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Abstract—The frequency of wildfire disasters has surged five-
fold in the past 50 years due to climate change. Preemptive
de-energization is a potent strategy to mitigate wildfire risks
but substantially impacts customers. We propose a multistage
stochastic programming model for proactive de-energization
planning, aiming to minimize economic loss while accomplishing
a fair load delivery. We model wildfire disruptions as stochas-
tic disruptions with varying timing and intensity, introduce a
cutting-plane decomposition algorithm, and test our approach
on the RTS-GLMC test case. Our model consistently offers
a robust and fair de-energization plan that mitigates wildfire
damage costs and minimizes load-shedding losses, particularly
when pre-disruption restoration is considered.

Index Terms—decomposition algorithm, de-energization,
power system, stochastic programming, wildfire risk.

I. INTRODUCTION

The electric power infrastructure has frequently ignited highly
destructive wildfires [1], leading to catastrophic fires and
causing significant loss of life and property. Effective de-
energization mitigates wildfire risk of power line ignitions [2],
but excessive de-energization can result in massive load shed-
ding and significant economic and societal impacts [3]. Thus,
optimizing de-energization decisions is crucial for balancing
wildfire risk mitigation and power outage impacts.

Previous works primarily address wildfire risks from power
system components when optimizing de-energization deci-
sions, overlooking simultaneous natural/human-made wildfire
damage to power systems [2] and primarily concentrating
on the susceptibility of components to wildfires [4], [5],
[6]. Furthermore, such approaches are often deterministic due
to computational complexities in solving uncertainty-based
optimization models with binary de-energization variables [7],
[8], [9]. However, incorporating wildfire spread dynamics
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can significantly enhance de-energization performance. Recent
models have integrated stochastic wildfire risks, like dynamic
programming for Public Safety Power Shut-offs (PSPS) op-
timization [10] and two-stage models for mitigating wild-
fire risk [11], [12], [13]. Additionally, Ref. [14], [15] have
considered joint de-energization and restoration operations.
Despite these developments, existing literature often exhibits
a relatively simple decision structure, failing to fully capture
the temporal dynamics of wildfires. Nonetheless, much of
the literature employs relatively simple decision structures,
failing to capture wildfire’s temporal dynamics. Consequently,
exploring the interaction between power system operations and
dynamic wildfire progress is necessary [16].

Our prior work [11] introduces a two-stage stochastic pro-
gram but without restoration planning or fairness in power
supply allocation. In this paper, we address these limitations
by introducing a scenario-based multistage stochastic mixed-
integer program (M-SMIP), a framework used to model long-
term planning applications involving stochastic uncertainty
such as unit commitment [17], capacity expansion [18], and
generation scheduling in hydro systems [19]. We extend the
two-stage model to encompass dynamic multistage scenarios
and explicitly include restoration considerations within the
subproblem to enhance operational resilience. We incorporate
fairness constraints in the first problem to ensure equitable
power supply allocation to obtain a balanced PSPS plan, as
detailed in [20]. We assess the advantages of incorporating
restoration operations while considering fairness, which raises
important questions regarding system flexibility and opera-
tional insights.

We propose a decomposition algorithm for the non-convex
and non-smooth M-SMIP. Our algorithm is a deterministic
variant of SDDP [21], employing linear cutting planes to
approximate the value function, thus demonstrating compu-
tational precision and reliability.

The contributions of our paper are threefold:
1) We formulate an M-SMIP model that manages wildfire

risk in power system operations. Unlike the existing liter-
ature, our model captures the random nature of wildfire
ignitions using disruption scenarios with random onset
times to keep the model size manageable. Compared with
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our prior work in [11], we assume that there multiple
disruptions may occur.

2) We develop a decomposition algorithm with finite con-
vergence for solving the presented model. We conduct a
comparative analysis and investigation of the effective-
ness of various cut families, which shows the efficiency
of Lagrangian cuts and enhancement.

3) We show that our M-SMIP model with restoration and
fairness yields resilient solutions on the RTS-GLMC test
case [22]. We gain insights from restoration operations,
which demonstrate that these operations are superior in
reducing wildfire risk and ensuring load delivery.

The remainder of this paper is organized as follows. Section II
formulates the optimized PSPS problem. Section III describes
the decomposition algorithm and cut families. Section IV
describes our test case setup and provides numerical results.
Section V concludes the paper and discusses future work.

