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Abstract—Machine learning techniques have been successfully
used in probabilistic wind power forecasting. However, the issue
of missing values within datasets due to sensor failure, for
instance, has been overlooked for a long time. Although it is
natural to consider addressing this issue by imputing missing
values before model estimation and forecasting, we suggest
treating missing values and forecasting targets indifferently and
predicting all unknown values simultaneously based on observa-
tions. In this paper, we offer an efficient probabilistic forecasting
approach by estimating the joint distribution of features and
targets based on a generative model. It is free of preprocessing,
and thus avoids introducing potential errors. Compared with
the traditional “impute, then predict” pipeline, the proposed
approach achieves better performance in terms of continuous
ranked probability score.

Index Terms—forecasting, wind power, missing values, gener-
ative model.

I. INTRODUCTION

Though renewable energy is commonly acknowledged as
the workhorse for carbon neutrality, its inherent uncertainty
challenges power systems operation and electricity markets.
Therefore, forecasting is deemed an indispensable tool for
system operators and has developed for decades; see a recent
review [1]. Of particular interest is probabilistic wind power
forecasting [2], which leverages information such as weather
and lagged observations up to the current time to communicate
the probability of wind power generation at a future time in
terms of densities, quantiles, prediction intervals, etc.

Typically, forecasting models can be developed using either
parametric or nonparametric approaches with state-of-the-art
machine learning techniques. The parametric approach relies
on distributional assumptions such as Gaussian, Beta, and
Logit-normal distributions, with shape parameters estimated
through statistical and machine learning methods [3], [4]. In
contrast, non-parametric approaches are free of such assump-
tions. Among these, quantile regression (QR) [5] is the most
popular due to its success in forecasting competitions and ease
of use. Particularly, by using novel machine learning models
such as gradient boosting machine and N-BEATS [6], [7], the
performance of QR could be considerably improved. However,
the notorious “quantile crossing” phenomena in QR can be
hardly avoided. Consequently, increasing works are focusing
on non-parametric density forecasting approaches [8], [9].

Along with advancements in probabilistic wind power fore-
casting research, data are becoming the fuel for powerful
data-driven models. However, missing values in data are
prevalent in the energy sector, posing challenges for both

model estimation and forecasting [10]. An intuitive approach
is to select samples based on observed missingness patterns,
and retrain models for each pattern. However, this requires
prohibitive computational effort, as the number of potential
missing patterns grows exponentially with the number of
features. Though it is natural to impute missing values prior to
model estimation and forecasting (referred to as “impute, then
predict”), the imputation may introduce errors that ultimately
degrade the quality of forecasts. Consequently, it remains an
open issue to design probabilistic wind power forecasting
approaches in the presence of missing values.

The seminal work in time series forecasting with missing
observations can date back to [11], which represents ARMA
models in the state-space form. In this approach, the state
update equation is bypassed at times when observations are
missing. This was later extended to ARIMA models in [12],
[13]; however, the focus is still confined to linear models
and point forecasts. A robust optimization approach for the
regression framework is proposed in [14], assuming some
features are complete. Parameters are optimized by minimizing
the worst-case loss over the missingness. However, it only
addresses model training issues aroused by missing values,
leaving operational forecasting challenges unsolved.

Indeed, both the missing features and the forecasting targets
are unknown, and their prediction can be indifferently deduced
from observations. Specifically, we can incorporate the missing
features and targets into a distributional learning framework.
This allows us to estimate a joint distribution using partially
observed data, which is termed the “universal imputation”
strategy. During the operational forecasting stage, forecasts can
be obtained through the marginalization of missing features.
Building upon this concept, we formulated a probabilistic
forecasting model using the fully conditional specification
(FCS) approach in our prior research [15]. Nevertheless,
implementing the FCS necessitates training a model indepen-
dently for each probabilistic scenario in an iterative fashion.
As a result, its computational complexity poses a significant
obstacle, impeding its practical applicability.

