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Abstract—This paper proposes a novel method rooted in dif-
ferential geometry to approximate the voltage stability boundary
of power systems under high variability of renewable generation.
We extract intrinsic geometric information of the power flow solu-
tion manifold at a given operating point. Specifically, coefficients
of the Levi-Civita connection are constructed to approximate the
geodesics of the manifold starting at an operating point along
any interested directions that represent possible fluctuations in
generation and load. Then, based on the geodesic approximation,
we further predict the voltage collapse point by solving a few
univariate quadratic equations. Conventional methods mostly
rely on either expensive numerical continuation at specified direc-
tions or numerical optimization. Instead, the proposed approach
constructs the Christoffel symbols of the second kind from the
Riemannian metric tensors to characterize the complete local
geometry which is then extended to the proximity of the stability
boundary with efficient computations. As a result, this approach
is suitable to handle high-dimensional variability in operating
points due to the large-scale integration of renewable resources.
Using various case studies, we demonstrate the advantages of the
proposed method and provide additional insights and discussions
on voltage stability in renewable-rich power systems.

Index Terms—Voltage stability, renewable energy fluctuation,
differential geometry, Levi-Civita connection, Christoffel symbols

I. INTRODUCTION

Renewable generation plays an important role in achieving
carbon neutrality by replacing conventional fossil-fuel-based
synchronous generation. However, numerous technical chal-
lenges need to be solved to maintain the stability and normal
operation of the future renewable-rich power systems [1].

This paper focuses on the voltage stability problem for
power systems that have a very high penetration level of
renewable generation. Such systems will experience significant
variations in operating points that are larger in magnitude,
faster in timescale, and higher in dimension [2]. Tradition-
ally, the voltage instability results from load change that
exceeds the maximum power transfer limit (i.e., maximum
loadability point). At that point, the Jacobian of the power
flow equation becomes singular [3], [4], and we refer to
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such points to be on the power flow singular solution space
boundary (SSB), or the voltage stability boundary. Conven-
tional analysis methods aim to find the maximum loadability
point by directly computing the parameter that achieves the
singularity condition. That is, consider power flow equations
f(x;λ) = 0, allow a scalar parameter to vary, and find the
parameter value when det ∂f/∂x(x;λ) = 0. The maximum
loadability point further implies the stability margin from the
current operating point. Another commonly adopted approach
is the continuation power flow (CPF) method, which frees up
one parameter, for example, representing a single direction
of change for the load and generation profile, and seeks the
trajectory of solutions of the power flow equation along the
direction of varying [5]–[10]. Compared to directly computing
the maximum loadability point, the CPF method provides
the shape of the solution manifold (albeit along the single
parameter variation direction). Since each continuation process
takes one parameter varying direction, the applicability of the
CPF method relies on the predictability of load and generation
and a strong engineering understanding of the system in
identifying prevalent operation patterns. Such an assumption
may no longer hold in renewable-rich power systems that
feature numerous possible directions of change within a short
period of time [11]. To address such a limitation of the
CPF method, another line of research focuses on finding the
locally closest point (to the nominal parameter) in parameter
space that achieves singularity. Optimization techniques were
applied in [12] to solve for the smallest margin. Thorough
analysis and computation methods were provided in [13]–[15]
to compute the locally nearest point in power space. It is worth
mentioning that previous research has studied instability due
to limit-induced bifurcation, for example, caused by the limit
of reactive power supplied by generators [16]–[18]. This is out
of the scope of the current paper. In this paper, we focus our
discussion on saddle-node bifurcations, i.e., when the Jacobian
matrix of the power flow equation encounters singularity [4],
[19]. Recent developments have extended the analysis to the
Riemannian metric [11], [20] to compute the shortest manifold
distance. Although they have the potential to address the
challenge of handling numerous power-changing directions,
searching for the global stability margin corresponding to all
possible power-changing directions is computationally inten-
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sive. Computational Riemannian geometry has been used as
well for treating a closely related problem, i.e., computing
local approximations of the SSB manifold [21]. The methods
in [21] give numerically precise presentations of the SSB
by geodesic coordinates (i.e., families of geodesics) up to
dimension 200 but are computationally costly.