II. PROBLEM FORMULATION

NOMENCLATURE
Indices and index sets
B,G,L set of buses, generators, and transmission lines;
C set of load components, C = B ∪ G ∪ L;
D set of load demand;
T set of time periods, T = {1, 2, . . . , T};
Ω the set of realizations of wildfire random variables;

Parameters
Ddt load d ∈ D at time period t ∈ T ;
wd the priority level of load d ∈ D;
crc repair cost for component c ∈ C;

¯
PG
g , P̄G

g maximum and minimum generation limits of g ∈ G;
Wij the thermal power flow limit of the line (i, j) ∈ L;
bij the susceptance of the line (i, j) ∈ L;

¯
θ, θ̄ the big-M values for voltage angle difference;
β fairness level;

Decision variables
θωit phase angle of the bus i ∈ B at time t ∈ T for

realization ω;
PL,ω
ijt active power flow on the line (i, j) ∈ L at time t ∈ T

for realization ω;
pG,ω
gt active power generation at generator g ∈ G at time

t ∈ T for realization ω;
sωdt percentage of load-shedding at the load d ∈ D at time

t ∈ T for realization ω;
zωct 1 if component c ∈ C is functional at time t ∈ T for

realization ω, 0 otherwise;
νωct 1 if a fire damage is incurred at component c ∈ C at

time t ∈ T for realization ω, 0 otherwise;
rct 1 if restoration has not been applied to component

c ∈ C for the first-stage problem, 0 otherwise.
We consider multi-period dispatch and de-energization opera-
tions under wildfire disruption over a short-term time horizon
(24 hours). The power network is represented by a graph
(B,L), where B is the set of buses and L is the set of lines. We
use Di, Gi, and Li to represent the subset of loads, generators,

Bus j1

Bus i
Bus j3g1

g2

g3

Iωi = {i, g2, (i, j1), (i, j3), j3}.

fire spread direction

Fig. 1: A random set Iωi illustration. A fault occurs at bus i
(energized), which causes an endogenous wildfire to spread
and affect two transmission lines (i, j1) and (i, j2), bus j3,
and generator g2, which are marked by blue dashed lines.

and transmission lines connected to bus i, respectively. For
each period t ∈ T , we formulate DC power flow constraints
to decide the active power generation PG

gt of generator g ∈ G,
the power flow PL

ijt on transmission line (i, j) ∈ L from bus
i to bus j, and the phase angle θit of bus i ∈ B.

A. Wildfire Scenarios

We categorize wildfire risk into two classes: endogenous and
exogenous wildfires. Exogenous wildfires result from external
factors beyond the control of grid operators, while endogenous
wildfires arise due to component faults. Fig. 1 is an illustration
of a group of components affected by an endogenous fire.

We conceptualize wildfire uncertainty as a stochastic dis-
ruption characterized by random factors, including its timing,
location, and spread. To represent a single instance of such a
disruption, we employ a portfolio of random variables indexed
by ω ∈ Ω. Within this framework, we model i) the disruption’s
timing as τω; ii) binary parameters uω

c and vωc to account
for both endogenous and exogenous wildfires; iii) the random
set Iωc which describes the potentially affected components
attributed to the endogenous wildfire event caused by compo-
nent c. In the presence of multiple wildfire disruptions, each
subsequent disruption is interdependent with the preceding one
and shares a consistent structure.

B. Multistage Stochastic Mixed-Integer Programming Model

When a fault occurs at an energized component, the associated
endogenous wildfire may incur high damage costs. The power
system operator can de-energize power equipment to reduce
the endogenous risk of igniting a wildfire. However, suppose
multiple components are de-energized to prevent endogenous
fires. In that case, the power supply capacity may be greatly
reduced, resulting in the inability to meet crucial load demand
and causing serious secondary disasters. To improve the re-
silience of the power system and mitigate wildfire damage,
operators should de-energize some potentially dangerous elec-
trical equipment under high-risk conditions to ensure enough
power supply while significantly reducing risk.

In model (1), a de-energized generator will have zero gener-
ation capacity, and a de-energized line will be considered open.
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If a bus is shut off, all generators and lines connected to it will
also be de-energized. Our model uses binary decision variables
zct to represent whether a component c ∈ C is de-energized
at time period t. We assume that a de-energized component
will remain off until the end of the time horizon due to safety
considerations [2] unless it is restored. Model (1) obtains a
nominal plan that should be implemented until a disruption
occurs or the time horizon ends, whichever occurs first. If a
fire disruption is observed at period τ ω̇ where ω̇ ∈ Ω|ω0 and
ω0 represents the index of a deterministic realization for the
0-th stage random variables, given the current shut-off state
zτ ω̇−1, the model enters the disruptive stage and incurs the
disruptive-stage value function f ω̇ , where we assume that the
components at revealed ignition locations will be shut off.