In this work, we tackle the computational challenge dis-
cussed in [15] using a generative approach. Specifically, we
develop a generative model employing an auto-encoder [16]
alongside deep learning techniques. This model assumes ob-
servations to be mappings of latent variables from an unknown
distribution. During the training phase, we concatenate feature-
target pairs as instances and utilize them to estimate the
parameters of the generative model. The evidence lower bound
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is obtained by using the method proposed in [17]. Specifically,
we employ a normalizing flow model [18] to represent the
variational distribution, enabling a more flexible approxima-
tion of the posterior distribution. As such, it is feasible
to approximately maximize the likelihood of observations.
During the forecasting stage, we randomly sample scenarios
from the the latent variable distribution and map them to
values that then act as observation proposals. Then, we assign
weights to each proposal sample based on the likelihood of
actual observations and employ these weights for resampling.
After that, the forecasts for targets are generated through
marginalization over missing variables. We demonstrate the
superiority of the proposed approach based on an open dataset.
It surpasses the routine “impute, then predict” strategy in the
context of continuous ranked probability score (CRPS) and
significantly enhances computational efficiency as compared
to the FCS model in [15].

The contexts are organized as follows. We describe the
preliminaries in Section II and formulate the problem in
Section III. The generative model is introduced in Section IV,
whereas the case study is performed in Section V. Results and
discussion are presented in Section VI. We conclude the paper
in Section VII.

II. PRELIMINARIES

In this section, we will introduce the concept of probabilistic
wind power forecasting, the definition of missingness mecha-
nisms, and the theorem for inference with missing values.

A. Probabilistic Wind Power Forecasting

For simplicity, let us consider the univariate wind power
forecasting with a special focus on very short-term cases,
where missingness often occurs. Let Yt denote the random
variable for wind power generation value at time t, and yt
its realization. Probabilistic wind power forecasting aims at
communicating the probability of wind power generation at
time t + k (also referred to as targets) with the information
up to time t (also referred to as features), based on model
M with parameters θ. The information is often composed of
previous values of length h, i.e., yt−h+1, yt−h+2, · · · , yt−1, yt.
For convenience, we write them as yt and the corresponding
random variable as Y t. Probabilistic forecasting is described
as

p̂Yt+k
(yt+k) = p(yt+k|yt−h+1, yt−h+2, · · · , yt−1, yt;M, θ).

(1)
The model M could be either parametric or non-parametric
(w.r.t distributional assumption). Particularly, we assume the
underlying process is stationary, therefore parameters θ can be
estimated based on historical data y1, y2, · · · , yT . The estimate
for θ is denoted as θ̂.

B. Missingness Mechanism

Let random variable Mt represent whether yt is missing,
mt ∈ {0, 1} its realization. mt = 1 implies yt is missing,
whereas mt = 0 implies yt is observed. Accordingly, the cor-
responding mask variable for the variable Y t is written asM t,

whose realization is mt ∈ {0, 1}h. In the modern statistical
theory [19], missing mechanisms can be classified into three
categories: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). Taking
variables Y t and M t as an example. The parametric model
for the joint distribution of the data sample and its mask is
described as

p(yt,mt; θ, ψ) = p(yt; θ)p(mt|yt;ψ), (2)

where θ and ψ represent the parameters of the distribution
of data and masks respectively. The data sample can be split
into an observed part yot and a missing part ymt , i.e., yt =
(yot ,y

m
t ). Then the missingness mechanisms are respectively

defined as
• MCAR: p(mt|yt;ψ) = p(mt;ψ),
• MAR : p(mt|yt;ψ) = p(mt|yot ;ψ).
• MNAR: p(mt|yt;ψ) = p(mt|yot ,ymt ;ψ),

That is, the MCAR mechanism is independent of the data
sample. In contrast, the MAR mechanism is dependent on yot
yet independent of ymt , whereas the MNAR mechanism is
dependent on both the observed and missing values.

As yt can be decomposed into an observed part yot and a
missing part ymt , The likelihood can be derived by integrating
over missing values, i.e.,

p(yot ,mt; θ, ψ) =

∫
ym
t

p(yot ,y
m
t ; θ)p(mt|yot ,ymt ;ψ)dymt .

(3)
In addition, the likelihood of observed data is

p(yot ,mt; θ) =

∫
ym
t

p(yot ,y
m
t ; θ)dymt . (4)

Rubin proved inference for θ on the condition of MAR
mechanism [20], which is stated as:
Theorem 1 (Theorem 7.1 in [20]) Let ψ such that for all
t, p(mt|yt;ψ) > 0. Assuming data are MAR, p(yot ,mt; θ, ψ)
is proportional to p(yot ,mt; θ) w.r.t. θ, so that inference for
θ can be obtained by maximizing p(yot ,mt; θ) while ignoring
the mechanism.

