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Abstract—Given the difficulty and the time pressure of solving
unit commitment problems, near-optimal solutions (those with
0.1 or 0.001% optimality gaps) are often used in practice. The
choice in which of the near-optimal solutions is used, however,
is random. We investigate the impact of solution choice on the
revenues obtained by generator owners across a variety of pricing
schemes and problem instances.

Index Terms—Mixed-integer linear programming (MILP), unit
commitment (UC), market-clearing, symmetry.

NOMENCLATURE

Indices and Sets

g ∈ G Thermal generators.
t ∈ T Hourly time steps: 1, . . . ,T.

Parameters

cg(p) Cost function for generator g to generate p MW
of power ($/MWh).

Cg
U Cost coefficient for generator g to start up

($/MWh).
Cg

D Cost coefficient for generator g to shut down
($/MWh).

Dt Load (demand) at time t (MW).
DTg Minimum down time for generator g (h).
P

g
Maximum power output for generator g (MW).

Pg Minimum power output for generator g (MW).
RDg Ramp-down rate for generator g (MW/h).
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RUg Ramp-up rate for generator g (MW/h).
SDg Shutdown ramp rate for generator g (MW/h).
SUg Start-up ramp rate for generator g (MW/h).
UTg Minimum up time for generator g (h).

Variables

pgt (P g
t ) Power output for (representative) generator g at

time t (MW).
ug
t (Ug

t ) Commitment status of (rep) g at time t, ∈
{0, 1}.

vgt (V g
t ) Startup status of (rep) g at time t, ∈ {0, 1}.

wg
t (W g

t ) Shutdown status of (rep) g at time t, ∈ {0, 1}.

I. INTRODUCTION

Day-ahead energy market clearing in the United States is
typically performed based on some unit commitment solution
(UC) obtained from a commercial mixed-integer program
(MIP) solver. Because it is desirable to have a UC solu-
tion within 10 to 15 minutes and proving the optimality of
a solution is often computationally difficult, if the solver
can certify optimality within a certain percentage – usually
0.1%, the system operators will terminate the day-ahead MIP.
Unfortunately, this can lead to schedules that are unfair: a
more expensive generator may be scheduled over a cheaper
generator. This can clearly be the case when a generator
is small enough that the cost of its dispatch is within the
optimality gap, but it can also occur when the difference in
cost between two generators is within the optimality gap.

The paper undertakes a study of UC solutions “in the gap,”
that is, additional solutions that are within a specified optimal-
ity gap. We propose a method for enumerating a diverse set of
UC solutions – exploiting the symmetry of inherit in the data –
to consider solutions that are within the typical optimality gap
used by industry – 0.1% or 0.01%. Hence all of the solutions
considered could be classified as “high quality” but can result
in significantly different distribution of revenue to participating
generators.
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II. METHODOLOGY

To study UC solutions “in the gap,” we need to have
the capability to enumerate a large class of UC solutions,
preferably ones which are sufficiently distinct from each other.
Modern commercial Mixed-Integer Program (MIP) solvers
allow the user to generate potentially all near-optimal so-
lutions for a given problem by adjusting parameters (in
Gurobi this is accomplished by adjusting the PoolGap and
PoolSolutions parameters). However, as noted in [1], this
may be computationally prohibitive as the number of near-
optimal solutions can be large, and even if that is not the
case, proving there are no solutions within a certain PoolGap
may still take a significant amount of computational effort.
The methods described next reformulate the problem such that
a single solution in the MIP solver can potentially represent
many, many solutions to the original UC problem – in one case
in our tests, we represented over 1015 distinct UC solutions a
a single solution to our symmetry-aware UC reformulation.

The main source of trouble in enumerating solutions is
(near) symmetry induced by generators having the same (or
similar) technical parameters. Two generators that are identical
can have their schedules, or even parts of their schedules,
swapped with no change in objective value. Similarly, two
generators with similar physical characteristics and objective
function can be similarly swapped with little change in objec-
tive value. Even if two similar generators are not co-located
at the same bus, their schedules may still be interchange-
able if the part of the transmission network linking them is
sufficiently non-congested. In the context of the wholesale
electricity market, such solutions distribute revenue differently
to energy producers. Because of this, participants might win
or lose out on significant profit depending on the near-optimal
solution the optimization engine happened upon first. For more
on the structural symmetry in UC, the reader is referred to [2]–
[4].

