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Abstract—In this work, we propose and analyze battery-level
approaches to mitigate system welfare losses due to total energy
forecast errors in energy-constrained microgrids. We present
a receding horizon approach, develop a data-based method
and heuristic approaches that leverage the receding horizon
environment, and then analyze performance on a system based
on real data. We find that the data-based method offers modest
mitigation of the effects of total energy error, and a heuristic
approach based on l2 regularization offers similar mitigation. We
also find that the choice of load utility model affects mitigation
strategies’ profitability. Finally, we show how these methods can
be used in a distributed framework.

Index Terms—distributed energy resources, distributed op-
timization, microgrids, power system economics, uncertainty
management.

I. INTRODUCTION

Microgrids can improve the reliability of electricity for
customers with unreliable grid connections, for example by
continuing to operate in an islanded (i.e. stand-alone) mode
during central grid outages [1], [2]. They can also serve as
an alternative to grid extension in remote areas. Microgrids
supplied exclusively by solar plus storage systems have the
added benefit of zero point-source emissions and fuel transport
costs; they are also becoming cost-competitive on a total
cost basis with fuel-based microgrids as solar and storage
costs decline. This is because decreasing costs of solar and
storage allow a solar plus storage microgrid to be sized with
a larger capacity for the same cost. As such, the cost of
a solar plus storage microgrid approaches that of a fuel-
based microgrid with the same capacity as these component
costs decrease. Furthermore, several works have discussed the
ongoing reduction of the costs of solar and storage in the
context of renewable electrification of rural areas, indicating
we can expect solar plus storage microgrid costs to continue
to decrease [3], [4], [5], [6]. Many microgrid systems, includ-
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ing fully renewable microgrids without fuel-based generation,
have already been deployed [7], [8].

However, without a dispatchable generation source powered
by a stored fuel supply (such as a gasoline or diesel gen-
erator), solar plus storage microgrids are typically “energy-
constrained” over daily time horizons. In this case, forecast-
ing energy generation and managing energy supply become
essential not only for instantaneous power balance, but also
for efficiently allocating total energy to loads. Errors in total
energy forecasts could lead to a suboptimal dispatch in which,
for example, low-value loads are served in an early time step,
while high-value loads are not served in later time steps due
to a subsequent unexpected shortfall in total energy. This
could lead to consumer dissatisfaction, perceptions of energy
mismanagement, and loss of critical loads, which are negative
outcomes we model as a loss of welfare.

This paper proposes and analyzes approaches to managing
microgrid energy uncertainty, with a focus on battery state of
charge management. To enable microgrid modularity, and to
preserve the ability of individual asset owners to make inde-
pendent decisions and maintain privacy, we focus on strategies
that can be implemented in a distributed coordination setting.
There is an existing body of research in this space. For exam-
ple, Crespo-Vazquez et al [9] consider community-based local
energy trading with independent agents scheduling supply and
demand under uncertainty in generation and storage forecasts.
Their model assumes that uncertainty distributions on solar
and storage are known and available to all participants in the
grid. Alizadeh et al [10] consider participant-level uncertainty
mitigation through two-stage stochastic optimization, focusing
on managing local uncertainty through local action. Our paper
is also relevant to methods that enable batteries to respond to
price signals at the grid scale [11], [12], [13]. However, these
papers assume batteries can operate as price-takers, which
is not generally true in islanded microgrids. To the authors’
best knowledge, the literature has yet to explore battery-
level methods to mitigate system-wide uncertainty due to
forecast errors on a distributed, energy-constrained microgrid,
specifically in the setting in which the batteries’ actions can
influence price, but uncertainty distributions are unknown to
the batteries. This gap in the literature is what this paper seeks
to address.

In this paper, we aim to develop and evaluate methods in
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which battery agents do not have access to centralized un-
certainty distributions. Rather, we examine a setting in which
batteries receive only price forecasts and realizations and take
local action to mitigate system-wide (as opposed to local)
uncertainty. We consider distributed coordination through a
simplified version of the Alternating Direction Method of
Multipliers (ADMM), a distributed optimization algorithm that
has previously been used to coordinate distributed energy
resources [14]. We make the following specific contributions
in this work:

1) We develop a data-driven approach that can work in a
distributed setting to address system welfare losses at the
level of an individual battery. In this approach, a battery
operator uses historical errors in price forecasts to better
predict true prices in real-time while simultaneously
accounting for the effects of changes in the battery’s
own dispatch on price. Depending on the model of load
utility used, this approach can be profit maximizing for
the individual batteries.

2) We also develop heuristic reserve approaches – much
like rules of thumb for power reserves that are com-
monly used on unit commitment problems with non-
zero marginal cost generators – in which some fraction
of the battery’s capacity is either held at a “reserve
price cap” for use during unexpected shortfalls in energy
supply (which correspond to energy price spikes), or in
which the dispatch of this fraction of the battery is l2
regularized to hedge against uncertainty.

3) We compare these methods to a deterministic receding-
horizon approach in a simulation environment based on
historical residential demand and solar data [15], under
different assumptions about load utility and battery en-
ergy capacity.