Z∗(β) = min
∑

ω̇∈Ω|ω0

pω̇

τ ω̇−1∑
t=1

∑
d∈D

wdsdt + f ω̇(zτ ω̇−1)


s.t. ∀t ∈ T :

PL
ijt ≤ −bij

(
θit − θjt + θ̄(1− zijt)

)
∀(i, j) ∈ L (1a)

PL
ijt ≥ −bij (θit − θjt +

¯
θ(1− zijt)) ∀(i, j) ∈ L (1b)

−Wijzijt ≤ PL
ijt ≤ Wijzijt ∀(i, j) ∈ L (1c)∑

g∈Gi

PG
gt +

∑
l∈Li

PL
lt =

∑
d∈Di

Ddt(1− sdt) ∀i ∈ B (1d)

¯
PG
g zgt ≤ PG

gt ≤ P̄G
g zgt ∀g ∈ G (1e)

zit ≥ xdt ∀i ∈ B, d ∈ Di (1f)
zit ≥ zgt ∀i ∈ B, g ∈ Gi (1g)
zit ≥ zlt ∀i ∈ B, l ∈ Li (1h)
rc,t−1 ≥ rct ∀c ∈ C, if t ≥ 2 (1i)
rc,t−1 − rct ≥ zct − zc,t−1 ∀c ∈ C, if t ≥ 2 (1j)∑
t∈T

(sdt − sd′t) ≤ β · T ∀d, d′ ∈ D (1k)

zct, rct ∈ {0, 1} ∀c ∈ C. (1l)

For a given realization ω̇, the first-stage problem corresponds
to the periods preceding the occurrence of the first disruption.
Thus, the objective function considers the load-shedding cost
from the initial period up to the period immediately preceding
the disruption, and the expected cost f ω̇ after the disruption
ω̇ is observed. Constraints (1a)-(1e) correspond to the DC
power flow model and constraint (1f) models the component
interactions, equivalent to constraint (7)-(9) in [2]. Combining
constraint (1i) with the binary restriction of rct implies that
the restoration operation (rc1, . . . , rcT ) follows the pattern
(1, . . . , 1, 0, . . . , 0), with the first occurrence of 0 indicating
the restoration time, and a component c ∈ C can only be
restored once. We impose this constraint that each component
can only be restored once. This restriction reflects the reality
of short-term operations, where both starting up and shutting
down a component requires time. It underscores the trade-
off between shutting off and restoring a component. Con-
straints (1j) describe the temporal logic of components’ status:
once a component is shut off, it stays off unless restored.

Period
1

2

3

4

5

6

.

.

.

τω

⇝

Fig. 2: A scenario-tree illustration of the wildfire disruption
problem with T = 6. The presence of a “.” symbol within the
nodes denotes the occurrence of a disruption.

Constraint (1k) ensures fairness by controlling the discrep-
ancy between the maximum and minimum cumulative load-
shedding percentages across loads. To modulate the stringency
of fairness, we introduce a parameter β. A smaller value of β
enforces more rigorous fairness, ensuring that the difference
in cumulative load-shedding percentages between any two
loads does not exceed β. Importantly, this constraint maintains
the mixed-integer programming (MIP) formulation, making it
amenable to MIP solvers.

The scenario tree of the M-SMIP model is shown as
Fig. 2, in which each node represents the decisions at a time
period, and paths from the root to leaves represent scenarios.
The black box of the left diagonal branch represents the
nominal plan obtained if no disruption occurs, and each branch
extending to the right represents a disruption scenario. Suppose
we have a first-stage realization ω ∈ Ω|ω0

with τω = 2. The
red box on the right corresponds to problem (2) with τω = 2
and some ω ∈ Ω|ω0

, of which the value function is fω . For
realization ω, it has two scenario paths. One is a nominal
scenario, and the other is a disruptive scenario, with the second
disruption occurring at period τ ω̇ = 4. The branches in the
blue box are the scenarios with the same disruption in period
2 and share the same historical information (the nodes in blue).