A. Symmetry-Aware Unit Commitment Formulation

We discribe next a simple version of the well-known “3-bin”
implementation from the literature that models the problem
using three binary variables encoding the UC, start-up, and
shutdown status for each generator at each hour in the event
horizon. This simplified version of the model does not take
into account reserves, costs for cold or hot starts, or the
network. For these details the reader is referred to the “tight”
formulation from [5].

min
∑
g∈G

∑
t∈T

cg(pgt )u
g
t +Cg

Uv
g
t +Cg

Dwg
t (1a)

subject to:∑
g∈G

pgt = Dt ∀t ∈ T (1b)

Pgug
t ≤ pgt ≤ P

g
ug
t ∀g ∈ G,∀t ∈ T (1c)

pgt − pgt−1 ≤ RUgug
t−1 + SUgvgt ∀g ∈ G,∀t ∈ T (1d)

pgt−1 − pgt ≤ RDgug
t + SDgwg

t ∀g ∈ G,∀t ∈ T (1e)

ug
t − ug

t−1 = vgt − wg
t ∀g ∈ G,∀t ∈ T (1f)

t∑
i=t−UTg+1

vgi ≤ ug
t ∀g ∈ G,∀t ∈ T (1g)

t∑
i=t−DTg+1

wg
i ≤ 1− ug

t ∀g ∈ G,∀t ∈ T (1h)

pgt ∈ R+, ug
t , v

g
t , w

g
t ∈ {0, 1} ∀g ∈ G,∀t ∈ T . (1i)

For simplicity, we also do not explicitly state the form of the
cost function for a given generator to generate p MW of power
cg(p). In practice, we model this as a piecewise linear function.

One method to address the problems induced by symmetry
in MIPs is that of orbital shrinking, introduced in [6] and
analyzed in the context of UC in [3]. For generators that have
identical (or at least very similar) parameters, we can consider
equivalence classes of generators E = {[g]|g ∈ G}, where we
define an equivalence relation by stating that g ∼ g′ if and
only if g and g′ have identical parameters. If there are any
identical generators, we can reduce the size of this problem
by introducing general integer variables for each equivalence
class indicating how many generators are on and replacing the
binary variables for each generator; [3] describes conditions
under which this can be done exactly. Using capital letters to
denote integer variable version of each binary variable and any
equivalence class by Eg where g is the representative for the
class and |Eg| is the size of the class, we can write our new
problem as the following MIP:

min
∑
Eg∈E

∑
t∈T

cg(P g
t )U

g
t +Cg

UV
g
t +Cg

DW g
t (2a)

subject to:∑
Eg∈E

P g
t =Dt ∀t∈T (2b)

PgUg
t ≤P g

t ≤P
g
Ug
t ∀t∈T ,∀Eg∈E (2c)

P g
t −P g

t−1≤RUgUg
t−1+SUgV g

t ∀t∈T ,∀Eg∈E (2d)
P g
t−1−P g

t ≤RDgUg
t +SDgW g

t ∀t∈T ,∀Eg∈E (2e)
Ug
t −Ug

t−1=V g
t −W g

t ∀t∈T ,∀Eg∈E (2f)
t∑

i=t−UTg+1

V g
i ≤Ug

t ∀t∈T ,∀Eg∈E (2g)

t∑
i=t−DTg+1

W g
i ≤|Eg|−Ug

t ∀t∈T ,∀Eg∈E (2h)

P g
t ∈R+, U

g
t ,V

g
t ,W

g
t ∈ [0,|Eg|]Z ∀t∈T ,∀Eg∈E . (2i)

It is not difficult to come up with problems where solutions
to the aggregate model cannot be decomposed into feasible
solutions to the disaggregated model. However, having a large
set of generators gives the system some additional flexibility,
and using a tight formulation for the ramping constraints
(see [5]) can often ameliorate this problem. In practice, for
the systems we consider, almost all of the generators have
redundant ramping constraints when considered with an hourly
time horizon.
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B. Counting Disaggregated Solutions

The motivation for using formulation (2) is that it encodes
some or most of the symmetry in the problem – therefore
single solution to problem (2) can represent many solutions to
the original UC problem (1). In some cases this reformulation
means that the solver can tractably enumerate all near-optimal
solutions to (2). For a given solution {Ug

t
∗
, P g

t
∗} to prob-

lem (2), we can separate the solution by equivalence classes
E . For each Eg ∈ E , the number of solutions represented by
(Ug∗, P g∗) can be calculated by enumerating all solutions to
the following auxiliary system of equations:

∑
g∈Eg

pgt =P g∗
t ∀t∈T (3a)

∑
g∈Eg

ug
t =Ug∗

t ∀t∈T (3b)

constraints (1b)−(1i). (3c)

When aggregation/disaggregation can be done exactly, the
number of solutions to problem (1) represented by a single
solution {Ug

t
∗
, P g

t
∗} to problem (2) can be calculated by

enumerating the solutions to problem (3) for each Eg ∈ E . For
Eg ∈ E , call the number of solutions to problem (3) N(Eg).
Then the number of solutions to problem (1) represented by
a single aggregate solution {Ug

t
∗
, P g

t
∗} is

∏
Eg∈E N(Eg).