Here we assume wind power data are MAR, as the miss-
ingness is often caused by sensor failures and communication
errors, which is irrelevant to sample values. As a result, we can
only focus on the distribution of data and leave the modeling
of missingness aside.

III. PROBLEM FORMULATION

Missingness may occur in both features and targets, which
raises challenges to the parameter estimation stage for the
model (1), as the model predictions and gradients cannot
be calculated in the presence of missing values. In fact, the
conditional distribution can be derived through marginalization
if the joint distribution p(yt, yt+k;M, θ) is available. Here, we
denote the model asM′, and the parameters as θ. The forecast
for Yt+k is described as

p̂Yt+k
=

p(yt, yt+k;M′, θ)∫
yt
p(yt, yt+k;M′, θ)dyt

. (5)
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Fig. 1. Transition from conditional distribution modeling to joint distribution modeling, where blue blocks indicate observed values and yellow blocks indicate
unobserved values.

Then, the forecasting problem boils down to a distribution
modeling problem in the presence of missing values. With
Theorem 1, we know that we are allowed to estimate the
distribution p(yt, yt+k;M′, θ) with missing values when the
missingness mechanism is MAR. We illustrate the model
framework in Fig. 1, where blue boxes indicate observed
values and yellow boxes indicate unobserved values.

For notational simplicity, we concatenate Y t and Yt+k,
and write it as Zt = [Y >t , Yt+k]

>, its realization as zt =
[y>t , yt+k]

> ∈ Rh+1, and the mask as st = [m>t ,mt+k]
> ∈

{0, 1}h+1. Accordingly, the observed and missing parts of zt
are written as zot and zmt respectively. While at the forecasting
stage, we derive the conditional distribution of zmt , i.e.,

p(zmt |zot ;M′, θ̂) =
p(zmt , z

o
t ;M′, θ̂)∫

zm
t
p(zmt , z

o
t ;M′, θ̂)dzmt

.

In fact, zmt is composed of ymt and yt+k, i.e., zmt =
[ymt , yt+k]. Then, the forecast for yt+k can be derived via
marginalization:

p(yt+k|zot ;M′, θ̂) =
∫
ym
t

p(zmt |zot ;M′, θ̂)dymt . (6)

To sum up, the challenge at the model estimation stage
is to learn the distribution p(zt;M′, θ̂) based on incomplete
data {z1, z2, · · · , zT }. While at the forecasting stage, the
challenge lies in the efficient calculation of marginalization.

IV. METHODOLOGY

In this section, we describe the model architecture at first,
followed by the estimation procedure. Then, we show how to
use the estimated model for operational forecasting by using
the techniques derived in [17].

A. Model Architecture

Particularly, we establish the model based on the variational
auto-encoder (VAE) [16], which assumes data are generated
from a latent variable ut ∼ p(u) via a decoder model
p(zt|ut; θ), i.e.,

ut ∼ p(u), zt ∼ p(zt|ut; θ). (7)

Usually, the prior distribution of the latent variable is set as a
normal distribution N (z|0, I) where 0 represents a vector of
0 and I represents a diagonal matrix of 1. And, it has become
a mainstream approach to leverage variational inference to
estimate the parameters θ. For that, a posterior approximation
namely the encoder model q(ut|zt;φ) is required, which is
assumed to approximate p(ut|zt). In this work, of particular
interest is approximating the posterior distribution via the
observed part, i.e., q(ut|zot ;φ). Then, we can to recover the
unknown part zmt via p(zt|ut; θ). The graphical model of data
recovering is illustrated in Fig. 2. For computational ease, we
use a function g to convert zt into a value in the Real number
space, i.e.,

g(zt) ∈ Rh+1, g(zt)
o = zot .

The function could be implemented as imputing missing
values with 0.

✟☛
�

✁☛ ✟☛
✂

Encoder Decoder

Fig. 2. Illustration of how missing values are recovered by using the encoder
and decoder models.