Revealing the global geometry of the power flow mani-
fold and the singularity-induced voltage stability boundary
is beneficial to guiding system operation. In this paper, we
propose a completely novel method rooted in mathematical
tools from differential geometry. It can replicate the geometry
of the power flow manifold in a global manner, that is,
along all possible parameter-varying directions, merely from
local measurements and efficient computations. Specifically,
coefficients of the Levi-Civita connection [22] are constructed
to approximate the geodesics of the manifold starting at the
operating point along any interested directions that represent
possible adjustments in generation and load. The geodesics
per se provide valuable information on the shape of the
solution manifold. Then, based on the geodesic approximation,
we further predict the voltage collapse point by solving the
extrema of a few univariate quadratic equations. The proposed
approach is suitable to handle high-dimensional variability in
operating points (potentially due to the large-scale integration
of renewable resources), because once the coefficients of
the Levi-Civita connection are constructed, the geodesics can
be approximated for arbitrary direction. We demonstrate the
advantages of the proposed method and provide additional
insights and discussions on voltage stability in renewable-
based power systems using various case studies.

II. PROBLEM STATEMENT

A. Power Flow Model

Consider a connected power grid with in total Nb nodes.
Without loss of generality, assume that the first node is the
slack bus, the second to the Ng-th buses are the PV buses
(where the active power and voltage magnitude are specified),
and the rest nodes are the PQ buses (where the active and
reactive power are specified).

For the i-th PV bus, we have

U i

Ng∑
m=1
m ̸=i

Um
[
Gim cos(θim) +Bim sin(θim)

]
+ (U i)2Gii

+U i
Nb∑

Ng+1

V n
[
Gin cos(θ

in) +Bin sin(θ
in)

]
= P i, (1)

where U ’s are the voltage magnitudes at PV nodes that are
given as constants; V ’s are the voltage magnitudes at PQ nodes
(unknown); Gim and Bim are parameters of the network,
denoting the (i,m)-th elements of the bus conductance matrix
and bus susceptance matrix, respectively; θim := θi−θm is the
nodal voltage angle difference and θ1 = 0; P i is the specified
active power injections at the i-th PV bus [23].

Similarly, for the j-th PQ bus, we have

V j

Ng∑
m=1

Um
[
Gjm cos(θjm) +Bjm sin(θjm)

]
+ (V j)2Gjj

+ V j
Nb∑

Ng+1
n ̸=j

V n
[
Gjn cos(θ

jn) +Bjn sin(θ
jn)

]
= P j , (2a)

V j

Ng∑
m=1

Um
[
Gjm sin(θjm)−Bjm cos(θjm)

]
− (V j)2Bjj

+ V j
Nb∑

Ng+1
n̸=j

V n
[
Gjn sin(θ

jn)−Bjn cos(θ
jn)

]
= Qj , (2b)

where P j and Qj are the specified active power and reactive
power injections at the j-th PQ bus.

B. Power Flow Manifold

Equations (1) and (2) define the power flow map F that
sends nodal voltage magnitudes and angles to the nodal active
and reactive power injections.

F : RN → RN , F(V, θ) = (P,Q), (3)

where N = 2Nb − Ng − 1, V ∈ RNb−Ng , θ ∈ RNb−1, P ∈
RNb−1, Q ∈ RNb−Ng .

In the traditional power flow problem we assume that the
nodal power injections P and Q are fixed due to the high
predictability of conventional generation and load. So, the
voltage variables that admit the given power injection comprise
a 0-dimensional point set (the power flow solutions). However,
with more renewable generation penetrating into the grid, such
an assumption may not be valid in the future. If we relax all the
nodal power injections P and Q as free variables, the point set
that follows the power flow map F yields an N -dimensional
surface which defines our power flow manifold ϕ. Note that
conventional continuation methods only free one parameter up
in a single continuation process.

C. Singularity-Induced Voltage Stability Boundary

Voltage instability is strongly related to the power flow
Jacobian matrix reaching singularity [24]. Thus, the voltage
stability boundary ∂ϕ is defined by the point set,

∂ϕ = {(P,Q,V, θ)|F(V, θ) = (P,Q), det(∂F) = 0}. (4)

In this paper, we aim to develop a method that can estimate
the voltage stability boundary in a global manner, namely, for
all possible power variations. We achieve this by constructing
the geometric information of the power flow manifold.

