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Abstract—This paper proposes an optimal selective  

under-frequency load shedding strategy to perform a corrective 

control action that prevents the loss of frequency stability. The 

proposal decomposes this optimal load shedding problem into 

two mutually connected subproblems: the frequency stability 

analysis and the optimal load shedding. These two subproblems 

are sequentially solved until the minimum load shedding needed 

to recover the center-of-inertia frequency close to its nominal 

value is determined. The link between those two subproblems is 

a frequency performance index, which indicates the frequency 

deviation at each generation node with respect to the nominal 

frequency value. To selectively perform the load shedding, two 

novel methods are developed to identify which nodal loads most 

affect the frequency dynamics and to determine how the selected 

loads must be shed to return the frequency close to its nominal 

value at the maximum rate of change. The effectiveness of the 

proposed method is numerically demonstrated in two 

benchmark power systems. 

Index Terms—Directional derivative, event-driven, load 

shedding, frequency stability. 

NOMENCLATURE 

FU Frequency unstable 

FS Frequency stable 

LFU Last frequency unstable 

FFS First frequency stable 

OP System operating point 

LL System’s last loadability 

dP  Active power demand 

dQ  Reactive power demand 

dP  Active power load shedding 

dQ  Reactive power load shedding 

LL  Load shedding 

if  Frequency at the i-th generator’s node  

nf  Nominal frequency 

COIf  Center of inertia frequency 

PIf  Frequency performance index 

, diPI P
f  Frequency performance index at the i-th 

system loadability 

PIf  Gradient vector of the frequency 

performance index 

iH  Constant of inertia of the i-th generator 

a

diP  Load shedding availability at the i-th node 

RP  Reference load shedding 

RDP  Load shedding reference direction 

RMP  Load shedding reference magnitude 

,zi zip q  Constant impedance portion of the load 

,ci cip q  Constant current portion of the load 

,pi qip q  Constant power portion of the load 

,pi qik k  Frequency characteristic coefficients 

0t  Time of fault inception 

clt  Fault clearing time 

LSt  Time of load shedding application 

endt  Study time period 

ut  Time to instability 

nsst  Time to new steady-state 

I. INTRODUCTION 

The design of practical control actions to maintain the 

system’s frequency dynamic response within bounds when a 

severe disturbance occurs in the electric power system is of 

paramount importance. In this vein, under-frequency load 

shedding (UFLS) schemes are used as the last resort to 

guarantee the system’s frequency stability, defined as “the 

ability of a power system to maintain steady frequency 

following a severe system upset resulting in a significant 

imbalance between generation and load” [1]. In general, these 

schemes are classified into two categories: response-driven 

(RD) and event-driven (ED) UFLS [2], with the latter scheme 

being the most widely employed in practice [3]. In the RD-

UFLS, the load shedding (LS) is triggered based on the 

system’s transient response following a disturbance [4], [5], 

which involves the real-time monitoring of predefined 

electric state variables. Therefore, these schemes are executed 

in multiple steps to gradually retain the frequency stability 

and avoid over-shedding. By contrast, in the ED-UFLS 

schemes, the control actions are designed off-line, and they 

are automatically triggered following the occurrence of a 

contingency scenario without considering the feedback of the 
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system’s transient response [2], [3]. Because the magnitude 

of the disturbance is known in advance, event-driven schemes 

tend to respond faster in critical situations [2], [3]. 

One aspect to address in the design of a UFLS scheme is 

how to determine the location and quantity of load to be shed. 

To achieve this goal, there are three general methods: load 

hierarchy-based classification [6], [7], a rate of change 

computation for a specific parameter with respect to (w.r.t.) 

the perturbation of nodal loads [8], [9] and the application of 

dynamic trajectory sensitivities [2], [10]. Regarding the latter, 

an optimal event-driven load shedding is proposed in [2] that 

simultaneously considers transients related to rotor angles, 

voltage magnitudes and frequency. Margin indices for these 

three types of transient behaviors are derived from time 

domain simulations to construct transient security and 

stability constraints, where the former set of constraints is 

associated with the transient voltage and frequency 

deviations. The LS is performed in two steps. First, a LS is 

determined to obtain a transiently stable operating point 

regarding rotor angles. This LS is considered the lower bound 

of a LS vector to stabilize possible voltage and frequency 

instability problems through a constrained optimization 

model that minimizes the cost of LS. On the other hand, an 

event-driven UFLS is proposed in [10], where the optimal LS 

is determined by minimizing the cost of nodal load shedding 

subject to a set of constraints, which include frequency 

dynamic approximations. These approximations are 

expressed in terms of frequency trajectory sensitivities of the 

system’s frequency w.r.t. the amount of LS. 