We find that the data-driven approach improves system welfare
relative to the deterministic approach, and improves battery
profit depending on the load utility model used. Additionally,
we find that while the price-cap-based heuristic strategy does
not mitigate welfare losses in the system, the regularization-
based heuristic mitigates welfare losses in the system to a
similar extent as the data-driven approach. This indicates
that regularization-based heuristic reserves may be sufficient
to address energy uncertainty, with marginal improvements
provided by data-based methods.

II. THEORY

In this section, we develop a model representing an energy-
constrained microgrid in which batteries can mitigate welfare
losses caused by energy forecast errors. First, we define a
model for optimal energy allocation among energy consumers
over a time horizon and then discuss the introduction of the
total energy forecast error into the system. Finally, we consider
losses in welfare due to total energy forecast error in a simple
case to motivate mitigation in practical cases.

A. Models

First, we formulate a welfare optimization problem for the
system and discuss models for the utility of the load, the
forecast error, and the inelastic load.

1) Centralized System Model: Our dispatch problem can
be stated as a welfare-maximizing problem. Ignoring the rest
of the system, we define the individual net benefit Wn for
an agent n as a function of the energy quantity, which is
represented as a vector q = {qt} of quantities over time
t ∈ [1, . . . , T ], where positive implies net consumption and
negative implies net supply. Each individual can have a solar
array, battery storage, and/or a load. The power consumptions
of these resources are denoted ps, pb, and pl, which are all
vectors of length T . The stored energy of the battery is s, a
vector of length T + 1.

Given an allocated net quantity q, an agent’s net benefit is
the maximum private benefit that can be achieved by setting
decision variables ps, pb, pl, and s so that the power sums
to q and physical constraints are satisfied:

Wn(q) := max
pl,ps,pb,s

T∑
t=1

Un,t(p
l
t) (1a)

s.t ν : pl + ps + pb − q = 0 (1b)

λl : 0 ≤ pl ≤ Pl
n (1c)

λs : −Ps
n ≤ ps ≤ 0 (1d)

λb : −Pb,−
n ≤ pb ≤ Pb,+

n (1e)
λc : 0 ≤ s ≤ Sn (1f)

µt : st − (st−1 + pbt∆T ) = 0 ∀t ∈ [1, . . . , T ] (1g)
µ0 : s0 − sn,0 = 0 (1h)

The vectors Pl
n, Ps

n, Pb,+
n , Pb,−

n , Sn are the maximum load
consumption, solar power generation, battery discharge rate,
battery charge rate, and battery stored energy for agent n
at time t. Note that any of these can be set to 0 if there
is no load, solar array, or battery, respectively. The domain
of Wn is the set of q for which Wn is feasible given
these constraints, denoted dom(Wn). In the model above,
the vectors ν, µ = {µt} and λ = [λl;λs;λb,+;λb,−] are the
dual variables associated with their respective constraints. The
parameter ∆T is the time step, the stored energy of the battery
is in units of ∆T times the units of power, and the initial
stored energy is sn,0, a parameter of the problem, rather than
a variable. Note that by our sign convention, solar power will
be negative, and negative battery charge power is equivalent
to the battery discharging into the system.

Given the individual benefit functions, the general optimal
dispatch problem of allocating quantity to maximize total
welfare is W :

W = max
{qn}

∑
n

Wn(qn) (2a)

s.t.π :
∑
n

qn = 0 (2b)

qn ∈ dom(Wn) ∀n (2c)
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Equation (2b) is the power balance constraint for the system.
The optimal value of its associated dual variable, π, can be
interpreted as the optimal price for power.

2) Load Utility Model: We use horizontally shifted
constant-elasticity marginal value functions to model the utility
of the energy consumed by the load. Agents that have only
battery storage and solar generation thus have no intrinsic
utility for energy, at least at this stage in the formulation. For
each load in each timestep, we construct a load utility function
from an assumed price and elasticity, and an observed level of
consumption taken from the data described in III-A. The utility
function Un,t and the corresponding marginal utility function
gn,t are given by

Un,t(p
l
t) =

αnπ̂n,t

((
plt + qshift,t

) 1
αn

+1 − q
1

αn
+1

shift,t

)
(αn + 1)(p̂lt + qshift,t)

1
αn

(3a)

U ′
n,t(p

l
t) : = gn,t(p

l
t) = π̂n,t

(
plt + qshift,t
p̂lt + qshift,t

) 1
αn

(3b)

qshift,t = p̂lt

((
π̂n,t

πmax

)αn

− 1

)−1

, (3c)

where αn is the elasticity of the load utility, π̂n,t is the
“observed” price of energy at time t, p̂lt is the observed load at
time t, and πmax is the maximum price of energy consumers
would pay to serve elastic load. Figure 1 shows Un,t(p

l
t) for

different αn. This utility is based on the utility of consumption
described in [16], with a few key differences. First, the shift
qshift,t is varying in time rather than constant, allowing gn,t(0)
to equal πmax. Second, we do not compensate the elasticity
αn for the shift as [16] does. Although this is not the only
way to model load utility, the fact that this utility function is
strictly concave introduces the possibility of a welfare gap due
to energy forecast error, as discussed in Section II-C.
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Fig. 1. Utility functions for different elasticity values α. The other parameters
are π̂t = 0.30, πmax = 4, p̂lt = 1.0.