In this work, we use a Student’s t-distribution to model the
decoder, i.e.

p(zt|ut; θ) = St(zt|µ(ut; θ),Σ(ut; θ),ν(ut; θ)), (8)

where µ(ut; θ), Σ(ut; θ), ν(ut; θ) are the shape parameters
estimated via neural networks. To obtain more faithful approx-
imation for the posterior distribution, we use the strategy in
[18], i.e., using a base distribution together with a normalizing
flow to model the posterior. Specifically, the base distribution
is set as a Gaussian distribution. To make a distinction, we here
write the base variable for ut as u(0)

t . Then u(0)
t follows:

u
(0)
t ∼ N (µ(g(zt);φ),Σ(g(zt);φ)) (9)

The normalizing flow operates as a chain of N transforms,
i.e.,

u
(N)
t = fN ◦ · · · ◦ f2 ◦ f1(u(0)

t ), (10)
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Fig. 3. Sampling based on the decoder and encoder models for operational forecasting.

where ◦ represents the composition of functions. For the n-the
transform, it operates on u(n−1)

t and yields u(n)
t , i.e.,

u
(n)
t = fn(u

(n−1)
t ), (11a)

u
(n−1)
t = f−1n (u

(n)
t ), (11b)

where f−1n is the inverse function of fn. Specially, the final
output u(N)

t is ut. The log-likelihood is then derived as

log q(ut|zot ) = log q(u
(0)
t )−

∑
n

log |det ∂fn

∂u
(n−1)
t

|, (12)

where det represents the determinant operator. Specifically,
we use autoregressive flow as in [9].

B. Model Estimation Stage

In statistical learning, the parameters in p(zt;M′, θ) are
often learned via the maximum likelihood estimation, i.e.,

θ̂ = argmax
θ

∑
t

`(zt; θ),

where `(·) represents the log-likelihood function. In the pres-
ence of missing values within data samples, the likelihood
is only associated with observations under the assumption of
MAR. The estimate then converts into:

θ̂ = argmax
θ

∑
t

`(zot ; θ).

For the generative model, we derive the log-likelihood via the
chain rule:

θ̂ = argmax
θ

∑
t

log

∫
ut

p(zot |ut; θ)p(ut)dut. (13)

With the variational distribution, we write the log-likelihood
as ∑

t

log

∫
ut

p(zot |ut; θ)p(ut)
q(ut|g(zt);φ)

q(ut|g(zt);φ)dut

=
∑
t

logEq
p(zot |ut; θ)p(ut)
q(ut|g(zt);φ)

def
= L(θ, φ).

(14)

As L(θ, φ) is intractable, we derive the evidence lower bound
by using the Jensen inequality, i.e.,

L(θ, φ) ≥
∑
t

Eq log
p(zot |ut; θ)p(ut)
q(ut|g(zt);φ)

=
∑
t

Eq[log p(zot |ut; θ) + log p(ut)− log q(ut|g(zt);φ)]

def
= ELBO(θ, φ).

(15)

Particularly, we derive an importance weighted lower bound
by sampling from q(ut|g(zt);φ), i.e.

ELBO(θ, φ) =
∑
t

log
1

K

K∑
k=1

p(zot |utk; θ)p(utk)
q(utk|g(zt);φ)

, (16)

where ut1,ut2, · · · ,utK ∼ q(ut|g(zt);φ). Consequently, we
estimate the parameters by minimizing ELBO(θ, φ), and
denote the final estimate as θ̂, φ̂.

C. Forecasting Stage
At the forecasting stage, yt+k is missing by nature, that is

zmt = [xmt
>, yt+k]

>. Then, given the observed part, we are
allowed to generate samples from q(ut|g(zot ); φ̂)p(zt|ut; θ̂).
Assume we obtain L samples, which are denoted as

(ut1, zt1), (ut2, zt2), · · · , (utL, ztL).

Each sample (uti, zti) is associated with a weight

wi =
p(zot |uti; θ̂)p(uti)
q(uti|g(zt); φ̂)

. (17)

Then we resample M of the L samples, with the probability
defined by their corresponding weights. The procedure is
sketched in Fig. 3. The samples for zt are rewritten as

z̃t1, z̃t2, · · · , z̃tM ,

which are generated by p(zt|zot ; θ̂, φ̂). Accordingly, the prob-
abilistic scenarios for Yt+k are derived by fetching the last
value of each sample, i.e., ỹt+k,i = z̃ti[h+1], and denoted as

ỹt+k,1, ỹt+k,2, · · · , ỹt+k,M . (18)
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V. CASE STUDY

This section focuses on the validation of the proposed
approach using an open dataset from the USA, specifically the
Wind Integration National Dataset [21]. The dataset encom-
passes hourly data spanning 7 years, from 2007 to 2013. 80%
of the data is allocated as the training set, with the remaining
20% designated for the test set. Subsequently, we commence
by detailing the experimental configurations and proceed to
introduce benchmark models alongside verification metrics.