   Based on the preceding discussion, a completely 

different frequency stability-constrained optimal load 

shedding (FSC-OLS) approach is proposed in this paper to 

determine how the LS must be optimally performed to avoid 

a post-fault loss of frequency stability. The proposed  

ED-UFLS approach relies on decomposing the FSC-OLS 

problem into two mutually connected subproblems: one 

associated with the frequency stability assessment (FSA) and 

the other related to the optimal selection of nodal LS. These 

two subproblems are sequentially solved until the minimum 

LS needed to retain the system stability is determined. The 

connection between both subproblems is achieved through a 

frequency performance index (FREPI) obtained from the 

FSA.  The specific contributions of this work can be 

summarized below. 

 A novel method for identifying the electric loads that have 

more impact on the stabilization of the post-fault 

dynamics of nodal frequencies is proposed based on the 

concepts associated with both the gradient of 

multivariable functions and trajectory sensitivity analysis. 

 An original approach based on directional derivatives is 

proposed to determine how the direction and magnitude of 

nodal loads must change in the parametric load space to 

maintain the post-disturbance frequency stability. 

 A new sequential formulation of the FSC-OLS problem is 

proposed to optimally perform a selective LS, which 

avoids heuristic decision techniques. 

II. FUNDAMENTALS OF THE FREQUENCY CONTROL 

APPROACH 

Considering an electric transmission system composed of a 

set of nodes  : 1,2, , N  and a set of load nodes 

 : 1,2, ,L LN  such that 
L  , the proposed 

approach’s main objective is to optimally calculate the 

amount of LS that must be applied to a base load level, which 

defines the system’s base operating point, to maintain the 

system’s frequency within scheduled bounds for a specified 

contingency scenario.  To achieve this objective, the proposed 

stabilization process is decomposed into two mutually 

connected problems: one related to the assessment of the 

system’s frequency response for a given contingency scenario 

and the other associated with determining an optimal LS that 

bounds the system’s frequency evolution within a secure 

region for that specified contingency. These two problems are 

sequentially solved until obtaining the LS at which the 

system’s base operating point is declared a frequency stable 

equilibrium point because the deviation of generators’ 

frequency is within specified bounds. In this frequency 

stabilization process, the information supplied from the 

frequency stability study to the optimization problem is the 

FREPI’s sensitivities caused by perturbations of nodal loads 

and the resulting nodal load of active power after applying 

the LS. On the other hand, the information exchanged in the 

opposite direction is the nodal LS of active power that must 

be applied at a specified time in a new frequency stability 

study. 

III. FREQUENCY STABILITY ASSESSMENT 

A. Frequency Stability Analysis 

The frequency stability assessment (FSA) of a power 

system is assessed by solving the set of nonlinear  

differential-algebraic equations (DAEs) given by 

 

( , , ) :

( , , ) :

m n p m

m n p n

m n p

 

 

  

  

     

0

x f x y f

g x y g

x X y Y





 

 . (1) 

The dynamic variables of generators and controllers are 

contained in x, while the algebraic variables are grouped in y. 

Furthermore,   contains the system and operating 

parameters. The set of functions ( ) ( , , ) f f x y   represents 

the time evolution of dynamic variables, which are 

constrained to the set of nonlinear algebraic equations 

( ) ( , , ) g g x y   that represent nodal power mismatches. 

During the k-th iteration of the frequency stabilization 

process, the solution of (1) is performed for a period of time 
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given by      0 , , ,cl cl LS LS endT t t t t t t    from an 

equilibrium point defined by the system’s last loadability 

(LL): OPk(LLk-1), where 1 1 1k k k

d dj   LL P Q . Furthermore, 

t0 is the time at which the fault is incepted, tcl denotes the 

fault clearing time and tLS is the time at which the LS is 

applied. Finally, tend is the study time period. Note that tcl is 

null for outages of generators because the fault is not cleared. 

Lastly, the active and reactive powers demanded at the i-th 

node at the t-th discrete time step of the solution of (1) are 

given by the sets of equations (2) or (3): 
 

   

   

   

0 0 0

0 0 0

2
, 1, , , ,
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LS

LS

t k t tt k t k t k t k

di di zi i i ci i i pi pi

t k t tt k t k t k t k

di di zi i i ci i i qi qi

LS end L

P P p V V p V V p k f

Q Q q V V q V V q k f

t t t i

 

 





 
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 

 
    

 
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=
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The set of equations (2) represent the voltage- and 

frequency-dependent ZIP-based load models [11]. In contrast, 

the set of equations (3) corresponds to equations (2) but 

considers the power demand after a load shedding has been 

performed, as indicated in the time periods associated with 

both sets of equations. 