3) Forecast Error Model: In the model described in (1),
we did not specify how agent constraints and utilities are
known for timesteps beyond the current one. We assume that
the load and battery agents have perfect knowledge of their
own utilities and constraints in the future, but we assume that
solar agents use imperfect forecasts calculated once a day to
specify Ps

n,2:T, their peak generation for all timesteps beyond
the current one.

We model solar forecast uncertainty by introducing mul-
tiplicative noise to measured solar generation data. For each
day, we generate a scaling factor by sampling from a normal
distribution with mean 1 and standard deviation σ and apply
this to solar generation throughout the day to generate the
forecast. Mathematically, the forecasted available solar power
at the start of a given day is

Ps
n,1 = P̂s

n,1 (4)

Ps
n,2:T = ϵP̂s

n,2:T (5)

ϵ ∼ N (1,σ2), ϵ ≥ 0. (6)

The solar forecast has no error at the current timestep, and all
subsequent solar forecast values are non-negative.

4) Including Inelastic Load Implicitly: Many systems have
critical inelastic load that must be served before any elastic
load, decreasing system flexibility. Because it is inelastic, it
has no marginal utility. In a deterministic model, the inclusion
of such a load would shift Un,t(p

l
n,t) to the right by the

inelastic load P l
t,n,i and introduce an extra constraint to (1):

Pl
n,i ≤ pl. However, in a system with forecast error in total

energy generation, this constraint may become infeasible due
to the misallocation of energy in previous timesteps. To avoid
technical modifications to the model to handle infeasibility,
rather than formulating inelastic load as a constraint, we
instead modify the system utility and forecast error to ensure
that inelastic loads are always served first and have zero utility.
Additionally, we assume that the system is sized to have
sufficient capacity to serve the inelastic loads.

To achieve this, we introduce an inelastic load parameter
γ ∈ [0, 1], defined as the fraction of the consumed load that is
inelastic. The inelastic load has zero utility when served, so we
scale the utility function of the elastic load in (3a) horizontally
by 1− γ:

Uγ,n,t(p
l
t) := Un,t((1− γ)plt) (7)

Although this introduces dispatch dependence of inelastic load,
which is not technically correct in practice, this formulation
approximates the characteristics of inelastic and flexible load.

We can also capture the notion that this load is served with
priority in a system sized to always serve it. To capture this, we
assume that there is always enough realized solar generation
to serve inelastic load, and this solar is automatically and
implicitly allocated to inelastic load in the dispatch. Thus,
a fraction γ of solar generation is guaranteed to serve the
inelastic load and is not forecasted. Therefore, the forecast
error in solar generation only affects the utility and consump-
tion of the elastic portion of the load, which is modeled by
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applying all the solar forecast error to the remaining 1 − γ
fraction of solar generation after the inelastic load is served.
This allows us to build prioritization and sizing for inelastic
load directly into the model without adding any additional
potentially unsatisfiable constraints.

5) Including Inelastic Load Explicitly: Another method to
include inelastic load in the consumption model without risk-
ing infeasibility follows. In Section II-A2, we used observed
consumption p̂lt to build a strictly concave load utility function
at each timestep t. We may also consider this observed
consumption as an estimate of total inelastic load at time t by
including the constraint p̂lt ≤ plt. However, to avoid potential
infeasibility in the receding horizon dispatch from including
this constraint on plt (discussed in II-A4), we may instead
penalize load being served below p̂lt at some constant rate per
kWh. We may conceptualize this rate as a value of lost load
(VoLL), cost of fuel for dispatchable generation, or cost of
energy from an expensive grid connection.

Specifically, we modify our problem formulation by adding
a new variable to the load agent’s local problem: pv, the
vector of amounts of lost load over the dispatch horizon. Then,
we modify the load agent’s local maximization to include the
VoLL:

max
pl,ps,pb,s,pv

T∑
t=1

Un,t(p
l
t)− πv∆T1⊤pv (8)

where πv is our chosen VoLL in $/kWh. We modify equa-
tions 1b and 1c respectively to

ν : pl + ps + pb + pv − q = 0 (9)

λl : p̂l ≤ pl ≤ Pl
n (10)

and add the constraint λv : 0 ≤ pv. Finally, we modify the
load utility to be

Up̂l
t,n,t

(plt) := Un,t(p
l
t − p̂lt). (11)

πv is chosen to be ≥ U ′
p̂l
t,n,t

(p̂lt). Now, we argue why including
the variable pv as above is equivalent to penalizing a failure to
serve pv units of the inelastic load p̂l. If p̂lt ≤ plt and pvt = 0,
then the true load consumed is plt. However, if pvt > 0, the
true load consumed is plt − pvt , with a penalty of πv∆Tpvt
for incurring the VoLL. As the marginal utility of consumed
energy is always less than πv for consumed energy ≤ p̂lt,
we can see that pvt > 0 =⇒ plt = p̂lt; that is, no elastic
load is consumed until all inelastic load is consumed. Finally,
note that since we shift the load utility right by p̂lt, no utility
is gained from serving inelastic load. Instead, the incentive
to serve inelastic load comes from avoiding incurring a VoLL
penalty, which is calculated from pv. So, we can include VoLL
in the full objective without including it directly in each Ut

by introducing the variable pv.