We were able to calculate that some instances from the
CAISO generator set (described in Section III-A) have over
1015 solutions within 0.001% of optimal. As this is a lower
bound on the number of near-optimal solutions, analyzing all
near-optimal solutions (for any reasonable tolerance) would
surely be intractable.

C. Computing Representative Solutions

To account for this issue, we construct a set of near-
optimal solutions that are representative of the collection of
near-optimal solutions in that they reflect the diversity of the
solution set but not its size. We first construct a set of aggregate
solutions that should implicitly describe the symmetries of the
system, and then we exploit these symmetries to build a diverse
set of near-optimal solutions.

First, consider the “no-good” cut for a given solution {ug∗
t }:∑

ug
t :u

g∗
t =1

(1− ug
t ) +

∑
ug
t :u

g∗
t =0

ug
t ≥ d. (4)

This has the effect of rendering the given UC solution infea-
sible and requiring any new solution to be at least hamming
distance d away from the given solution. If d = 1, then the
solution needs to differ only at one point. This formulation
works only for binary variables, but it can be extended to work
with general integer variables under a binarization scheme.

Enumerating all the near-optimal solutions to the aggregated
problem (2) can still be computationally intractable. Addi-
tionally, for each aggregate solution, one can have a huge
number of disaggregated solutions, and explicitly computing
all of them (even using a simple metric like hamming distance)

can easily result in an intractable problem. To sidestep both
issues, we exploited some advanced features typically present
in commercial MIP solvers, namely, the ability to add lazy
constraints on the fly. We also put an absolute cap on the
number of solutions to limit the overall scale of the problem.

We generated these diverse near-optimal solutions in two
passes. In the first pass, we use the aggregated problem (2),
to construct valid lower and upper bounds for Ug

t for each Eg
across a large set of aggregated solutions, either to a specific
optimality tolerance ϵ or to a maximum number of aggregated
solutions N . To enumerate all near-optimal solutions, we
repeatedly solve (2) with a no-good cut (as a lazy constraint)
of the form (4) with d = 1 for all solutions found. We then use
the minimal and maximal values of Ug

t across all found near-
optimal solutions as lower and upper bounds. If our search
terminates before hitting the solution limit N , then the upper
and lower bounds are valid for all solutions within ϵ of the
optimal solution. If not, then these are heuristic bounds on Ug

t

across a large number of near-optimal solutions.
In the second pass, we construct a representative set of

disaggregated solutions. To do so we add the constraints (5)
to the disaggregated problem (1), where LBg∗

t and UBg∗
t are

the computed lower and upper bounds, respectively.

LBg∗
t ≤

∑
g′∈Eg

ug′

t ≤ UBg∗
t ∀Eg ∈ E (5)

Then we repeatedly solve the amended problem, adding a no-
good cut with hamming distance d for the found solution
after each solve. We repeat until the problem is infeasible,
ultimately finding a diverse set of disaggregated solutions, each
pair hamming distance d apart.

D. Computing Prices

We compute the generator profits and revenues for each
UC solution under three different pricing schemes from [7],
all of which use some linear programming analogue of (1)
and compute prices as the dual value of the power balance
constraints (1b).

The first pricing scheme considered is the Approximate
Convex Hull Price (aCHP), which uses the linear programming
relaxation of (1). While not commonly used in practice,
convex hull pricing in electricity markets has been a subject of
research for several years [8]–[11]. In this context, the word
“approximate” refers the fact that we have only approximate
convex hulls for each generator in the pricing problem, as
opposed to a full convex hull description. Large (though not
exponential) convex hulls for a large classes of generators are
known [12], [13], but we will not consider those here.

The remaining two pricing schemes are more common in
practice: Enhanced Locational Marginal Price (ELMP) and
Locational Marginal Price (LMP). The ELMP prices-in the
start-up and no-load costs of the scheduled units by fixing ug

t

to 0 if generator g is not scheduled in time t, and otherwise
relaxes it to be in [0, 1]. Hence, the price reflects only the
fixed and marginal costs for the generators that are scheduled,
a potential drawback for aCHP. The LMP pricing scheme fixes
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Fig. 1. Cost as a function of power generated plotted for a select number of
CAISO generators. Each cost curve is plotted only on the range of possible
power generation for a given generator

each generator to its commitment from the UC solution, and
in this way the LMP only reflects the marginal cost for the
generators that are scheduled. For a more through overview
of these pricing schemes, the reader is again referred to [7].

III. COMPUTATIONAL EXPERIMENTS

We applied our method to two fleets of generators. The
first set of generators to be considered is the California ISO
(CAISO) set of generators. CAISO manages the majority of
California’s power operation. The second under consideration
is the Reliability Test System Grid Modernization Lab Con-
sortium (RTS-GMLC) collection modeled using a hypothetical
forecasted demand and weather profile in 2020.