D. Geometric Interpretation of Voltage Stability Region

By the Whitney Embedding Theorem [25], the N -
dimensional power flow manifold ϕ can be embedded in
R2N which is naturally selected as the power-voltage space
P ⊕Q ⊕V ⊕ θ. The corresponding parameterization map r
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is constructed by stacking the power flow map F with the
identity map I,

r : RN → R2N , r(V, θ) =
(
F , I

)
(V, θ). (5)

Since the Jacobian matrix of r has the full rank of N , r is
regular.

Define a projection map P from the power-voltage space to
the power subspace,

P : P⊕Q⊕V ⊕ θ → P⊕Q. (6)

If we further restrict P on ϕ, denoted as Pϕ, then Pϕ : ϕ →
P⊕Q is a map from the N -dimensional manifold ϕ to RN .

Let’s consider a given operating point z0 ∈ ϕ. For any open
neighborhood U of z0 in ϕ, if Pϕ is a homeomorphism on U ,
then (U,Pϕ) composes a so-called chart on ϕ and the image
of Pϕ, denoted as W (in the power space), defines a local
coordinate system of U .

Note that Pϕ fails to be a homeomorphism on U if there
exists some point y ∈ U such that the Jacobian matrix of the
power flow map F at y is singular. From differential geometry
point of view, this submanifold of singular points defines the
boundary of a particular coordinate system W in the power
subspace for the largest chart (Umax,Pϕ). This Umax is exactly
the voltage stability region enclosed by the singular boundary.

III. METRIC TENSORS AND GEODESIC EQUATION

In this section, we briefly summarize the differential geom-
etry tools that are used in the paper for self-completeness.
Interested readers can refer to [22], [26], [27] for a more
comprehensive exposition. Throughout the paper, we adopt
the notational convention from differential geometry unless
otherwise clarified. In general, we use superscripts to represent
indices and subscripts to represent partial derivatives for
multivariable vector-valued functions.

A. Tangent Space, Basis and Dual Basis

Consider a smooth map r : Rn → Rn+m, where r(s) =[
r1(s), . . . , rn+m(s)

]
, s = [s1, . . . , sn], n > 0 and m ≥ 0.

The point set ϕ :=
{
r(s) ∈ Rn+m | s ∈ Rn

}
defines an n-

dimensional surface where s is referred to as curvilinear coor-
dinates on ϕ. The vector-valued function r(s) is a parametric
representation for ϕ.

Define the i-th basic tangent vector ri ∈ Rn+m by

ri :=
∂r

∂si
. (7)

Let Tϕp be the tangent space of ϕ at some point p ∈ ϕ. Then,
Tϕp is spanned by the basis {ri}. We say ϕ is regular if the
rank of the matrix (∂ri/∂sj) is n. If ϕ is further Hausdorff
and second countable topological space, it is an n-manifold.

Consider a hypersurface ϕi :=
{
r(s) ∈ Rn+m | si = c

}
of

the n-dimensional surface ϕ for a fixed index i and a constant

c. Define ▽si ∈ Rn+m as the basic normal vector to the
hypersurface ϕi in Tϕp, given by1

▽si :=

(
∂si

∂r1
, . . . ,

∂si

∂rn+m

)
. (8)

Then, {▽si} forms the dual basis of tangent space Tϕp.
Hence, we have

⟨ri,▽sj⟩ = δji , (9)

where δji is the Kronecker delta.

B. Metric Tensors

The covariant metric tensor (gij) of the surface ϕ is a 2-
dimensional symmetric matrix whose entries gij are given by
the inner products of the tangent vectors,

gij := ⟨ri, rj⟩. (10)

Similarly, define the contravariant metric tensor (gij) of the
surface ϕ by the normal vectors,

gij := ⟨▽si,▽sj⟩. (11)

By (9) we have,
n∑

k=1

gikg
kj = δji , (12)

which indicates that the contravariant metric tensor is the
inverse matrix of the covariant metric tensor, namely,(

gij
)
= (gij)

−1. (13)

We will implement (13) when evaluating the voltage stability
boundary in Section IV.