B. Receding Horizon Control

In Section II-A3 we specified that in this model the energy
forecast error originates from solar generation forecasts. In this
section, we explain how hourly dispatch is updated with actual

solar generation under receding-horizon control. Figure 2
and Algorithm 1 describe the strategy. At each step τ of

Move 
optimization 

horizon 
forward 1 
timestep

Solve welfare 
maximization 
problem W

Update current 
timestep with 

true solar 
generation

Total 
simulation time Ttot 

reached?

Simulation 
Complete

Current 
Timestep 

Quantities & 
Price

No
Yes

Stored 
Simulation 

Data

Fig. 2. Receding horizon control scheme.

Algorithm 1 Receding Horizon Control
Require: Ttot ≥ T
∀n, q∗

n π∗ ← empty
τ ← 1
while τ ≤ Ttot − T do

P s
n,τ ← P̂ s

n,τ

∀n, q∗n,τ , π∗
τ ← run optimization T ahead

τ ← τ + 1
end while
return q∗

n ∀n and π∗

the (Ttot − T )-timestep receding horizon simulation, solar
generation forecasts at the current timestep are converted to re-
alizations. Then, all agents update their dispatches to preserve
optimality under true solar generation at τ by solving (1) for
timesteps t ∈ [τ, . . . , τ + T ]. The optimal price and quantities
realized for the current timestep are stored in q∗ and π∗, which
are vectors of length Ttot − T . In this sense, the receding
horizon dispatch can be considered a system-wide uncertainty
mitigation strategy.

In receding-horizon control, the price vector π, the dual
variable of the energy balance constraint, may also have inac-
curate forecasts and thus will also update in the current time
step to reflect the solar generation realized, producing a price
forecast error that batteries may use to perform mitigation,
described in Section II-D1.

C. Welfare Gap in a Simple System

We now analyze the effects of total energy forecast errors
on total system welfare in a simple system with load, solar
generation, and a battery. The concave load utility is U(plt)
for T timesteps and 0 beyond that, while solar generates ps

for the first N timesteps and 0 beyond that, with T > N the
lookahead horizon. The battery’s capacity is larger than the to-
tal energy in the system. Without uncertainty or inefficiencies
of the battery, the optimal total welfare is W = TU(Nps/T ),
representing equal consumption and price at all times (enabled
by the battery). Now, say that for all timesteps in the lookahead
window ahead of the current one, solar forecasts are ps(1+ϵ),
with ϵ ∼ N(0, σ2). We can exactly derive the consumption of
the load at each timestep by noting that at any timestep, the
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battery will plan to equally distribute the remaining inaccu-
rately forecasted energy in the system across all timesteps.

Under the assumptions of this simple system, we can show
the contribution to total welfare at each timestep τ is given
by:

Wτ = U

(
Nps

T
+ ϵpsκτ

)
τ ∈ [1, . . . , N ]

Wτ = U

(
Nps

T
− ϵpsµ

)
τ ∈ [N + 1, . . . , T ]

µ and κ := {κτ} are constants that depend on simulation
parameters N and T , and obey the relationship

µ−
N∑

τ=1

κτ = 0 (12)

We define the welfare gap ∆W of this system as the difference
in welfare between the system operating with perfect forecasts
and the system operating with imperfect forecasts:

∆W =TU

(
Nps

T

)
(13)

−
N∑

τ=1

U

(
Nps

T
+ ϵpsκτ

)
−MU

(
Nps

T
− ϵpsµ

)
,

(14)

where M = T−N . Note that if U is linear, ∆W = 0. Positive
welfare gaps arise only with concave load utilities, which
represent the idea of decreasing marginal value of energy with
increasing consumption. Also, the welfare gap increases with
variance σ2 of the forecast error when U is concave.

1) Perfect Battery Uncertainty Mitigation: With perfect
knowledge of true solar generation ps and N , the battery
operator can guide the system to optimal dispatch in some
cases by modifying its own utility. Specifically, we can show
that when ϵ > 0, if the battery gives itself a utility of energy
consumption at all timesteps U ′(Nps/T )pb = πcp

b, where pb

is the charging power of the battery, the system will converge
to the welfare-optimizing solution and the battery will increase
its profit. Intuitively, this is because now the battery will charge
instead of the load overconsuming when a surplus of energy
is forecasted. When true forecasts are realized to be lower,
the battery will serve the load with its extra stored energy,
thus equalizing the price to its own marginal utility. This is a
simple example of perfect uncertainty mitigation in a system
with a perfect battery.

The lack of foreknowledge of true system price or error dis-
tributions prevents this strategy from being viable in practice.
However, this example motivates methods to more accurately
predict receding horizon price. This will be discussed in the
next section.