For a given disruptions, we model the development of the
post-disruption system in a similar manner as the nominal
scenario as in the initial state. Essentially, we develop a new
model that represent the post-disruption nominal plan. The
value function fω for the s-th stage incorporates the shut-
off state variables ẑω

′

τω−1, where ω′ represents a realization of
stage s− 1 and ω ∈ Ω|ω′ , and is characterized by the wildfire
disruption realization ξω . It focuses on the operations after τω

and can be evaluated by the subproblem fω:

fω(ẑω
′

τω−1) =

min
∑

ω̇∈Ω|ω

pω̇

τ ω̇−1∑
t=τω

∑
d∈D

wds
ω
dt +

∑
c∈C

crcν
ω
c + f ω̇(zωτ ω̇−1)


s.t. ∀t ∈ {τω, . . . , T} :
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PL,ω
ijt ≤ −bij

(
θωit − θωjt + θ̄(1− zωijt)

)
∀(i, j) ∈ L (2a)

PL,ω
ijt ≥ −bij

(
θωit − θωjt +¯

θ(1− zωijt)
)

∀(i, j) ∈ L (2b)

−Wijz
ω
ijt ≤ PL,ω

ijt ≤ Wijz
ω
ijt ∀(i, j) ∈ L (2c)∑

g∈Gi

PG,ω
gt +

∑
l∈Li

PL,ω
lt =

∑
d∈Di

Ddt(1− sωdt) ∀i ∈ B (2d)

¯
PG,ω
g zωgt ≤ PG,ω

gt ≤ P̄G,ω
g zωgt ∀g ∈ G (2e)

zωit ≥ xω
dt ∀i ∈ B, d ∈ Di (2f)

zωit ≥ zωgt ∀i ∈ B, g ∈ Gi (2g)

zωit ≥ zωlt ∀i ∈ B, l ∈ Li (2h)
zωct−1 ≥ zωct ∀c ∈ C (2i)
zωct ≤ 1− νωc ∀c ∈ C (2j)
νωc ≥ vωc ∀c ∈ C (2k)
νωk ≥ uω

c z
ω
cτω−1 ∀c ∈ C, k ∈ Iωc (2l)

zωcτω−1 = ẑω
′

cτω−1 ∀c ∈ C (2m)
zωct, ν

ω
c , z

ω
ct ∈ {0, 1} ∀c ∈ C. (2n)

The objective function retains a similar meaning to the pre-
vious one, with the addition of a new term specifically intro-
duced to account for the damage cost. The wildfire damage
cost for a component c ∈ C, denoted by crc , consists of the
replacement cost of the electric components and the financial
loss to the nearby communities. In model (2), the energization
status will stay the same in the remaining time horizon, as we
assume that all wildfire damages reveal at period τωt and no
recovery decisions take place afterward. Constraints (2a)-(2e)
model an equivalent form of the DC power flow constraints as
in model (1). Constraint (2f) indicates the functioning state of
components, similar to their nominal-stage counterpart (1f).
We create a local copy of the last-stage shut-off decisions,
zωcτω−1, via the duplicating constraint (2m), which is known
as the nonanticipativity constraint. With zωct indicating whether
component c has been shut off, constraint (2i) makes sure
that the shut-off components remain shut off during the
second stage. Constraint (2j) states that damaged components
no longer function, where we model the exogenous fire
damage by constraint (2k) and the endogenous fire damage
by constraint (2l). Notice that an endogenous fire started at
component c requires both a fault occurrence uωt

c = 1 and
the component not being shut off zωt

c = 1 and spreads to
components k ∈ Iωt

c .
We posit that at every stage s, a nominal realization ω0

s ex-
ists, implying the absence of new disruptions. This realization
lacks offspring realizations, i.e., Ω|ω0 = ∅, and its associated
value function equals 0.

III. SOLUTION METHODS

A standard multistage stochastic program with time-period
uncertainty can be solved using decomposition algorithms like
the SDDP algorithm [21]. Our problem is different in setting
that a ‘stage’ includes all decisions between two disruptions,
and its length is a random variable. This section introduces an
algorithm for solving problem (1).

A. Decomposition Algorithm

The value function fω is non-convex nature and lack of
an analytical expression. A widely employed approach for
approximating value functions is the utilization of cutting
planes. We adopt a collection of cuts to establish lower approx-
imations for each value function fω . Feasibility cuts are not
required since the relatively complete recourse property always
applies. This can be demonstrated by setting all variables in
problem (2) to zero. Specifically, for the problem (1) with a
fixed β, we define its cutting-plane lower approximation as
follows:

Z∗
ℓ = min

∑
ω̇∈Ω|ω0

pω̇

τ ω̇−1∑
t=1

∑
d∈D

wdsdt + V ω̇

 (Mℓ)

s.t. Constrictions (1a) − (1l) ∀t ∈ T
V ω̇ ≥ (λω̇,k)⊤(zτ ω̇−1 − ẑkτ ω̇−1)+

vω̇,k, ∀ω̇ ∈ Ω|ω0 , k = 1, . . . , ℓ− 1,

where the value function of the subsequent realization ω,
denoted as fω , is approximated using ℓ − 1 cuts. Similarly,
for the value function fω , we define its cutting-plane lower
approximation

¯
fω as follows:

¯
fω
ℓ (ẑ

ω′,ℓ
τω−1) = (Sω

ℓ )

min
∑

ω̇∈Ω|ω

pω̇

τ ω̇−1∑
t=τω

∑
d∈D

wds
ω
dt +

∑
c∈C

crcν
ω
c + V ω̇


s.t. Constrictions (2a) − (2l), (2n) ∀t ∈ {τω, . . . , T}

V ω̇ ≥ (λω̇,k)⊤(zωτ ω̇−1 − ẑω̇,k
τ ω̇−1

)+

vω̇,k, ∀ω̇ ∈ Ω|ω, k = 1, . . . , ℓ− 1

zωτω−1 = ẑω
′,ℓ

τω−1, (Nonanticipativity : λ)

During the ℓ-th iteration of Algorithm 1, an extra cut is
generated to characterize fω by solving a relaxation problem
of

¯
fω at the point ẑω,ℓ

τω−1. This procedure yields the cut,
which is subsequently incorporated into (Sω

ℓ ), featuring the cut
intercept vω,ℓ and the cut slope λω,ℓ. We refer to problem (Sω

ℓ )
that has additionally incorporated cuts as augmented (Sω

ℓ ).
Without loss of generality, we can assign the disruption time
for the nominal realization ω0 as T + 1. As a result, the
corresponding value function for ω0 equals 0.

B. Cut Families

This section covers a range of cut types and corresponding
relaxed problem (Rω

ℓ ) applicable in Algorithm 1.
1) Benders’ Cut (BC): The relaxation problem (Rω

ℓ ) solved
in the backward step is the LP relaxation of the augmented
(Sω

ℓ ). Therefore, the cut coefficient (vω,ℓ, λω,ℓ) is computed
based on the optimal value of the LP relaxation and an
optimal dual solution. Specifically, the cut added to its pre-
ceding realization ω′ takes the following coefficient: vω,ℓ =

fLP,ω

ℓ
(ẑω

′,ℓ
τω−1) and λω,ℓ is a basic optimal dual solution λ cor-

responding to the nonanticipativity constraint zωτω−1 = ẑω
′,ℓ

τω−1.
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Algorithm 1: Decomposition algorithm based on
Cutting-plane Method

1 Initialization cut iteration number ℓ = 1, lower bound
LB = 0, upper bound UB =∞ and ϵ ≥ 0;

2 while UB−LB
UB

≥ ϵ do
/* Forward Steps */

3 Solve problem (Mℓ) the first-stage shut-off solution ẑℓ,
optimal value Z∗

ℓ , and the approximations of value
function V̂ ω,ℓ for each ω ∈ Ω|ω0 ;

4 Update LB = Z∗
ℓ ;

5 Let Z ← Z∗
ℓ −

∑
ω∈Ω|ω0

pωV̂ ω,ℓ and p← 1;
6 for ω ∈ Ω|ω′ do
7 Solve problem (Sω

ℓ ) with ẑω
′,ℓ

τω−1 to obtain the
corresponding shut-off solution ẑω,ℓ, optimal value
fω

ℓ
(ẑω

′,ℓ
τω−1), and the approximations of value

function V̂ ω̇,ℓ for each ω̇ ∈ Ω|ω;
8 Z ← Z + p[fω

ℓ
(ẑω

′,ℓ
τω−1)−

∑
ω̇∈Ω|ω pω̇V̂ ω̇,ℓ];

9 if Ω|ω ̸= ∅ then
10 for ω̇ ∈ Ω|ω do
11 p← p · pω , ω′ ← ω, ω ← ω̇;
12 Go to line 6;
13 end
14 end
15 end
16 if Z < UB then
17 Update UB = Z and shut-off solutions {ẑω,ℓ}ω;
18 end

/* Backward Steps */
19 for ω ∈ Ω|ω′ do
20 if Ω|ω ̸= ∅ then
21 for ω̇ ∈ Ω|ω do
22 Go to line 19;
23 end
24 end
25 Solve a relaxed problem (Rω

ℓ ) of the augmented
(Sω

ℓ ) to obtain the cut slope λω,ℓ and intercept
vω,ℓ;

26 Augment (Sω′
ℓ ) by adding the cut;

27 end
28 Let ℓ = ℓ+ 1;
29 end
30 Output: The ϵ-optimal value UB and solutions {ẑω,ℓ}ω .