In (2) and (3), kpi and kqi denote the frequency characteristic 

coefficients. On the other hand, the amount of total load 

proportional to constant impedance, constant current and 

constant power is given by (pzi, qzi), (pci, qci) and (ppi, qqi), 

respectively. Lastly, , 1LSt k

diP
  and , 1LSt k

diQ
  are given by (4), 

where 1k

diP   is the LS computed through the optimization 

process detailed in Section IV: 
 

0 0, 1 , 1 , 1 , 11 1,LS LSt k t k t k t kk k base base

di di di di di di di diP P P Q Q P Q P
        .   (4) 

 
During the post-fault period, the possible violation of a 

frequency threshold is assessed at each discrete time step 

0,t t t  , through the deviation of each i-th machine’s nodal 

frequency  k

if t  from the nominal operating frequency 
nf . 

The system frequency is declared insecure if the following 

inequality constraint is satisfied at a given time 
ut , where Ng 

denotes the number of generators embedded in the network: 
 

   max , 1, ,k

n i u gf f t f i N     .             (5) 

 
Additionally, the solution of (1) at 

ut  permits quantifying 

how much the nodal frequency trajectories have deviated 

from the nominal frequency by defining a FREPI  PI uf t , 

which is given by the sum of squared residuals: 

     
2

1

Ng
k k

PI u n i u

i

f t f f t


   . (6) 

Note that a large value of  k

PI uf t  indicates a large 

deviation of nodal frequency trajectories from fn such that the 

FREPI’s value must be reduced to avoid the condition (5).  

Lastly, after applying the LS at tLS, the power system will 

have another loadability given by 1 1k k k LL = LL LL , 

which is referred to as a frequency unstable load level LLFU if 

the OPk is frequency unstable; otherwise, the resulting 

system’s load is referred to as a frequency stable load level, 

which is denoted by LLFS. 

B. Trajectory Sensitivity Analysis 

If the frequency stability analysis declares the operating 

point OPk(LLk-1) as frequency unstable at time tu, a way of 

judging the most influential loads in minimizing the value of 

 k

PI uf t  is by computing how the time trajectory of  k

PIf t  

changes for a small perturbation of each load  0 , 1

1

LN
t k

di
i

P



.  

If the i-th load 0 , 1t k

diP
  is slightly perturbed from 0 , 1t k

diP
  to 

0 , 1t k

diP  , the numerical sensitivities of the nominal trajectory 

of  k

PIf t (resp.  k

COIf t ) w.r.t. changes in nodal loads 

correspond to the slope of the secant line through 

 0 , 1
,

t kk

PI dif t P


 (resp.  0 , 1
,

t kk

COI dif t P


) and the perturbed 

trajectory  0 , 1
,

t kk

PI dif t P 
 (resp.  0 , 1

,
t kk

COI dif t P 
). Hence, 

these dynamic trajectory sensitivities are given by [12]: 
 

       0 0

0 0 0 0

, 1 , 1

, 1 , 1 , 1 , 1

, ,
t k t kk kk k

PI di PI diPI PI

t k t k t k t k

di di di di

f t P f t Pf t f t

P P P P



 

 

   


 

 
, (7) 

       0 0

0 0 0 0

, 1 , 1

, 1 , 1 , 1 , 1

, ,
t k t kk kk k

COI di COI diCOI COI

t k t k t k t k

di di di di

f t P f t Pf t f t

P P P P



 

 

   


 

 
.   (8) 

 
Based on (7) and (8), it is possible to compute the gradient 

of  k

PI uf t  w.r.t. changes in the system’s COI frequency 

 k

COI uf t , which in turn rises or falls as one changes nodal 

loads. Hence, if the i-th load 0 , 1t k

diP


 has a small perturbation 

over its nominal value that results in 0 , 1t k

diP  , the i-th element 

of the gradient vector  k

PI uf t  corresponds to the sensitivity 

of  k

PI uf t  w.r.t. to the change of  k

COI uf t produced by the 

perturbation of 0 , 1t k

diP


: 
 

 
   

   

, 1 , 10 0

, 1 , 10 0

, ,

, ,

t k t k

di di

t k t k

di di

k k

u uPI P PI Pk

PI u Lk ki

u uCOI P COI P

f t f t
f t i

f t f t





 

 


  


  , (9) 
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where  , 10,
t k

di

k

uPI P
f t  is given by  

     , 1 , 10 0

2

, ,
1

t k t k

di di

Ng
k k

u n uPI P i P
i

f t f f t 



  .  (10) 

Furthermore, the value of  , 10,
t k

di

k

uCOI P
f t  is given by (11), 

where 
iH  represents the inertia constant of the i-th generator: 

    , 1 , 10 0, ,
1 1

t k t k

di di

Ng Ng
k k

u i u iCOI P i P
i i

f t H f t H 

 

   . (11) 