D. Uncertainty Mitigation Methods

1) Agent-based Data Driven: In both centralized and dis-
tributed settings in which price is the coordination signal,
battery operators have access to both forecasted and realized
system prices. Batteries may use this price data to predict

shortfalls or overabundance of energy in the system by learn-
ing both historical trends in price errors and price error
dependence on the battery’s own dispatch. In this method, a
battery operator trains an autoregressive model for the price
error time series based on past price error data. Precisely, the
price error vector is defined as the difference between the 1-
timestep ahead forecasted price and the realized price:

êτ = π̂τ − πτ−1,τ (15)

where πτ−1,τ denotes the price prediction for time τ made at
time τ−1. Because the battery operator does not have access to
the price in the current receding horizon control timestep, the
operator instead uses the price error of the previous timestep
to predict the error of the next timestep. A first-order price
error autoregressive model can be expressed as:

eτ+1 = βhêτ−1 (16)

where βh is the trained coefficient, which varies by the hour h.
We then supplement the total welfare of the system, Eq. (1a),
with the battery’s utility function, defined as:

Un,τ (p
b) =

τ+T∑
t=τ

−etpbt (17)

where e0 = 0 (we assume the current timestep has no price
error) and et is defined as in (16), using a dataset of historical
errors for only the first unknown error (and reapplying the
autoregressive model for the rest in the receding horizon
window). This utility modification adds, for example, a penalty
for charging in timesteps when the battery predicts a higher
price (i.e. positive price error) than what the receding horizon
forecasts.

Because the battery is operating on a microgrid, a battery
operator can benefit from accounting for the influence, if any,
of the battery action on the price error. Before taking any
mitigation strategies, battery operators collect a data set of
past price errors as well as past alterations to the battery’s own
dispatch in response to those price errors. In such a setting,
one may expect a positive system price error (price higher than
forecasted) to cause a battery to discharge more or charge less.
As such, if a battery operator learns a linear model relating
observed price error to a change in battery action, one would
expect the correlation coefficient to be negative.

However, for uncertainty mitigation strategies, battery oper-
ators are interested in how their actions affect the price error
rather than how the price error affects their actions. One may
reason that, in a system with price error, a battery discharging
more/charging less than forecasted would tend to decrease
positive price error.

We have found that empirically, for small microgrids in
which the battery can significantly affect the price through
a unilateral change in its own actions, negating the learned
correlation coefficient between price error and change in
battery action yields better uncertainty mitigation than using
only the autoregressive model. The augmented model is:

eτ+1 = βhêτ−1 − η(pbτ,τ+1 − pbτ−1,τ+1) (18)
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with η the learned correlation coefficient between price error
and change in battery action. This predicted error is input to
the battery utility function (17).

2) Heuristic Reserve: Akin to power reserves in the central
grid, a battery can hold some portion of its capacity as reserve
at a certain price cap. This is especially helpful if the battery
expects certain price dynamics to be indicative of energy
scarcity, as in the simple setting of Section II-C1. A given
battery is split into a main and reserve battery, and the total
system’s welfare, Eq. (1a), is supplemented with the reserve
battery’s utility function, which is set equal to

Un,τ (p
b) =

τ+T∑
t=τ

πcp
b
t , (19)

where πc is the price cap for reserve. Note that in contrast
to the data-based method, the heuristic price cap and reserve
capacity do not change during the simulation. They are pa-
rameters that can be learned or swept in simulation.

3) Regularization: Another heuristic we may use is inspired
by the fact that the η learned by the aforementioned data-
driven strategy in simulations (discussed in Section III) is
negative. Ignoring terms in the error in (18) that are constant
in pb, we arrive at the battery utility

Un,τ (p
b) =

τ+T∑
t=τ

−etpbt =
τ+T∑
t=τ

η(pbt)
2 (20)

This is akin to l2 regularization of the battery’s dispatch
with regularization weight η. Applying this utility to the
aforementioned reserve portion of the battery will encourage
that portion to behave more conservatively in both charging
and discharging for all timesteps, with larger magnitude η
encouraging more conservative behavior in future timesteps.
The coefficient η is a heuristic; in this work, we set it equal
to the relative RMSE error in solar forecasts, 0.25.

Because we set the error predicted by the data-driven
strategy in the first timestep of the receding horizon to zero,
we set the regularization term for the first timestep to zero as
well, reflecting the idea that there is no uncertainty, and thus
no need for the battery to act conservatively, in the current
timestep.

E. Distribution of Mitigation Methods

Distributed microgrid coordination offers better resilience,
computational scaling, and privacy preservation [17]. For these
reasons, we also apply the uncertainty mitigation methods to a
distributed setting using a simplified version of the Alternating
Direction Method of Multipliers (ADMM) known as proximal
exchange [18]. Coordination between agents is done via a price
signal corresponding to the dual variable of the energy balance
constraint. A schematic of the ADMM process is shown in
Figure 3. We can show that ADMM will yield identical prices
and welfare to the centralized setting. The data-based battery
uncertainty mitigation method uses only the price signal,
which still is broadcast to the battery in the ADMM process.
Furthermore, the battery can still hold reserves at a price cap or

Market Operator

I teration i

Agent 1 with local utility Agent n with local utilityAgent 2 with local utility

Fig. 3. Schematic of an ADMM iteration. Each agent submits an offer that
optimizes a tradeoff between individual utility, energy price (blue), and step
size (red). The market operator then forms a new price from the energy
imbalance of all the offers over all the iterations.

add a regularization term to its utility in the distributed setting.
Therefore, all of the aforementioned uncertainty mitigation
strategies apply in the distributed setting.