A. Experimental Setups

As the original dataset is complete, we introduce simulated
missingness to validate the efficacy of the proposed approach.
Data samples are systematically extracted from the dataset
in a random manner, leading to the dispersion of missing
values across the data. Various missing rates are explored to
validate the applicability of the proposed approach. As for
the features for use, we consider whether the information
from neighboring wind farms is available, and design two
cases, i.e., forecasting at a selected site using solely its local
information, and incorporating nearby data in addition to its
own. Importantly, both cases adhere to the MAR assumption,
given that the occurrence of missingness is irrelevant to the
specific missing values. The setups are detailed below:
• Case 1: Forecasting at a site by using its own informa-

tion.
• Case 2: Forecasting at a site by using nearby informa-

tion together with its own.
We explore various lead times (namely, 1, 2, and 3) in this
context. The feature length is determined through the process
of cross-validation. Specifically, we employ the logit-normal
transformation to map normalized power values into the Real
space R.

B. Benchmark Models

In general, we consider a naive model that estimate uncon-
ditional distributions via historical samples and models based
on the “impute, then predict” strategy as benchmarks. Besides,
we use a fully conditional specification model based on
the “universal imputation” strategy as a benchmark, enabling
comparison in forecast accuracy and complexity. Furthermore,
we regard a model trained on complete data as a reference
point. They are described in detail as below:
• Climatology: The method conveys forecasts by es-

timating the unconditional distribution using historical
values. Consequently, this method yields identical dis-
tributional forecasts for all prediction targets.

• QR-IM: Missing values within features are imputed
through a regression-based approach i.e., MissForest [22]
during both the training and forecasting stages. Subse-
quently, a QR model is trained using the imputed data
during the training stage and then applied during the
forecasting stage.

• Gaussian-IM: Missing values within features are im-
puted through the MissForest during both the training and

forecasting stages. A Gaussian model is trained based on
the imputed data during the training stage and leveraged
during the forecasting stage.

• DeepAR [23]: Instead of employing an extra imputation
procedure, the intermediate outcomes of the recurrent
neural network model are harnessed for imputing missing
values during both model estimation and forecasting
stages.

• FCS [15]: The joint distribution of features and targets is
estimated by using data with missing values. Specifically,
a distinct conditional distribution for each variable is es-
timated by iteratively sampling and predicting. Forecasts
are derived via multiple imputation by chained equations.

• Reference: A QR model trained based on the complete
dataset.

Ideally, we assume proficient forecasting methods should
exhibit performance comparable to the reference model when
confronted with missing values.

C. Verification Metrics

The quality of probabilistic forecasts is assessed via sharp-
ness, calibration, and a proper score, i.e., the continuous
ranked probability score (CRPS), which are briefed below. For
further details, readers are referred to [24].

• Sharpness: The concentration of the predictive dis-
tributions. Specifically, it is expressed as the widths of
central prediction intervals at several nominal levels.

• Calibration: Statistical compatibility of probabilistic
forecasts and observations. Here, it is expressed as the
empirical coverage of central prediction intervals at sev-
eral nominal levels.

• CRPS: Given the lead time k, write F̂t+k the predicted
cumulative distribution function, the CRPS is defined as

CRPS(F̂t+k, yt+k) =

∫
y

(
F̂t+k(y)− I(y − yt+k)

)2
dy,

where I(·) is a step function at yt+k. We report the
average CRPS of all observations in the testing set.

VI. RESULTS AND DISCUSSION

We will present the results in each case and analyze the
merits and caveats of the proposed approach. In the two cases,
we set K as 50.

A. Case 1

CRPS values for 1-step forecasts generated by the proposed
model are presented in Table I across varying missing rates.
As expected, the CRPS value demonstrates an increase with
the rising missing rate. For illustrative purposes, we display
the 90% prediction intervals for a 7-day period using the
proposed approach under a 20% missing rate in Fig. 4.
The displayed intervals effectively encompass the observed
data, as demonstrated. The comparison in performance with
benchmark models will be presented in subsequent sections.
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TABLE I
CRPS VALUES OF 1-STEP FORECASTS ISSUED BY THE PROPOSED MODEL
AT DIFFERENT MISSING RATES (IN TERMS OF NORMALIZED CAPACITY).