C. Levi-Civita Connection

The metrics discussed above are naturally Riemannian met-
rics. Equipped with these metrics, we can further discuss
“straight lines” on the smooth manifold ϕ. In order to do so,
we need an appropriate tool to preserve the Riemannian metric,
which, in Riemannian geometry, is the Levi-Civita connection.

The coefficients of the Levi-Civita connection are locally
characterized by the Christoffel symbols of the second kind,
denoted by Γ k

ij . In what follows, we shall first compute the
Christoffel symbols of the first kind Γij,k,

Γij,k =
1

2

(
∂gjk
∂si

+
∂gik
∂sj

− ∂gij
∂sk

)
(14a)

= ⟨rij , rk⟩, (14b)

where rij := ∂ri/∂s
j . Then, the second kind Γ k

ij is derived
as,

Γ k
ij =

1

2

n∑
l=1

gkl
(
∂gjl
∂si

+
∂gil
∂sj

− ∂gij
∂sl

)
(15a)

=

n∑
l=1

gklΓij,l. (15b)

1To have a proper inverse map for r(s) when m > 0, one must restrict
the inversion to the embedded submanifold r(Rn) contained in Rn+m.
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Fig. 1: Illustration of the Levi-Civita Connection.

Geometrically speaking, if we project the rate of change of
tangent vectors, rij , to the tangent space Tϕp, the representa-
tion under the basis of the tangent vectors are the coefficients
of the Levi-Civita connection.

P(rij) =

n∑
k=1

Γ k
ijrk (16)

where P is the projection operator.
That is, Γ k

ij is the k-th projected component of the second
order derivative rij onto the tangent space. For a constant |rij |,
if Γ k

ij is small, it means the component of rij along the normal
direction is large, and this suggests a more curved surface. For
example, Fig. 1(a) shows a less curved surface (the blue curve)
with a large Γ k

ij value. On the contrary, Fig. 1(b) shows a more
curved surface with a small Γ k

ij value.

D. Geodesic Equation

Consider a smooth curve γ on the manifold ϕ. It can be
described by the canonical parametric representation in the
local coordinate system r

(
s(τ)

)
: R → Rn+m. For a curve

to be a geodesic curve, that is, the shortest path between two
points on a Riemannian manifold, γ must satisfy the following
geodesic equation that represents zero acceleration,

∂2sk

∂τ2
+

n∑
i,j

Γ k
ij

∂si

∂τ

∂sj

∂τ
= 0, ∀k, (17)

where τ is a canonical parameterization which is proportional
to the arc length of γ. Equation (17) serves as the core
formula for us to approximate the voltage stability boundary
in Section IV.

IV. APPROXIMATE VOLTAGE STABILITY BOUNDARY

In this section, we propose a novel method to approximate
the voltage stability boundary based on geometric quantities
discussed in Section III.

A. Approximating Voltage Stability Boundary

The interpretation in Section II-D implies that by examining
certain geometric properties of the chart Umax we might be able
to predict its boundary. Among different geometric objects, we
pay special attention to the geodesic curve because it inherits
the intrinsic geometry of the manifold and can be naturally
expanded to the neighborhood of the operating point and the
proximity of the singular boundary.

First, consider any curve in the chart Umax starting from
the origin z0 of the local coordinate system. Given the canon-
ical parameterization, we can expand the voltage magnitude
variable V k by the Taylor series,

V k(τ) = V k(0) +

∞∑
n=1

τn

n!

dnV k(0)

dτn
, (18)

where V k(0) is at the origin z0, τn denotes τ to the n-th
power.

Let’s further assume that the curve is geodesic. The higher
order derivatives dnV k(0)/dτn in (18) can be evaluated by
taking higher order derivatives of the Christoffel symbols
from (17),

V k(τ) = V k(0) + V̇ k(0)τ−
∞∑

n=2

τn

n!