1) ADMM Formulation: This subsection formulates the
welfare optimization problem defined in (2) as a distributed
optimization problem using the proximal exchange algorithm,
a simplification of ADMM. Formulated in this manner, we
can use existing results in distributed optimization to show
that the iterations converge to optimal quantities and prices
[18]. In [18], it is shown that the proximal exchange algorithm
applies to the problem W defined in (2). This algorithm
decomposes the problem into an independent step-penalized
update for each agent, followed by a centralized step to com-
pute the average surplus/shortage, which is used to generate
the next point for the proximal operator. Applying the proximal
operator in [18] to the local agent update, the agent-level
decision then simplifies to

q(i+1)
n = argmin

q
−Wn(q) +

ρ

2
||(q− q(i)

n ) + q(i)||22 + π(i)T
q,

(21a)

where q(i) is the energy imbalance averaged over the N
agents; the price π(i) is centrally updated and is related to
a system-wide integral error of total energy imbalance:

π(i+1) = π(i) +
ρ

N

∑
n

q(i+1)
n (22a)

Applying this decision iteratively means, in words, updating
the quantity that maximizes net benefits subject to a per unit
price π, with an additional cost incurred for changing the
quantity. We can show this converges to an equilibrium optimal
price and quantity as i → ∞. To be at equilibrium, it must
be true that π(i+1) − π(i) = ρ

N

∑
n q

(i+1)
n = 0, meaning that

the solution is globally feasible, and the price is equal to an
integral error scaled by ρ.

III. EXPERIMENTS

A. Experimental Setting

We take the load and solar data from the Pecan Street
dataset [15], split those houses with solar into monthly data,
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and use the same 88 house-month sample for all experiments.
We run a centralized receding horizon simulation with a
24-hour window and a 1-hour time step. Unless otherwise
specified, we use the same parameters for each experiment:
a load utility function with αn = −0.5, πmax = 4$/kWh,
γ = 0. p̂lt comes from the dataset, and π̂n,t is assumed to be
the same TOU tariff used in [16], and we assume an explicit
inelastic load of 0.75 · p̂lt at each time step, and we enforce a
VoLL of $4/kWh. For solar, we use a noise level of σ = 0.25
and get the true p̂st from the dataset. We use two perfectly
efficient batteries, each with a capacity of 3.36 kWh, and a
max charge and discharge rate of 3 kW. In each experiment
with 2 batteries, we have one perform uncertainty mitigation
strategies and the other dispatch as usual. For the heuristic
methods, we use 15% of the battery capacity as reserve. We
set the price cap for the first reserve method to 1.00 $/kWh.
For the regularized heuristic method, we use a coefficient
η = −0.25 for all but the current timestep (for which η = 0).

B. Characterizing the Welfare Gap

The welfare gap is the difference in the welfare of the
system with and without forecast error, determined by running
a receding horizon simulation for both cases. In this section,
we make this comparison while varying different experiment
parameters. We only consider one battery for these experi-
ments, whose size and charge rates are doubled from the base
battery mentioned in section III-A. Generally, total welfares
are on the order of -$100 to $200 a month, increasing with
lower elasticity, higher battery sizes, and higher VoLL.

1) Varying Battery Size: We examine the welfare gap for
different battery sizes. We scale the battery from 0.25 to 8
times base size (6.72 kWh, 6kW charge/discharge rate), and
plot the welfare gaps in Figure 4. We find that for small and
large batteries, the welfare gap is low, whereas at around twice
the battery base size, the median gap reaches a peak, around
$8. This indicates that batteries that are too small are so often
constrained by their physical characteristics that there are no
large consequences for the mismanagement of energy, while
batteries that are too large can store so much energy that the
only limiting factor becomes the presence of solar. However,
at a certain, moderate size, batteries are large enough to shift
energy significantly and improve the welfare of the system, but
not so large that they are never constrained by their physical
characteristics. At this size, the welfare gap is largest.

2) Varying Solar Size: We scale solar generation from 0.1
to 4 times base amount P̂ s

t , and plot the welfare gap in
Figure 4. We find that, similar to what we saw when varying
battery scale, for small and large solar arrays, the welfare
gap is low, whereas at around the solar base size, the gap
reaches a peak, with a median around $6. This indicates that
at low solar, there is not much energy to mismanage, while
with a large amount of solar, there is ample energy such that
mismanagement does not lead to significant suboptimality. It
is worth noting that by varying the amount of solar generation
in the system, we are in effect varying the energy scarcity
of the system. So, we would expect varying solar size while
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Fig. 4. Welfare gap for different values of simulation parameters. From left
to right, top to bottom: battery scale, solar scale, load elasticity, and value of
lost load.

keeping inelastic load constant and varying inelastic load (in
the opposite direction) while keeping solar constant to exhibit
similar trends in welfare gap.

3) Varying Load Elasticity: We first consider the welfare
gap for different levels of load elasticity. We vary the load
elasticity from -0.25 to -0.75, and plot the welfare gaps in
Figure 4. We see that the gap grows with decreasing load
elasticity; namely, there are far more large outliers as elasticity
decreases. This is because the less elastic a load is, the higher
the value received from serving the load. Additionally, the
general levels of welfare in the system are higher with more
inelastic load.