2) Lagrangian Cut (LC): These cutting planes are derived
by solving the Lagrangian dual relaxation problem (3) to
acquire the optimal solution λ∗ for the cut slope λω,ℓ and
the optimal value Rω

ℓ (ẑ
ω′,ℓ, λ∗;Z) for the intercept vω,ℓ, i.e.,

its relaxed problem (Rω
ℓ ) is

max
λ

Rω
ℓ (ẑ

ω′,ℓ, λ;Z), (3)

where the Lagrangian relaxation problem Rω
ℓ (ẑ

ω′,ℓ, λ;Z)
is derived by relaxing the nonanticipativity constraint and
constraining the copy variables to the domain Z within the
augmented (Sω

ℓ ) framework:

Rω
ℓ (ẑ

ω′,ℓ, λ;Z) =

min
∑

ω̇∈Ω|ω

pω̇

τ ω̇−1∑
t=τω

∑
d∈D

wds
ω
dt +

∑
c∈C

crcν
ω
c + V ω̇

+

λ⊤(ẑω
′,ℓ

τω−1 − zωτω−1)

s.t. Constrictions (2a) − (2l), (2n) ∀t ∈ {τω, . . . , T}
V ω̇ ≥ (λω̇,k)⊤(zωτ ω̇−1 − ẑω̇,k

τ ω̇−1
)+

vω̇,k, ∀ω̇ ∈ Ω|ω, k = 1, . . . , ℓ

zcτω−1 ∈ Z ∀c ∈ C.

Remark 1. The standard Lagrangian cut method, as proposed
by Zou et al. [23], involves selecting Z = [0, 1]. Alternatively,
opting for Z = {0, 1} yields improved cut performance.

3) Strengthened Benders’ Cut (SBC): Given a fixed cut
slope λ, a valid cut can be derived, featuring a cut intercept of
Rω

ℓ (ẑ
ω′,ℓ, λ;Z). Subsequently, Benders’ cut can be fortified

through the aforementioned approach. The process involves
initiating the dual solution λ corresponding to the nonanticipa-
tivity constraint for the LP relaxation of the augmented (Sω

ℓ ).
The acquired dual solution λ then serves as the cut slope.
It is followed by the resolution of a mixed-integer program
to attain the strengthened cut intercept of Rω

ℓ (ẑ
ω′,ℓ, λ;Z). In

Fig. 3, strengthened Benders’ cut (in orange) is parallel with
Benders’ cut (in blue) while exhibiting improved performance.

4) Square-Minimization Cut (SMC): Lagrangian cuts, rep-
resented by the black line in Fig. 3, may be steep and fail
to provide a good lower approximation at other solutions. To
address this limitation, Square-Minimization Cut (SMC) [11],
depicted by the red lines in Fig. 3, offers a rotated approach.
Instead of solving problem (3) to obtain cut coefficients, we
use an alternative cut-generation problem (5) as the relaxed
problem (Rω

ℓ ):

min
λ

λ⊤λ (5a)

s.t. Rω
ℓ (ẑ

ω′,ℓ, λ;Z) ≥ (1− δ)fω

ℓ
(ẑω

′,ℓ
τω−1), (5b)

and we let λω,ℓ equal to its optimal solution λ∗ and vω,ℓ =
Rω

ℓ (ẑ
ω′,ℓ, λ∗;Z). Fig. 3 shows that the difference between

a steep cut and a flat cut lies in their angle with the hori-
zontal plane. We prefer a flat cut, corresponding to a smaller
λ⊤λ, as λ represents the linear cut’s coefficients. We set
up constraint (5b) to force the cut value to be within a δ
neighborhood of fω at ẑ, which can be considered an “anchor
point.” As the function Rω

ℓ is a concave function of λ given
ẑω

′,ℓ, constraint (5b) characterizes a convex set. We can use
convex programming solution methods to solve problem (5).

C. Convergence

We present the detailed steps of the decomposition algorithm
in Algorithm 1, which iteratively updates the bounds. In the
end, we terminate Algorithm 1 once the relative gap is within
a predefined tolerance threshold ϵ ≥ 0. We can show that
Algorithm 1 converges to the optimal value in the finite step.

Theorem 1 (Convergence). When ϵ = 0, Algorithm 1
terminates in a finite number of iterations and outputs an
optimal solution to problem (1) after finitely many iterations,
if the backward steps generate Lagrangian cuts or square-
minimization cuts with δ = 0.
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Fig. 3: SMC and LC are tight at ẑ = 0, whereas BC and
SBC are not, as their values at ẑ are smaller than the function
value. The upper and lower SBC (SMC) are obtained by taking
Z = {0, 1} and [0, 1], respectively.

IV. NUMERICAL RESULTS

In this section, we outline the configuration of our numerical
experiments employed to assess the efficacy of our decom-
position method using various cut families. We examine the
fairness of the M-SMIP formulation (1) across different fair-
ness levels and restoration strategies, thereby demonstrating
the advantages of M-SMIP.