N∑
i1,··· ,in

Γ k
i1···inẊ

i1(0) · · · Ẋin(0), (19)

where X includes both voltage magnitude V and angle θ, Xi

is the i-th entry of X, Ẋi is the derivative of Xi with respect
to τ , and Γ k

i1···in represents generalized connections [28].
To simplify the model and improve computational effi-

ciency, we truncate (19) to the second order, namely,

V k(τ) ≈ V k(0) + V̇ k(0)τ − τ2

2

N∑
i,j

Γ k
ijẊ

i(0)Ẋj(0). (20)

As an implication of Taylor’s theorem, (20) closely matches
the behavior of the geodesic curve in the vicinity of the origin.
We extend the approximation for estimating the boundary
of the chart. In particular, (20) admits a unique τ⋆ (that is
independent of the origin V k(0)) which yields the extremum
of the univariate linear and quadratic parts of (20). Therefore,
by substituting τ⋆ into (20) and enforcing the sign of the slope
V̇ k(0) on the first and second order terms, we provide the
approximated voltage stability boundary V k

appx for the k-th
PQ bus as follows,

V k
appx = V k(0) +

V̇ k(0)3

|V̇ k(0)|

(
2

N∑
i,j

Γ k
ijẊ

i(0)Ẋj(0)

)−1

. (21)

Note that the above approximation formula is based purely
on a single operating point. For example, according to (15b),
the Christoffel symbols Γ k

ij are computed from the first and
second-order derivatives of the power flow map, which are
locally evaluated at the given point. Extensive numerical
simulations in Section V will show that the approximated
boundary from (21) can follow the shape of the true boundary
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consistently and conservatively. Although rigorous proof of
this result is under investigation, we provide a geometric
interpretation for this phenomenon here. Recall Fig. 1 and
Section III-C, a smaller Christoffel symbol Γ k

ij implies that
the manifold is more curved in direction-k. If the geodesic
path is strongly inclined to direction-k, it should also be more
curved in this direction. So, the voltage magnitude V k at bus-
k should experience a deeper drop on the stability boundary.
Meanwhile, with a smaller Γ k

ij the quadratic approximation
(20) has a smaller coefficient for the quadratic term. Hence,
(21) predicts a deeper voltage decline at bus-k. By this means,
(21) can consistently follow the shape of the true boundary.

In summary, the general procedure of the proposed method
is given as follows:

1) Generate the covariant metric tensor (gij) from the first-
order derivatives using (10).

2) Obtain the contravariant metric tensor (gij) by taking
the inverse matrix of (gij) using (13).

3) Compute the Christoffel symbols of the first kind Γ k
ij

using (14b).
4) Compute the Christoffel symbols of the second kind

using (15b).
5) Approximate voltage stability boundary on each bus

using (21).

B. Reducing Conservativeness

We further provide a heuristic to improve the performance
of the above estimation. This heuristic is motivated by the
consistent approximation gap (c.f. Section V) that is nearly
uniform on the same bus for all power-varying directions. This
insightful observation motivates the following modification
of our method. Since (21) consistently yields a conservative
estimation of the voltage stability boundary, instead of working
on (21), let us consider,

V k
appx = V k(0) + αk V̇

k(0)3

|V̇ k(0)|

(
2

N∑
i,j

Γ k
ijẊ

i(0)Ẋj(0)

)−1

,

(22)
where αk ∈ R is a scaling factor that can be estimated by, for
example, running a continuation for a specific power-varying
direction. When αk = 1, (22) reverts back to the original
form in (21). This modification will substantially improve the
conservativeness of the original approximation which shall be
seen in Section V.

V. NUMERICAL SIMULATIONS

This section presents extensive numerical results to demon-
strate the performance of the proposed method under various
settings and scenarios. We implement continuation power flow
(CPF) as the benchmark method to identify a collection of nose
points as the true voltage stability boundary.

In Subsection V-A, we highlight the capability of the
original model (21) to reveal the global geometry (in a
conservative manner) of the voltage stability boundary based
on a single operating point. Subsection V-B further illustrates
how the modified approach (22) reduces the conservativeness

and improves the accuracy of the voltage stability boundary
estimation. In Subsection V-C, we highlight the computational
efficiency of the proposed method. All the simulations are
performed using Matlab 2017b on a PC with a 4-core 2.8
GHz CPU.