4) Varying Value of Lost Load: We vary the value of lost
load (VoLL) from $1 to $9, and plot the welfare gaps in Fig-
ure 4. We observe that a higher VoLL yields a higher welfare
gap because a higher VoLL means that energy in general is
valued more by consumers, so energy mismanagement is more
costly than in a low-VoLL setting.

C. Uncertainty Mitigation via Batteries

In this subsection, we test 4 uncertainty mitigation strategies
discussed in section II-D: a simple autoregressive model,
described in (16), a data-based linear model for price errors,
described in (18), heuristic price-cap-based reserve, described
in (19), and regularization, described in (20). The runs of
each method over different varied parameter values are plotted
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as a boxplot, with the y-axis the improvement to welfare
(over doing nothing to mitigate uncertainty) offered by the
strategies. In Figures 5 and 6, we show the mitigation of
the strategies for varying load elasticities and battery scales,
respectively. We choose to explore load elasticity and battery
scale based on the results in Figure 4. We choose to vary these
parameters due to the interesting effects these parameters have
on the welfare gap: increasing battery size first increases, then
decreases the gap, and decreasing elasticity increases the gap
nonlinearly. Furthermore, the reasons for these effects are not
as easily deduced as for the effects of varying solar scale and
VoLL, but it is worth noting that solar scale and VoLL are
also parameters that could be varied in evaluating uncertainty
mitigation strategies. Notably, we find that scaling VoLL
proportionally scales the mitigation amount of each strategy.
Finally, it is also worth noting that mitigation strategies are
unnecessary in systems with no welfare gap, such as a system
with very low solar noise or battery size.
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Fig. 5. Welfare loss mitigation at different load elasticities for the mitigation
strategies.

When we vary the load elasticity, we can observe in
Figure 5 that the data-based linear strategy performs well:
while the median improvement is zero, the distribution is
skewed positively, with positive mitigation ranging up to
about $25/month, and negative effects only down to -$5/month
aside from one outlier. The simple autoregressive data-based
strategy may occasionally improve the welfare, but benefits
tremendously from the addition of dependency of error on
battery’s change in dispatch in the utility model. The price-
cap-based reserve tends to hurt the performance of the system
across all elasticity levels, but the regularized reserve tends
to help performance consistently, although it misses some of
the large opportunities for gap improvement that the data-
based linear strategy exploits. All these trends seem to hold
across different elasticities. When we vary battery scaling,
we observe that for a larger battery, only the regularized
reserve mitigates uncertainty consistently, although in some
cases the linear model still offers greater mitigation. On the
other hand, with a small battery, the mitigation strategies
offer at most very small improvements to the system, even
in a relative sense. This agrees with the intuition developed
in III-B1, that when the battery is already very constrained by
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Fig. 6. Welfare loss mitigation at different battery scales for the mitigation
strategies.

its physical characteristics, giving additional consideration to
energy management has low benefit.

Heuristic price-cap-based reserve performs even worse as
battery size increases, possibly indicating that the current
formulation of this reserve mismanages energy, so the more
capacity the battery has, the more energy will be misallocated
through the price cap. On the other hand, regularization
performs better as battery size increases, indicating such a
reserve formulation may be making appropriate use of the
capacity of the battery.

It is worth noting that no data-based strategy ever uniformly
improves welfare, as being data-based, the strategies naturally
fail to capture all sources of error, especially with simple linear
or autoregressive models. The regularized heuristic rarely fails
to improve welfare, which makes it the best approach when
consistency is required.

1) Battery Profit via Mitigation: While the strategies out-
lined in this paper are primarily intended to improve the
welfare of the entire system through local battery action, we
next explore whether these methods are profit-maximizing
to individual battery operators. In Figure 7, we see that
a battery operator is not likely to profit from performing
uncertainty mitigation (except the data-based strategy, which
has little mitigating effect, as seen in Figures 5 and 6).
Meanwhile, the non-mitigating battery operator tends to profit
when another battery operator is doing mitigation. In such a
setting, a distributed mitigation approach would require side
payments – akin to those paid to power reserve providers
in ancillary services markets – to overcome losses incurred
from performing mitigation. However, in Section III-D we
will see that details of the load utility model can change this
conclusion. Furthermore, if many batteries started performing
mitigation in different ways, we could enter a game-theoretic
setting, which is not discussed in this paper but is an item for
future work.

D. Effect of Load Utility Model on Battery Profit

While Section III-C1 indicated that uncertainty mitigation
may not be profitable for a battery operator unless a separate
market for mitigation were involved, in this section, we explore
a model of load utility for which uncertainty mitigation is
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Fig. 7. Increases in profits for the batteries at different battery scales and with
one battery exercising various uncertainty mitigation strategies. The left plot is
the profit increase for the battery attempting uncertainty mitigation, the right
is the profit increase for the battery doing nothing to mitigate uncertainty.

indeed profitable. In particular, this load utility model does
not have explicit inelastic load, circumventing VoLL penalties
and including inelastic load implicitly as in section II-A4. We
take γ = 0.9 and πc = 4 and analyze the performance of
mitigation strategies in this system.
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Fig. 8. Welfare loss mitigation at different battery scales for the mitigation
strategies, with implicit inelastic load and no VoLL.
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Fig. 9. Increases in profits for the batteries at different battery scales and with
one battery exercising various uncertainty mitigation strategies. The left plot is
the profit increase for the battery attempting uncertainty mitigation, the right
is the profit increase for the battery doing nothing to mitigate uncertainty. No
VoLL, implicit inelastic load.

