.

VI. CONCLUSION

This paper studies whether ICNNs can be accurate enough
to approximate the value function of large-scale OPF prob-
lems. ICNNs are an attractive avenue for approximating OPF

(a) Comparison of errors on DC-OPF

(b) Comparison of errors on SOC-OPF

(c) Comparison of errors on AC-OPF
Fig. 5. Comparison of relative gap (z̃− z∗)/|z∗| on rte6k. Positive (resp.
negative) values mean the prediction over- (resp. under-) estimates the ground
truth optimal value.

problems, since their convexity enables them to be embedded
in optimization models without resorting to a MIP reformula-
tion. The results in this paper indicate that ICNNs can con-
sistently approximate system operating costs under different
grid conditions, often with optimization gaps below 0.5. This
suggests that convexity constraints do not entail a substantial
sacrifice in accuracy, even in inherently non-convex setups
like AC-OPF. Notably, in most cases, ICNNs exhibit slightly
lower geometric errors than DNNs with similar architectures,
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TABLE III
ICNN PERFORMANCE RESULTS FOR PREDICTING AC-OPF OPERATIONAL COSTS IN IEEE300

(INSIDE CONVEX-HULL — OUTSIDE CONVEX-HULL)

ICNN DNN

Training Set size Convex Hull Coverage of Test Set Mean Gap Worst Gap Mean Gap Worst Gap

400 22% (6.75 — 6.68) (26.78 — 27.53) (6.79 — 6.72) (26.95 — 27.66)
6500 22% (1.47 — 1.46) (18.73 — 19.85) (1.76 — 1.76) (18.22 — 17.90)

20000 43% (0.33 — 0.43) (10.40 — 19.87) (0.35 — 0.42) (10.23 — 17.72)

reinforcing the potential of this approach.
It is important however to acknowledge challenges and

opportunities in ICNN research. As highlighted by the SOC-
OPF formulation of the pegase2ksystem, ICNN training
did not converge smoothly in some instances, indicating that
fine tuning the optimization parameters may be needed for
more efficient training. Additionally, convexity introduces a
slight optimistic bias increasing the error in extreme cases.
Although it may not result in large impacts, and might even
be desirable depending on the application, it is important to
mitigate its potential negative effects. Penalizing differently
for under and over estimations might allow the training to
be tailored for different applications. Moreover, a well-trained
ICNN can offer, at its utmost capability, the optimal piece-
wise convex approximation of a function. This resembles
the objective pursued by numerous operators that fine-tune
the DC approximation to approximate AC, which has proven
beneficial in many cases. Nonetheless, in specific instances
where the target function exhibits pronounced nonlinearities,
ICNN performance may falter.

In summary, this paper identified a promising pathway
for addressing complex and time-sensitive OPF couplings in
power systems. The ability to achieve near-optimal cost esti-
mations with reduced computational burden through machine
learning methods has significant implications for the efficient
operation and management of electrical grids. As research
on ICNNs for OPF progresses, it is likely that they will
play an increasingly vital role in ensuring the reliability and
sustainability of power systems in the future.
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