A. Simulation Results of the Original Method

This subsection demonstrates the capability of the origi-
nal model (21) to capture the global shape of the voltage
stability boundary using both 2D and 3D visualizations of
two benchmark systems, i.e., the IEEE 14-Bus and 39-Bus
systems. Note that the proposed methods are suitable for any
dimensional problems, but visualization can only be realized in
at most 3 dimensions. In what follows, blue curves represent
the true voltage stability boundary obtained from the CPF,
green curves are the approximated voltage stability boundary
from the proposed methods, and black lines are the starting
points.

To mimic the high variability of renewable generation, we
superimpose faster renewable variations on top of slower load
changes in all possible directions. The time-varying power
injection model is given by

P i(t) = P i
0 + cos(β)t, (23a)

P j(t) = P j
0 + sin(β)t, (23b)

where P i
0 and P j

0 are the initial power injections at node i
and j, respectively. Parameter β is distributed evenly in the
range [0, 2π], representing different power-varying directions.
We simulate load change and renewable variation in the same
way. When considering three different changing directions,
two independent angle variables β and δ are needed.

P i(t) = P i
0 + cos(β) cos(δ)t, (24a)

P j(t) = P j
0 + sin(β) cos(δ)t, (24b)

P k(t) = P k
0 + sin(δ)t. (24c)

For the IEEE 14-Bus example, we select Bus-4 and Bus-9
as the load-varying nodes with a constant power factor at 0.95
and select Bus-3 and Bus-6 as the renewable fluctuating nodes
with a 4× faster-changing rate than the load changing rate.

Figure 2 shows where the voltage magnitude reaches its
stability boundary at different buses. From a given operating
point, the original model can replicate the global shape of the
voltage stability boundary at each bus in a conservative and
uniform manner. The approximated boundaries (green curves)
follow the true boundaries (blue curves) consistently.

Figure 3 presents the approximated boundaries using the
original model at different initial points (i.e., different loading
conditions). In the light loading condition (c.f. Fig. 3(a)), the
starting voltage magnitude at Bus-4, as shown by the black
curve, is around 0.95 p.u. In the heavy loading condition, (c.f.
Fig. 3(b)), the starting voltage magnitude at Bus-4 is below 0.9
p.u. In both loading conditions, the approximated boundaries
follow the true boundary consistently.
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Fig. 2: IEEE 14-bus voltage stability boundary at different buses.
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Fig. 3: IEEE 14-bus voltage stability boundary in different
conditions.
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Fig. 4: IEEE 14-bus voltage stability boundary in 3D.

To further illustrate the capability of the proposed method
in a higher dimensional space, we add one more load-varying
node at Bus-11 and one more renewable varying node at
Bus-2. Figure 4 shows the corresponding voltage stability
boundary in 3D. One can observe that the high-dimensional
approximation still captures the essential shape of the true
voltage stability boundary.

For the IEEE 39-Bus example, we select Bus-4 and Bus-8 as
the load-varying nodes with a constant power factor at 0.95
and select Bus-33 and Bus-36 as the renewable fluctuating
nodes with a 4× faster-changing rate than the load changing
rate.

Figure 5 shows the approximated boundaries of the IEEE-
39 example at Bus-4 and Bus-8, from a given operating point.
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Fig. 5: IEEE 39-bus voltage stability boundary at different buses.
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Fig. 6: IEEE 39-bus voltage stability boundary in different
conditions.

0.8

V
6

0.8

V
3

1

0.9

0.9

V
1

9

10.8

1

(a) Authentic shape

0.95

V
6

1

V
3

1.02 1

1.02

1

V
1

9

0.98

1.04

(b) Approximated shape

Fig. 7: IEEE 39-bus voltage stability boundary in 3D.

Figure 6 depicts the approximated boundaries at different
initial loading conditions. We further add Bus-21 as the
third load-varying bus and plot the corresponding 3D voltage
stability boundaries in Fig. 7.

All the results obtained for the IEEE 39-Bus system share
the same properties as those of the IEEE 14-Bus system. It
suggests that the proposed model (21) can capture the global
shape of the true voltage stability boundary in a consistent and
conservative manner.

B. Simulation Results of the Modified Method

This subsection presents the simulation results from the
modified model (22) with the scaling factor αk for Bus-k to
demonstrate the improved performance.
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Fig. 8: IEEE 14-Bus system with different scaling factors αk.