A. Experiment Setup

We utilize the RTS-GMLC 73-bus case [24] for our study
and conduct experiments over a 24-hour horizon, with each
time period encompassing three hours (T = 8). The economic
consequences of wildfires and sudden power interruptions are
contingent upon both fire intensity and the load magnitude
within the affected area. To capture the economic impacts of
wildfires and power outages, we evaluate the significance of
each electrical component and its effect on the surrounding
area using the same cost parameters as in Ref. [11]:

1) Load priorities wd range from 50 to 1000;
2) The damage costs rc of wind turbines, thermal and

nuclear power plants are 50, 1000, and 2500, respectively;
3) The damage cost rc of each bus is 50;
4) The damage cost rc of a transmission line is 0.285ℓ,

where ℓ is the length of the transmission line.
Fig. 4 color codes the load priority levels based on their load-
shedding and damage costs, respectively.

All optimization models were implemented using JuMP [25]
in Julia v1.9 [26] and solved by Gurobi v10.0.0 [27] on a
computer with a 10-core M1 Pro CPU and 32GB memory.
The network plots are generated using PowerPlot.jl, which
depends on PowerModels.jl package [28]. Scenario simulation
is constructed by an agent-based model package, Agent.jl [29].
For Algorithm 1 and SMC, we set ϵ = 1% and δ = 10−4.

B. Scenario Generation

We employ the term “scenario” to describe a complete disrup-
tion path within the scenario tree, extending from the root node

branch

Branch

High

Low

Middle

Load Priority

Fig. 4: Illustration of the loads in RTS-GMLC system.

to one of its leaves. For instance, there are four distinct sce-
narios in Fig. 2. We used identical settings and parameters to
the cellular automaton simulation model described in Ref. [11]
but allowed for the possibility of multiple disruptions.

A training set, Ξ, consists of 500 samples which has been
proven to be sufficient in Ref. [11]. A testing set, Ω̃, consists of
5, 000 samples, each of which contains at most one disruption.
Each scenario is assigned an equal probability of occurrence.
Vulnerable components, identified as risky due to their height-
ened susceptibility to wildfire attacks, are associated with a
greater likelihood of damage in multiple scenarios. These risky
components receive heightened attention within the sample
sets, reflecting their increased probability of being affected.

C. Cut Performance

We applied Algorithm 1 using four cut families to the scenario
set Ξ with β = 0.4 and assessed their performance. Fig. 5
depicts the relationship between convergence and algorithmic
iteration count across different cut families.

Our findings suggest that: i) Benders’ cuts fail to achieve
convergence due to their lack of tightness; ii) Square-
minimization cuts converge with fewer iterations, although
each iteration requires more computation time compared to
Lagrangian cuts; iii) Cuts with Z = {0, 1} exhibit superior
performance in terms of lower-bound improvement compared
to those with [0, 1].

In TABLE I, a maximum runtime of 25, 000 seconds is
specified. This table presents the best bounds, gap, time per
iteration, and the total time required to reach these bounds
for each cut type, signifying the minimum duration necessary.
BC and LC cannot achieve convergence within the time limit.
SBC can be considerably tighter due to their improved inter-
cept achieved through MIP solving. Two versions of SMCs
underscore the advantages of selecting Z = {0, 1}.

D. Fairness Evaluation

We examine different values of β to evaluate the trade-off
between efficiency and fairness. A solution that neglects or
minimally considers fairness may lead to a significant imbal-
ance in load shedding among different regions, as illustrated
in Fig. 6c. On the other hand, a solution that enforces strict
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TABLE I: Assessing Algorithm 1 performance with different
cut families.

Cut Type Solution Quality Runtime (sec.)
LB UB Gap Time/Iter. Total

BC 3305.3 3457.8 4.41% 214.2 5377
LC 3306.9 4116.8 19.67% 193.4 3803

SBCB 3397.5 3449.6 1.51% 237.7 8472
SBCI 3323.1 3433.6 3.15% 210.8 10500
SMCB 3414.9 3426.5 0.34% 445.4 20516
SMCI 3368.6 3419.3 1.48% 391.9 13414

Fig. 5: Lower Bounds vs. Iteration Count. Superscripts are
employed to denote the choice of Z , where B represents the
binary set, {0, 1}, and I denotes the interval, [0, 1].

fairness may be too conservative and incur a high cost, as
shown in Fig. 6a. Our demonstration reveals that a balanced
and efficient solution can be achieved with a moderate level of
fairness, exemplified in Fig. 6b. The divergence in total load-
shedding or the emergence of more uniform load-shedding
can be attributed to changes in power distribution. In contrast
to the approach taken in the work [22], our de-energization
decisions are more consistent and allow you to select your
desired level of fairness.