Similarly, the values of  , 10,
t k

di

k

uPI P
f t


  1, , gi N   and 

 , 10,
t k

di

k

uCOI P
f t


  are also obtained by solving (1) for the period 

of time      0 , , ,cl cl LS LS uT t t t t t t    by considering each 

perturbation 0 , 1t k

diP   1, , Li N   and the specified 

contingency scenario. Based on the results of this set of time 

domain simulations,  , 10,
t k

di

k

uPI P
f t


  and  , 10,

t k

di

k

uCOI P
f t


  are 

computed by (10) and (11), respectively, by changing the 

subindex 0 , 1t k

diP


 by 0 , 1t k

diP  . Hence, the required sensitivities 

are directly obtained from the change in the dynamic 

trajectories of nodal frequencies caused by a small change in 

loads. 

IV. OPTIMAL ASSESSMENT OF LOAD SHEDDING 

If the FSA executed at the (k-1)-th iteration of the 

stabilization process detected that OPk-1(LLk-2) is a frequency 

unstable equilibrium point, the guiding principle for 

determining the vector of LS 1kLL  to be applied during the 

FSA at the k-th iteration is based on finding a suitable vector 

of active power LS 1k

d

P  through the proposed frequency 

stability-constrained optimal LS (FSC-OLS) as follows. In 

the Euclidean space, the vector 1k

d

P  is composed of the 

amount of active load to be shed at each node:  

 
T

1 1 1
1 ,.....

L

k k k
d d d NP P       P  , (12) 

where T indicates a transposed vector. Once 1k

d

P  is 

determined, the reactive power LS 1k

d

Q  is directly 

computed by considering a constant power factor, which 

results in a known 1kLL . 

The new LS 1k
d
P  must be optimally computed based on 

the following information provided by the FSA: i) the vector 

of trajectory sensitivities  k

PI uf t  and ii) the system’s LL of 

active power load 1k

d


P  with components 

   0 , 11 1

1 1

LL NN
t kk k

di di dii i
P P P

 

 
  . Conversely, determining the 

suitable LS that avoids the post-fault loss of frequency 

stability requires decomposing 1k
d
P  in terms of its 

magnitude 1 1k k

M dP    P  and a vector that points in the 

same reference direction as 1k
d
P  with a length 1: the unit 

vector 1 1 1 1ˆk k k k

D d d d

        P P P P . The resulting 

equation is given by 
 

 1 1 1k k k
d M DP     P P  . (13) 

 
In the context of the frequency stabilization process, if the 

magnitude 1k

MP   and the direction 1k

D

P  of the LS 1k
d
P  

are properly adjusted, the dynamic trajectories of frequencies 

will evolve towards a frequency stable region after the LS is 

performed. In order to accomplish the proper adjustment of 
1k

d
P , however, a reference magnitude 1k

RMP   and reference 

direction 1k

RD

P  must be properly assessed to steer the 

system’s frequency response towards a frequency stable 

operating region. The assessment of these references is 

described below. 

C. Estimation of the Reference Load Shedding 

To perform the correct LS in the direction of the bounded 

frequency region, one must determine a reference active 

power LS: 1k
R
P , defined by the direction and magnitude in 

which the nodal load profile must change in the parametric 

load space of active power. This section describes how to 

compute the reference direction 1k
RD
P  and reference 

magnitude 1k
RMP   associated with 1k

R
P  at the (k-1)-th 

iteration of the stabilization process: 1 1 1k k k
R RM RD= P    P P . 

 

1) Reference direction of load shedding RDP  

Determining whether an active power load should increase 

or decrease its value to improve the system’s frequency 

stability defines the reference direction of LS. The direction 

in which each nodal load must change in the parametric load 

space is grouped in the reference direction vector 1k
RD
P . The 

components of 1k
RD
P  are determined from the rate of change 

at which the value of  1k

PI uf t
 decreases most rapidly 

because of perturbations in nodal loads. 

The directional derivative of  1k

PI uf t
 in the direction 

1k
RD
P  is given by the dot product of the vectors  1k

PI uf t  

and 1k
RD
P  as shown in (14), where   is the angle between 

vectors  1k

PI uf t  and 1k
RD
P . Hence, (14) represents the 

scalar projection of the gradient vector  1k

PI uf t  onto 

1k
RD
P : 

     1 1 1 1 1 1

1

cos .
LN

k k k k k k

PI u RD PI u RD i PI u RDi
i

f t f t P f t      



     P P   (14) 

 

Since  1k

PI uf t  points in the direction of the fastest 

increase of  1k

PI uf t , the direction of the unit vector 1k
RD
P  
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must be the opposite of  1k

PI uf t  to decrease  1k

PI uf t  most 

rapidly: 

    1 1 1k k k

RD PI u PI uf t f t   P   . (15) 

Lastly, note that the computation of 1k
RD
P  by (15) 

indicates that the angle between vectors  1k

PI uf t  and 

1k
RD
P  is 180o: cos  equals -1, which results in the minimum 

value of the dot product (14). 