Figures 8 and 9 compare the modified approximation results
with αk ̸= 1 (the right column) to the original approximation
(the left column) for the 14-Bus and 39-Bus systems, respec-
tively. The plots demonstrate that a uniform scaling factor
αk can greatly improve the conservativeness of the original
approximation for all power-varying directions β at the same
bus. In practice, to determine the value of this scaling factor
αk, one can compute a single voltage collapse point through
the CPF method to find a specific αk. Then, use this αk for
other power-varying directions.

Lastly, a 3-bus system with a slack bus (Bus 1) and two PQ
buses (Buses 2 and 3) is thoroughly examined. The nominal
parameters are chosen as r12 = r13 = r23 = 0.01 p.u.,
x12 = x13 = x23 = 0.09 p.u., b1 = b2 = b3 = 0.1 p.u.,
P 0
2 = P 0

3 = 0.8 p.u., and Q0
2 = Q0

3 = 0.2 p.u. We vary
the active power injections at the two PQ buses and keep
track of their voltage magnitudes. The corresponding 2D P-V
manifolds live in 3D subspaces, as shown by the blue curves
in Fig. 10. The ending dots in heavy blue are the true singular
boundary points given by CPF. Then, we apply (22) with
a uniform scaling factor αk = 4 to compute the estimated
voltage boundary, and plotted them as pink diamonds. As can
be seen from Fig. 10, the approximated boundary points match
the shape of the true singular boundary with small deviations.
Recall that this approximation was done at a single operating
point and was used for long-range predictions (6 p.u. in power
space) for many parameter-varying directions. It is reasonable
to conclude that the proposed estimation method performed
well.
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Fig. 10: Modified 3-bus system power-voltage space.

C. Computational Efficiency

We summarize the execution time for different IEEE bench-
mark systems in Table I. The first row reports the results
from a CPF method in [29] (without the holomorphic part)
and the second row reports the CPF method implemented
by the MATPOWER module. The next row reports the one-
time computation time for obtaining the Christoffel symbols.
The computing time for the proposed estimation method is
given in the next row. Each system is evaluated under 180
different power-varying directions on a circle for a fixed initial
condition. The speedup of the proposed estimation method
compared to the customized CPF [29] is collected in the last
line, and it is around 1000× in our implementation. Further
efficiency improvement is promised when the tensor sparsity
is explored. It suggests that the proposed method can be
used for online voltage stability boundary analysis under high
variability of renewable.
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TABLE I: Execution time for IEEE benchmark systems.

System 9-Bus 14-Bus 39-Bus
CPF [29] (sec) 10.4 17.5 42.5

CPF MATPOWER [30] (sec) 14.1 38 69.7
Christoffel computation (sec) 0.0009 0.00146 0.0136

Proposed estimation (sec) 0.0141 0.0191 0.0441
Speedup 739 916 964

VI. DISCUSSIONS

One of the most intriguing results is that the proposed
method can reconstruct the basic geometry of the voltage
stability boundary from a single operating point. Geometrically
speaking, the Christoffel symbols are evaluated at a given
point. Then, the geodesic equation (17) extends the local
information to the neighborhood of the given point (which
is still in the local sense). However, the collection of the
extrema obtained from the truncated quadratic approximation
(21) shows its capability of replicating the global shape of
the true voltage stability boundary in a conservative way.
Understanding such resemblance may inspire completely new
mathematical tools for analyzing global behaviors of future
complex power grids based on local measurements and com-
putations.

VII. CONCLUSION

This paper discusses how to use local geometry to ap-
proximate the shape of voltage stability boundary for future
renewable-rich power grids with large spatial-temporal distur-
bances. Instead of evaluating voltage stability in 1D predefined
directions, we first extracted intrinsic geometric information,
i.e., the Christoffel symbols for the Levi-Civita connection,
of the power flow solution manifold at a given operating
point. Then, the geodesic equation was further evaluated
to approximate the voltage magnitude on each bus in the
univariate quadratic form. The extrema of these univariate
quadratic equations were used to approximate the voltage
stability boundary and a further modification was proposed
to substantially improve the conservativeness. Extensive nu-
merical simulations under different scenarios were carried
out on the IEEE 14-Bus and 39-Bus systems to show the
accuracy of the proposed method in replicating the true shape
of the stability boundary in the global sense. It also showed a
1000× speedup of computational efficiency compared to the
continuation power flow method. Thus, the proposed method
is particularly suitable to handle high-dimensional wide-range
variability in renewable-rich power grids.