Figures 8 and 9 show that mitigation strategies perform
better with the new load model than with the model with
VoLL, and uncertainty mitigation strategies are now profitable
for a battery operator to employ. Figure 9 also shows that the
battery operator that did not adopt any mitigation strategies
generally loses money once the other battery operator employs
an effective mitigation strategy. Thus, with this load utility, a
battery operator performing mitigation can both increase their
own profits and avoid personal profit losses due to mitigation
by other batteries.

As modeling choices for utility of consumption of energy
affect conclusions about mitigation strategy profitability, align-
ing load utility models with real consumer preferences will
affect decisions about market structure. For example, load
utility with VoLL might require side payments to battery
operators performing mitigation. On the other hand, utilities
without VoLL may naturally encourage battery operators to
perform mitigation as part of their profit-maximizing objective.
Alternatively, if details of load utility models are decided by
system designers rather than consumers, these results may
motivate choosing load utilities that do not lead to side
payments for profitable mitigation. These questions motivate
further study of load utility models.

E. Convergence and Performance Verification of ADMM

We run ADMM as the internal optimization in the receding
horizon simulation for 6 houses with the parameters specified
in III-A and an energy imbalance tolerance of 10−5. We find
that ADMM converges. Each house is a month of hourly simu-
lation with a 24-hour look ahead, yielding about 720 ADMM
solves per house. We find that each ADMM solve takes an
average of 195.3 iterations (standard deviation 152.4) at 0.03
seconds per iteration, with a maximum of 1007 iterations
encountered. We find that although ADMM prices deviate an
average of 5% from centralized prices, all calculated system
welfares over the month are within 0.4% of the centralized
simulation, indicating that we can expect the welfare gap
results of the centralized simulations to apply in the distributed
setting as well.

IV. CONCLUSIONS

In energy-constrained microgrids, welfare losses due to
energy generation forecast error can occur depending on the
load utility functions, solar and storage scales, forecast error
level, and inelastic load in the system, even in a receding
horizon setting. In this paper, we propose and analyze the
performance of methods that individual batteries may use to
mitigate these welfare losses.

We find that data-based uncertainty mitigation generally
reduces the welfare gap due to total energy uncertainty in the
system, but the profitability of these strategies for the battery
operator depends on the load utility models in the system. Wel-
fare improvements are generally robust to changes in model
parameters that preserve the existence of a welfare gap, with
the exception of large battery scale reducing improvements
from data-based mitigation. In part due to the simplicity of
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the total energy forecasting method, the data-based method
needs only about two weeks of data to perform well. Future
work may study mitigation methods in the context of system
planning, such as how utilization of computationally cheap
uncertainty mitigation strategies may allow a smaller system
capacity while preserving welfare.

So far, price-cap-based heuristic reserves do not show
mitigation of welfare losses in energy-constrained microgrids,
meaning that the operation of these microgrids with strategies
similar to conventional grid power reserves may be challeng-
ing. However, we acknowledge that there are many alternative
ways to formulate these heuristics. These heuristics may also
perform well under different system models, such as in a
system with low-frequency extreme shortfalls that data-based
methods cannot predict, or with high-value loads that must be
served. The latter case may motivate heuristics at the system
planning level, explicitly matching battery capacity to specific
loads.

Regularization consistently mitigates uncertainty across sys-
tem parameters. Additionally, regularization requires no train-
ing, and so may work on a larger variety of error distributions
than data-based methods do. These characteristics make regu-
larization particularly promising for practical implementation.

All of the mitigation strategies work in a distributed setting
in which energy price is broadcast to agents as a coordinating
signal. To demonstrate this, we verified that system welfares
in a distributed setting do not deviate significantly from those
in the centralized setting, indicating the observed performance
of mitigation strategies in the centralized setting will transfer
to a distributed setting.

Because the formulation of load utility has a large effect
on the results of this work, more accurate representations of
individual load utility and methods to deal with more general
utility functions are desirable. For example, discrete loads
may accurately model residential consumption and utility, and
are solvable via mixed integer methods [19]. The study of
mitigation strategies in such a framework is a direction for
future work. A study of how the choice of load utility affects
mitigation profitability is a natural first step in this exploration,
given the observations in section III-D.

The data-based method may be improved via more complex
models for price error, such as neural networks or higher-order
autoregressive models, though such methods may take longer
to train. The price error dynamics’ relationship to battery
dispatch lends itself to a reinforcement learning framework,
which is another direction for future research.

We do not include any models of infrastructure in this work
beyond fixed battery parameters. Future work could include
network models and a power flow validation as part of the
optimization, with energy uncertainty influencing power flow
as well. Finally, we do not consider multiple uncertainty-
mitigating batteries working non-cooperatively. Such a system
may involve a game-theoretic approach in which one battery
anticipates the mitigation strategies of others. This is a path
for future work.
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