The absolute value and sign of each component of 1k

RD

P  

provide valuable information about performing the LS for the 

frequency stabilization process. On the one hand, the 

components of 1k
RD
P : 1

1

LNk
RDi i

P 


  with the higher absolute 

values correspond to the active power loads that improve the 

frequency stability most significantly. On the other hand, the 

negative components of 1k
RD
P :  1

1
0

LNk
RDi i

P 


  , which are 

grouped in the subset of curtailed loads (CL), i.e., 
CL

L L , correspond to the active power loads that must 

be curtailed to reduce the value of  1k

PI uf t  in order to steer 

the system to a frequency stable region. Finally, the positive 

components of 1k
RD
P :  1

1
0

LNk
RDi i

P 


  , which compose the 

subset of non-curtailed loads (NCL), i.e., NCL

L L , 

correspond to the active power loads that must be increased 

to reduce the value of  1k

PI uf t . Since the proposed approach 

focuses on UFLS, however, these loads remain fixed at their 

previous values during the iterative solution of the FSC-OLS 

optimization problem. Based on the information mentioned 

above, the loads to be curtailed can be selected in a non-

heuristic way. 
 

2) Reference magnitude of load shedding RMP  

The reference magnitude 1k

RMP   corresponds to the 

maximum amount of load curtailment to be performed in the 

reference direction 1k
RD
P . To assess this reference 

magnitude, the optimization problem (16) to (18) must be 

first solved for the vector of maximum loadability of active 

power 
max

k
dP with components  

max 1

LN
k

di
i

P


: 

  max

max

T
1 1min ( )

k
d

k k k
RD d df Δ      

P

P P P  (16) 

max

10 ,k k CL
di di LP P i      (17) 

max

1 0, .k k NCL
di di LP P i      (18) 

 

Once 
max

k
dP has been obtained, 1k

RMP   is computed from 

the dot product of 
1k

RDΔ 
P  and the unit vector of 

max

1k k
d d

P P . 

D. FSC-OLS Model for Optimal Load Shedding 

Based on the LS reference vector 1 1 1k k k
R RM RD= P    P P , the 

proposed FSC-OLS model is given in (19) to (21). Once the 
optimization problem is solved for the LS availability at each 

load node  ,

1

LN
a k

di
i

P


, which are lumped together in ,a k
dP , the 

vector of active power to be shed at each node is given by the 

Hadamard product  1 1 , 1k k a k k
d R d d
    P P P P : 

  ,

T
1 1 , 1min

a k
d

k k a k k
d R d dP        P

P P P ,  (19) 

, 10 ,a k k CL
di di LP P i    ,   (20) 

, 1 0,a k k NCL
di di LP P i    .   (21) 

Lastly, the vector 1k
d
P  is used to perform the LS during 

the FSA at the k-th iteration of the stabilization process 

through (4) for the active and reactive power loads. 

V. FSC-OLS STABILIZATION PROCESS 

Considering a frequency unstable operating point OPk 

for a selected contingency scenario and a loadability level 

LLk-1, the proposed stabilization algorithm consists of two 

phases: a) the bracketing and b) the refinement phases [13], 

which are described in detail below. 

A. Bracketing Phase 

At the k-th iteration of the bracketing phase, a FSA is 

performed by solving (1) for a given contingency scenario, a 

system’s LLk-1 and a specified LS 1 1 1k k k
d dj     LL P Q . If 

the condition (5) is satisfied at tu, the OPk(LLk-1) is declared 

unstable, and the trajectory sensitivity analysis of  PI uf t  is 

performed to obtain the numerical sensitivities given by (7) 

and (8). Based on the gradient vector  k

PI uf t , the reference 

direction k
RDΔP  and the reference magnitude k

RMP  are 

computed from (15) and the optimization problem (16) to 

(18), respectively. An optimal LS k
dP  is then obtained by 

solving the constrained optimization problem (19) to (21). 

Lastly, k k k
d dj   LL P Q  is computed by using k

dΔP  to 

determine the amount of reactive power to be shed: Q
k
d , 

where  

    
1 1

.
LL

NN
k base base k

di di di dii i
Q Q P P

 
    (22) 

 
This stabilization process is repeated by performing a new 

(k+1)-th iteration of the bracketing phase until obtaining a LS 
finalk

dP in the kfinal-th iteration in which the operating point 

1
OP ( )final finalk k

LL  withstands the contingency scenario in 

terms of recovering the steady-state frequency value above a 

specified threshold:    max , 1, ,finalk BS

i end n gf t f f i N    . 
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Lastly, once finalk

dP has been found, the total amount of LS 

ΔLStotal to be applied to the base operating point OPbase at tLS 

is given by 
1

finalktotal i

i
  LS LL .  