E. Comparative Analysis: Restoration vs. No Restoration

In a prior study [11], we explored the benefits of stochastic
programming, demonstrating its superiority by achieving a
minimum improvement of at least 45% compared to determin-
istic models. In this work, we shift our focus to restoration
analysis. Given β, solving problem (1) with the scenario
set Ξ yields a nominal shutoff plan, denoted as X∗,β =
{s∗, z∗, θ∗, P ∗}. To gauge its effectiveness, we compare this
plan with alternatives X ′,β = {s′, z′, θ′, P ′} generated with-
out considering restoration by replacing the restoration con-
straints (1i) and (1j) with the following component-time logic
constraint zc,t−1 ≥ zct. We evaluate the expected total cost
for each SAA solution (nominal plan) using the scenario set
Ξ̃ for the out-of-sample test as follows:

g(X̂) = min
∑
ω̇∈Ω̃

1

|Ω̃|

τ ω̇−1∑
t=1

∑
d∈D

wdŝdt + f ω̇(ẑτ ω̇−1)

 .

Nominal restoration plans tend to de-energize more compo-
nents than non-restoration plans, as they can restore certain
components once they are no longer at risk. This is advanta-
geous in wildfire scenarios as it reduces damage costs, but it
may increase load-shedding costs in the nominal scenario due
to more de-energized components.

We present the results in TABLE II, displaying the benefits
of integrating restoration operations and shedding light on the
performance of nominal plans across different fairness levels
denoted by β. When β > 0, these restoration operations yield
more than 5% cost reductions as they enhance the capacity for
restoring components, allowing for their de-energization when
necessary. Subsequently, these components can be restored
after hazardous periods, resulting in a minor reduction in
nominal load supply but a considerable decrease in total costs.

As detailed in Section IV-D, varying values of β can result
in different nominal plans that demonstrate similar disrup-
tive performance, confirming their relatively consistent de-
energization operations. However, smaller β values necessitate
a considerably higher level of additional load-shedding.

TABLE II: Nominal load-shedding cost, disruptive load-
shedding costs, and damage costs under different nominal
plans obtained using different settings.

Setting Nominal Disruptive Total Cost
Res. β Load shed Load shed Damage g(·)

X∗,β

0.0 23276.1 1789.0 1389.0 18517.6
0.2 3974.7 1840.0 1457.4 6554.2
0.4 2978.4 1971.7 1515.6 5948.9
0.6 2873.5 1967.9 1533.7 5886.4

X′,β

0.0 21710.1 2108.8 1957.4 18370.4
0.2 3819.0 1947.8 1863.7 6957.4
0.4 2933.7 2077.3 1887.3 6409.6
0.6 2776.7 2045.8 1937.2 6331.7

V. CONCLUSION

This work represents a multistage stochastic mixed-integer
program for power system operations under the persistent
wildfire threat. Our multistage stochastic program is adept
at comprehensively modeling the intricate uncertainties stem-
ming from spatially varying wildfire disruptions and their tem-
poral evolution. Our model exhibits robustness and resilience
in addressing fairness concerns and indicates the benefit of
adding a restoration option.

To complement our modeling approach, we propose an
efficient decomposition algorithm that capitalizes on binary
state variables, enabling the generation of valid cuts and
enhancing the resolution of extensive instances. Empirical as-
sessments underscore the effectiveness of various cut families,
highlighting the overall efficiency of our multistage model. In
future work, we aim to develop theory-driven cutting planes
for our decomposition algorithm, balance computational effi-
ciency, and integrate unit commitment decisions with ramping
constraints. AC power flow equations can be incorporated in
the formulation via additional constraints or approximations,
and it is necessary to explore how they affect the solution’s
fairness and robustness in future work.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



De-energized

Energized

Branch

0

20

40

60

Pct.Load-shed

(a) When β = 0.0, load-shedding is evenly
distributed across numerous loads, with a
maximum load-shedding percentage of 10%,
resulting in a total load-shedding of 9.2%.
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(b) When β = 0.4, load-shedding is less
evenly distributed, with a maximum load-
shedding percentage of 40%, resulting in a
total load-shedding of 4.5%.
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(c) When β = 0.6, load-shedding is concen-
trated on a few lower-priority loads, with a
maximum load-shedding percentage of 60%,
resulting in a total load-shedding of 4.2%.

Fig. 6: Percentage of load-shedding for each load with different β and de-energization operations illustration.
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