Missing rate 5% 10% 15% 20% 25%

CRPS 6.9 7.0 7.2 7.3 7.5

B. Case 2

In this subsection, we present results achieved through
the incorporation of neighboring data along with the site’s
own information. Our emphasis lies in forecasting for the
selected site under a 20% missing rate. Meanwhile, varying
missing rates are simulated for two adjacent wind farms. Table
II displays the CRPS values for 1-step forecasts, utilizing
auxiliary features (AFs), across varying missing rates. The per-
centage represents the AFs’ respective missing rates. Despite
the presence of missing values in AFs, the utilization of nearby
data can still enhance the quality of forecasts. Furthermore,
this observation validates the capacity of our proposed model’s
features to encompass additional relevant information.

TABLE II
CRPS VALUES OF 1-STEP FORECASTS WITH THE ASSISTANCE OF AFS AT

DIFFERENT MISSING RATES (IN TERMS OF NORMALIZED CAPACITY).

No AFs AFs AFs 5% AFs 10% AFs 20%

CRPS 7.3 6.9 7.0 7.1 7.1
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Fig. 4. 90% prediction intervals of 1-step forecasts for 7 days, issued by the
proposed approach.

C. Comparison with Benchmarks

To facilitate comparison, we display the CRPS values for
forecasts generated by benchmark models in Case 1 with a
20% missing rate in Table III. Broadly speaking, the DeepAR
model’s performance falls short of both the “impute, then
predict” and “universal impute” based models we utilized. In
contrast to our proposed method, which estimates parameters
by maximizing observation likelihood, DeepAR employs in-
termediate outcomes of a recurrent neural network to impute

missing values within the sequence and then employs a
conventional parameter estimation technique. Consequently, its
performance even lags behind that of simple models trained
on imputed data. To elaborate, despite the convenience of
being preprocessing-free, certain “end-to-end” methods such
as DeepAR mainly resort to ad-hoc strategies for addressing
missing values, lacking solid theoretical foundations and ulti-
mately diminishing forecast quality.

Models based on the “impute, then predict” approach exhibit
relatively inferior performance compared to those rooted in
“universal imputation”. The “impute, then predict” concept
is intuitive. If we can effectively restore missing data, the
errors stemming from imputation in forecasting would remain
minor. Nevertheless, despite employing the state-of-the-art
MissForest technique in QR-IM and Gaussian-IM, errors are
inevitably introduced to the forecasting model. Furthermore,
it lacks a solid theoretical foundation; in contrast, the “uni-
versal imputation” approach, operating under the assumption
of MAR, is capable of deriving Bayes optimal parameter
estimates. The proposed model’s performance is relatively
inferior to that of FCS. This discrepancy might stem from the
fact that the decoder in our model is solely characterized by a
Student’s t-distribution. Additionally, reliability and sharpness
diagrams for 1-step forecasts across all models are illustrated
in Fig. 5 and Fig. 6, respectively. The reliability diagrams of
FCS, Gaussian-IM, and our proposed VAE model is closely
aligned, comparable to the reference model. On the other hand,
our model’s forecasts exhibit greater sharpness compared to
those of FCS and Gaussian-IM.
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O
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d
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y

[%
]

Model
FCS
Reference
QR-IM
VAE
Gaussian-IM
DeepAR
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Fig. 5. Reliability diagrams of 1-step forecasts for all models.

D. Influence of K on ELBO

As indicated by formula (16), the lower bound is approxi-
mated through K samples drawn from the latent distribution.
In this subsection, we examine the impact of K by altering
its value in Case 1 under a lead time of 1. We set K
to the values 1, 5, 10, 20, and 50, respectively. Table IV
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TABLE III
CRPS VALUES WITH DIFFERENT LEAD TIMES AT THE MISSING RATE OF 20% (IN TERMS OF NORMALIZED CAPACITY).