Based on the information mentioned above, the bracketing 

phase is outlined in Figure 1. 

B. Refinement Phase 

The refinement stage is activated if and only if 

   max , 1, ,finalk RS

i end n gf t f f i N    , where max max

RS BSf f   . 

The activation constraint implies that in the solution of the 

bracketing phase the frequency evolution does not stabilize to 

a value near the nominal frequency. In this case, after 

obtaining the first frequency stable operating point OPFFS 

from the bracketing phase, the results transferred to the 

refinement phase are the last reference direction and 

magnitude computed at the bracketing phase: LFU
RDΔP ,

LFU

RMP  

and the base active power demanded at each node .base
dP  

Furthermore, the interval TM  at the k-th iteration of this stage 

is defined in terms of the reference magnitude of LS in order 

to apply the bisection process: 

_ _0,k k LFU

M RM low RM up RMT P P P        . 

Based on the data mentioned above, the refinement phase 

changes the total amount of active power shedding total
dP  

applied to base
dP  in the reference direction LFU

RDΔP  to steer the 

evolutions of generators’ nodal frequencies and thus the COI 

frequency toward a value close to the nominal frequency. 

This goal is achieved by iteratively adjusting the reference 

magnitude RMP  by considering the vectors LFU
RDΔP and base

dP  

as references, which remain fixed during the refinement 

phase. At the k-th iteration of the refinement phase, a new 

reference magnitude is computed by bisecting the interval TM 

:  _ _ 2k k k

RM RM low RM upP P P    . Based on this new value 

of
k

RMP  and the known vectors LFU
RDΔP  and base

dP , the FSC-

OLS problem given by (19) to (21) is solved to obtain an 

optimal active LS k
dΔP  with components that are used to 

compute the system’s new loadability through (4) when 

applying the LS during the FSA of OPbase. Note that the 

trajectory sensitivity analysis is not required during the FSA 

at this refinement stage. If this analysis detects that nodal 

frequency evolutions at generators’ nodes satisfy 

   , 1, ,k

i end n gf t f TOL i N   , the upper endpoint of TM 

must change to
_

k k

RM up RMP P   . On the other hand, if  

   , 1, ,k

n i end gf f t TOL i N   , the lower endpoint of TM 

is the one changed to 
_

k k

RM low RMP P   .  For the purpose of 

simulations TOL= max

RSf . This iterative process continues 

until the constraints mentioned above are no longer violated. 

Lastly, the procedure described above is schematically shown 

in Figure 2. 
 

 
Figure 1. Bracketing phase of the FSC-OLS stabilization process. 

 
 

  
Figure 2. Refinement phase of the FSC-OLS stabilization process. 
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VI. CASE STUDIES 

By applying the proposed OLS approach, the frequency 
control is numerically demonstrated in this Section. Two case 
studies are reported considering the New England 39-bus 
system and the IEEE 118-bus system, respectively. All loads 
are modeled with the voltage and frequency dependent model 
given in (2) and (3), with polynomial coefficients given as 
ppi=qqi=0.4, pci=qci=0.4, pzi=qzi=0.2 [14] and kpi =kqi=1 [11]. 
On the other hand, the generators are represented by the sixth 
order model, while their corresponding control units consist of 
an IEEE type 1 exciter and a single reheat tandem-compound 
steam turbine governor model.  Lastly, the transient safety 
assessment tool (TSAT), included in the DSATools™ 
software [15], is used to perform dynamic simulations that 
provide the evolutions of nodal frequencies when the system 
is subjected to a contingency scenario.  

C. New England 39-bus system 

The New England 10-machine, 19-load, 39-bus system 
data for the dynamic- and steady-state analyses are taken from 
[16]. The contingency consists of a generator trip event 
incepted at t0 =10s at bus 30, which provokes the loss of 250 
MWs: a 4.45% of the total system’s generation of active 
power. Under this contingency scenario, the COI frequency 
computed by (11) decays to a steady-state value of 59.53 Hz if 
no LS is applied, as shown in Figure 3.  

By considering the setpoint of 59.7 Hz for activating the 
first UFLS step used in the Florida Reliability Coordinating 
Council (FRCC) scheme [17], the maximum allowed nodal 
frequency deviation of Δfmax=0.3 Hz is employed in (5), from 
which the first under-frequency relay is activated. In addition, 

a value of max 0.2BSf  Hz is considered in the bracketing phase 

to reestablish the nodal frequencies at generators’ nodes above 
the threshold of Δfmax. Lastly, the steady-state value of the 
frequency to be obtained in the refinement phase is defined 

close to its nominal value by assuming max 0.1RSf  Hz. 