One of the future research directions will be focused on
exploring the sparsity of the proposed method to further
enhance the computational efficiency. Another interesting topic
is to show why the global geometry of the voltage stability
boundary is embedded in the local Levi-Civita connections.
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[4] C. A. Cañizares, N. Mithulananthan, A. Berizzi, and J. Reeve, “On the
linear profile of indices for the prediction of saddle-node and limit-
induced bifurcation points in power systems,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 50,
no. 12, pp. 1588–1595, 2003.

[5] K. Iba, H. Suzuki, M. Egawa, and T. Watanabe, “Calculation of
critical loading condition with nose curve using homotopy continuation
method,” IEEE Transactions on Power Systems, vol. 6, no. 2, pp. 584–
593, 1991.

[6] H.-D. Chiang, A. J. Flueck, K. S. Shah, and N. Balu, “CPFLOW: a
practical tool for tracing power system steady-state stationary behavior
due to load and generation variations,” IEEE Transactions on Power
Systems, vol. 10, no. 2, pp. 623–634, 1995.

[7] K. Chen, A. Hussein, M. E. Bradley, and H. Wan, “A performance-
index guided continuation method for fast computation of saddle-node
bifurcation in power systems,” IEEE Transactions on Power Systems,
vol. 18, no. 2, pp. 753–760, 2003.

[8] X.-P. Zhang, P. Ju, and E. Handschin, “Continuation three-phase power
flow: A tool for voltage stability analysis of unbalanced three-phase
power systems,” IEEE transactions on power systems, vol. 20, no. 3,
pp. 1320–1329, 2005.

[9] S.-H. Li and H.-D. Chiang, “Continuation power flow with nonlinear
power injection variations: a piecewise linear approximation,” IEEE
Transactions on Power Systems, vol. 23, no. 4, pp. 1637–1643, 2008.

[10] S. G. Ghiocel and J. H. Chow, “A power flow method using a new
bus type for computing steady-state voltage stability margins,” IEEE
Transactions on Power Systems, vol. 29, no. 2, pp. 958–965, 2013.

[11] D. Wu, B. Wang, F.-E. Wolter, and L. Xie, “Tri-sectional approxima-
tion of the shortest path to long-term voltage stability boundary with
distributed energy resources,” IEEE Transactions on Power Systems,
vol. 37, no. 6, pp. 4720–4731, 2022.

[12] T. Jung, K. Kim, and F. Alvarado, “A marginal analysis of the voltage
stability with load variations,” in Power Systems Computation Confer-
ence, 1990.

[13] I. Dobson and L. Lu, “New methods for computing a closest saddle
node bifurcation and worst case load power margin for voltage collapse,”
IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 905–913, 1993.

[14] F. Alvarado, I. Dobson, and Y. Hu, “Computation of closest bifurcations
in power systems,” IEEE Transactions on Power Systems, vol. 9, no. 2,
pp. 918–928, 1994.

[15] I. Dobson, “Computing a closest bifurcation instability in multidimen-
sional parameter space,” Journal of nonlinear science, vol. 3, pp. 307–
327, 1993.

[16] V. Venkatasubramanian, H. Schättler, and J. Zaborsky, “Dynamics of
large constrained nonlinear systems-a taxonomy theory,” Proceedings of
the IEEE, vol. 83, no. 11, pp. 1530–1561, 1995.

[17] Y. Kataoka and Y. Shinoda, “Voltage stability limit of electric power
systems with generator reactive power constraints considered,” IEEE
Transactions on Power Systems, vol. 20, no. 2, pp. 951–962, 2005.

[18] Y. Qiu, H. Wu, Y. Song, and J. Wang, “Global approximation of static
voltage stability region boundaries considering generator reactive power
limits,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5682–
5691, 2018.
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