Lead Time Climatology QR-IM Gaussian-IM DeepAR FCS Reference Proposed

1 18.6 7.8 7.6 7.8 6.9 6.9 7.3
2 18.6 10.1 10.2 10.2 9.1 9.3 9.7
3 18.6 11.9 11.9 12.1 10.9 11.2 11.5
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Fig. 6. Sharpness diagrams of 1-step forecasts for all models.

displays the CRPS for 1-step forecasts, varying with different
values of K. Empirically, larger values of K correspond to
smaller CRPS values for forecasts. As demonstrated in [25], a
larger K results in a more stringent bound, approximating the
likelihood more closely as K reaches a sufficient magnitude.
A more stringent evidence lower bound leads to more accurate
estimation of the proposed model’s parameters. On the other
hand, greater values of K introduce heightened computational
load during both model estimation and forecasting phases.

TABLE IV
CRPS VALUES OF 1-STEP FORECASTS ISSUED BY THE PROPOSED MODEL
BASED ON DIFFERENT K RATES (IN TERMS OF NORMALIZED CAPACITY).

K 1 5 10 20 50

CRPS 7.8 7.5 7.4 7.4 7.3

E. Effectiveness of Posterior Approximation

In contrast to establishing the posterior distribution within a
known distribution class, we employ a normalizing flow model
to approximate it within this study. This approach provides
enhanced flexibility in modeling the posterior distribution. In
fact, the lower bound in formula (15) can be also written as∑

t

[−KL[q(ut|g(zt);φ)||p(zt)] + Eq[log p(zot |ut; θ)]] ,

where KL(·) represents the Kullback–Leibler divergence.
Thus, the posterior distribution achieves optimality when
q(ut|g(zt);φ) aligns with the true posterior distribution. For

comparative purposes, we select q(ut|g(zt);φ) to be a mul-
tivariate Gaussian distribution in Case 1. Consequently, the
CRPS for 1-step forecasts amounts to 7.5, exceeding that of
the proposed model.

F. Complexity Analysis

As disclosed in [15], the training process of FCS involves
iterative estimation for every conditional distribution, caus-
ing its complexity to exhibit super-linear scaling with the
feature dimension. Representing the feature dimension as h,
FCS constructs h regression models, each corresponding to
a distinct conditional distribution. Once the regression model
is set, minor changes to the training time occur with feature
modifications. Accordingly, the training time for a regression
model is denoted as T . The total training time for FCS in a
iteration will be

M ∗ h ∗ T,

which is linear in the number of scenarios M . If we assume
the training time for a sub neural network in the proposed
model is T , then the overall training time becomes contingent
on the quantity of neural networks L. As the proposed model
samples K times from the latent distribution, the total training
time is

K ∗ L ∗ T.

In essence, the training time of the proposed model remains
unaffected by the number of scenarios and is less impacted
by the feature dimension. To clarify, we display the training
times for each model under case 1 in Table V. The training time
for the proposed model is within acceptable limits. Moreover,
while the feature dimension in case 2 is three times that of case
1, the training time for the proposed model exhibits a marginal
increase compared to case 1. Conversely, the training of FCS
in case 2 would demand over two hours. Additionally, during
the forecasting stage, the FCS model outlined in [15] retains
reliance on iterative imputation, with potentially impractical
computation times. In contrast, the proposed approach draws
upon ancestral sampling and importance resampling, enabling
the generation of scenarios without resorting to iterations.

TABLE V
TRAINING TIME FOR EACH MODEL WITHIN CASE 1 (MINUTES).

QR-IM Gaussian-IM DeepAR FCS Proposed

Time 1 32 67 41 7
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VII. CONCLUSION

In comparison to the straightforward “impute, then predict”
strategy, the “universal imputation” strategy derives Bayesian
estimate for parameters by maximizing the likelihood of
observations, assuming data are missing at random. Hence,
when we can effectively estimate distribution parameters in
the presence of missing values using advanced techniques,
the forecasting quality surpasses that of models based on the
“impute, then predict” approach. In this paper, we present an
efficient approach based on the generative model, which ex-
hibits significantly greater computational efficiency compared
to the fully conditional specification. It is easy to use at the
operational forecasting stage, and allowed to generate several
probabilistic scenarios at once.

However, our current investigation is limited to analyzing
the distribution within time windows of a fixed length. This
focus, however, results in the omission of certain information
pertaining to the sequential structure inherent in time series
data. Additional endeavors might be necessary to exploit the
sequential structure of time series data for updating distri-
butions across consecutive time windows. Furthermore, it’s
important to note that this approach is designed to handle cases
where missing data occurs at random. However, there remains
a necessity to formulate forecasting methodologies tailored to
situations where data is missing not at random.
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