Based on the information mentioned above, the TD 
simulation detects the violation of Δfmax at tu=14s with a value 
of fPI(tu)=0.8281Hz, which triggers the frequency stabilization 
process through the computation of dynamic sensitivities and 

the reference values of 1
RDΔP  and 

1

RMP  at the bracketing 

stage. The reference direction vector 1
RDΔP  is shown in  

Table I for each nodal load, where it is clear that only 15 loads 

must be shed. Furthermore, the reference magnitude 
1

RMP  has 

a value of 0.3135. The reference vector of LS 1
RΔP  is then 

computed and used in the OLS problem to obtain the first 
optimal LS that corresponds to a total amount of 372 MWs, 
with nodal load sheds of active power defined by the vector 

1
dΔP , as indicated in Table II. Finally, 1 1 1

d dj   LL P Q  is 

computed to perform a new FSA where the LS of 1LL  is 
applied at tu. This second FSA indicates that the COI 
frequency increased from 59.7 Hz to about 60.15 Hz. Since 
the COI frequency above 59.8 Hz was achieved based on an 

over shedding, the amount of LS must be reduced by applying 
the refinement stage of the proposed approach. In this last 
stage of the stabilization process, the resulting total amount of 
LS was 192.85 MW with the amount of active power load to 
be shed at each node, as reported in Table III. Hence, only 
3.16% of the total load was disconnected to stabilize the 
generators’ nodal frequencies and to return the COI frequency 
to a value of 59.90 Hz, as shown in Figure 3. 

TABLE I. RDΔP values of loads 

Bus ΔPRD  Bus ΔPRD Bus ΔPRD Bus ΔPRD 

3 -0.1342 15 -0.1355 23 -0.1933 28 -0.2289 

4 0.0094 16 -0.1285 24 -0.1447 29 -0.1681 

7 -0.2034 18 -0.2643 25 -0.2161 31 -0.3774 

8 0.0260 20 0.0977 26 -0.2802 39 0.4661 

12 -0.3789 21 -0.1722 27 -0.1688   

 

TABLE II. Nodal load shedding at the first iteration of the bracketing phase 

Bus ΔP (MW) % of Pd Bus ΔP (MW) % of Pd 

3 27.08 8.41% 23 30.00 12.12% 

4 0.00 0.00% 24 28.00 9.07% 

7 29.70 12.75% 25 30.35 13.55% 

8 0.00 0.00% 26 24.42 17.57% 

12 1.78 23.73% 27 29.74 10.58% 

15 27.18 8.49% 28 29.56 14.35% 

16 26.51 8.06% 29 29.88 10.54% 

18 26.18 16.57% 31 2.18 23.70% 

20 0.00 0.00% 39 0.00 0.00% 

21 29.59 10.80% Total 372.15 6.10% 

 

TABLE III. Final nodal load shedding 

Bus ΔP (MW) % of Pd Bus ΔP (MW) % of Pd 

3 13.55 4.21% 23 6.44 7.90% 

4 0.00 0.00% 24 4.61 5.76% 

7 16.16 6.94% 25 7.37 8.96% 

8 0.00 0.00% 26 9.32 11.70% 

12 0.00 0.00% 27 5.58 6.82% 

15 13.62 4.26% 28 7.76 9.47% 

16 13.03 3.96% 29 5.50 6.85% 

18 14.10 8.92% 31 0.00 16.09% 

20 0.00 0.00% 39 0.00 0.00% 

21 15.54 5.67% Total 192.85 3.16% 

 

 

Figure 3. Frequencies for the New England 39-bus system for LS at tu. 
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TABLE IV. Nodal load shedding with tnss=100s 

Bus ΔP (MW) % of Pd Bus ΔP (MW) % of Pd 

3 17.00 5.28% 23 19.56 7.90% 

4 0.00 0.00% 24 17.77 5.76% 

7 19.60 8.41% 25 20.06 8.96% 

8 0.00 0.00% 26 16.26 11.70% 

12 1.21 16.13% 27 19.17 6.82% 

15 17.12 5.35% 28 19.50 9.47% 

16 16.59 5.04% 29 19.43 6.85% 

18 17.39 11.01% 31 1.48 16.09% 

20 0.00 0.00% 39 0.00 0.00% 

21 19.10 6.97% Total 241.24 3.96% 
 

TABLE V. Comparison of UFLS schemes 

UFLS Scheme 
Frequency  

value (Hz) 
ΔP (MW) % of total Pd 

Proposed approach 59.99 241.24 3.96% 

UFLS [9] 60.19 491.40 8.06% 

FRCC UFLS [17] 60.12 548.67 9.00% 
 

TABLE VI. CPU time for the frequency stabilization (in seconds) 

Stage 
Frequency analysis FSC-OLS phase 

Total 
Stability Sensitivity Bracketing Refinement 

Time 2.06 53.63 10.18 6.64 72.51 

 
A more efficient LS that increases the nodal frequencies 

to a value very close to the nominal value is recommended in 
[18], where the UFLS scheme is designed based on the 
maximum load-generation imbalance that is obtained once 
the frequency settles at its minimum value after the 
contingency. Within the context of the proposed approach, 
this idea is implemented by computing the dynamic 
sensitivities at time tnss, instead of tu, at which the frequency 
evolution has reached a new steady-state value.  

The case study described above was repeated by 
computing the dynamic sensitivites at tnss=100s and by 
applying the LS at tu =14s. In this case, the same 15 loads had 
to be shed during the stabilization process that required a 
single iteration in the bracketing phase and two iterations in 
the refinement stage. The solution of the stabilization process 
determined a total of 241.24 MWs to be shed, as reported in 
Table IV, to recover the nodal frequencies and COI frequency 
up to a value of 59.99 Hz, as shown in Figure 4. 

The LS obtained with the proposed approach is now 
compared with the total amount of the load to be shed when 
applying the static sensitivity-based UFSL scheme detailed in 
[9] and the FRCC LS scheme [17]. These results are reported 
in Table V, which clearly shows that the proposed UFLS 
provides the minimum amount of LS for recovering the 
frequency very near to its nominal value. 

Lastly, the proposal runs on an Intel® Core I5 2.40 GHz 
computer with 12 GB of RAM. In this context, Table VI 
reports the CPU times required for the different stages of the 
proposed approach when computing the sensitivities at t=tnss. 
As expected, the sensitivity analysis required the most time 
during the frequency stabilization process, as reported in 
column 3. 

 

D. IEEE 118-bus system 

The proposed approach is applied to the IEEE 118-bus 
system composed of 19 generators, 35 synchronous 
condensers, 177 lines, 9 transformers, and 91 loads. The 
system data for the dynamic- and steady-state analyses are 
taken from [19] and [20], respectively. It is assumed that a 
generation outage occurred at bus 10, producing a loss of 450 
MWs: 10.44% of the system’s total active power generation. 
This contingency decreased the frequency to a steady-state 
value of 58.87 Hz, as shown in Figure 5. Hence, a UFLS 
scheme is designed considering a maximum nodal frequency 
deviation of Δfmax=0.7 Hz so that the UFLS control action is 
activated at a frequency value of 59.3 Hz with a time delay of 

0.2s. Furthermore, max 0.2BSf  Hz and max 0.1RSf  Hz. The 

stabilization process required only two iterations of the 
bracketing stage. Following the recommendation given in 
[18], the dynamic sensitivities were computed at a time in 
which the frequency returns to a constant value: tnss=50s. The 
vector ΔPRD computed from the sensitivity analysis indicates 
that all loads can be shed, with the loads embedded at buses 
102 and 109 possessing a major impact on the stabilization 
process. The first iteration of the stabilization process results 
in a fPI(tnss)=24.403 Hz and a total LS of 272.96 MW, which 
was applied at tLS=1.8s to recover the frequency value of 59.49 
Hz. Since this value is below 59.8 Hz, a second iteration was 
performed with a solution of fPI(tnss)=4.876 Hz and a total 
amount of LS of 502.72 MWs:13.79% of the total load, where 
loads at buses 102 and 109 are shed in 15.21% and 15.31%, 
respectively. In this case, the generators’ nodal frequencies 
and COI frequency evolved to a value of 60.03 Hz, as shown 
in Figure 5, so no refinement phase was needed. 

 

 

  

Figure 4. Frequencies for the New England 39-bus system for LS at tnss. 
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Figure 5. Frequency system without UFLS and with the proposed UFLS. 

VII. CONCLUSIONS 

This paper proposes a new frequency stability-constrained 

optimal LS that relies on the independent sequential solution 

of the frequency stability and optimal LS problems framed in 

a unified frame of analysis through a frequency performance 

index. Within this context, a systematic trajectory-based 

approach is derived from first principles to identify the most 

suitable loads to be shed in terms of their impact on 

improving the load-generation balance and, in turn, on the 

effectiveness of the control action without using heuristic 

criteria. Based on this sensitivity analysis, an optimization 

problem is formulated to determine how the UFLS control 

action must selectively perform the amount of LS for 

maintaining nodal frequencies within prescribed limits. The 

effectiveness of the proposed approach is successfully 

illustrated by numerical examples so that its practical 

application becomes attainable. 
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