A. Caiso Instances

The CAISO fleet of generators consists of 610 generators,
the vast majority of which are gas and biomass engines. This
class of generators is characterized by having a large number
of generators with very low power generation capacity with
half of the generators having a maximum power output of less
than 30 MW.

This set of generators has a small degree of exact symmetry
with subsets of identical generators ranging from sizes 2 to 8.
When aggregating generators that are exactly the same, it is
possible to reduce the complexity to approximately 3/4 the
size of the original problem with 466 equivalence classes of
generators that are exactly the same.

Given the high amounts of symmetry apparent in the
generator specifications as well as the preponderance of small
generators, we should expect a high amount of near-optimal
solutions that can be produced by interchanging generators in
equivalence classes. This is what occurs and we have seen in
the tests that at least 10000 solutions were produced within a
MIP Gap of 0.01% and in the majority of cases, over 100000
could be produced.

Fig. 2. Average hamming distance between each pair of solutions as a function
of generator maximum power output. This data refers to the September 1 2014
instance. These are all CAISO generators.

We explored instances using demand profiles selected from
4 dates beginning in September 2014 up until June 2015,
and with reserve levels at 0, 1, 3, and 5 percent. We used
48 hours of demand data starting midnight on the date of a
given instance, and produced 48-hour commitment schedules.
In each of these instances, we asserted that solutions be
within 0.01% of the optimum and that they exhibited pairwise
hamming distances of at minimum 100 in their UC vectors.
The high level of symmetry was again made apparent: in all
instances, we found at minimum 12 solutions mutually of 100
hamming distance separated across all 20 instances.

Generators that actually assumed different UC schedules
tended to be small generators with low maximum power
outputs. For evidence of this fact, observe the clear negative
trend where average hamming distance decreases as power
output in Figure 2. It appears that variation in solutions occurs
in small generators perhaps because their operation (or lack
thereof) has a minimal effect on optimal cost. That being
said, there typically are two or more large generators that
effectively flip schedules. Across all near-optimal solutions,
we observed rigidity in the scheduling in that over all instances
tested, roughly three-fourths of the generators (on average
464 out of 610) did not exhibit any differences in their
schedules across the computed solutions. Of those that did
exhibit change, the typical differences were more commonly
changes corresponding to turning generator off or on slightly
earlier or later.

We compiled revenues and profits at a per-generator level
for each solution where energy was priced using the aCHP,
LMP, and ELMP schemes. A plot of the average standard
deviation of the revenues under each of these schemes is
shown in Figure 3.

As can be observed in the plots of average standard devi-
ation, the ELMP scheme exhibits the greatest variation, often
by one order of magnitude, over the other pricing schemes,
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Fig. 3. Averages of the standard deviations of the revenues across near-
optimal solutions in the CAISO power system according to various pricing
schemes.

followed by the LMP scheme and then by aCHP scheme
which exhibits the least variation. For both LMP and ELMP,
these price spikes are primarily caused by the scheduling of a
small, under the margin, generator with a high marginal cost of
production, which for the UC solution was still near-optimal
(0.01%) due to the generator’s size relative to the system.

We see that in all cases the ELMP pricing scheme exhibits
the greatest variation and the LMP scheme generally exhibits
the second-most variation although there are a few cases where
the aCHP scheme shows higher variation. The higher levels
of volatility in the ELMP and LMP schemes can be in part
explained by the fact that even if a generator has exactly the
same schedule across all solutions, it can produce different
revenues depending on the schedules of the other generators.
The aCHP pricing scheme lacks this freedom since the scheme
depends only on the integer program constraints and not on
the exact solution chosen. The difference can be observed
in the bar plot in Figure 4 which depicts the number of
“unfixed revenue generators”, that is, the number of generators
that exhibit any difference in revenue across near-optimal
solutions. The amount of unfixed aCHP revenue generators
is exactly the number of generators that show a difference
in the UC schedule whereas the number of unfixed LMP or
ELMP revenue generators is almost triple that number.

B. RTS-GMLC Instances

The RTS-GMLC collection of generators is a much smaller
set than the CAISO fleet, consisting of only 73 thermal genera-
tors, approximately half being gas generators and the other half
being split fairly evenly between steam and coal generators
with the addition of 1 nuclear generator. The fleet contains
a fairly diverse set of generators, with a group of about 50
generators with capacities below 100 MW and smaller groups
of generators with larger capacities at about 150 MW and 350
MW. The collection of thermal generators is supplemented by
a plethora of solar panels and hydro generators which often

Fig. 4. Number of generators in each CAISO instance that show a difference
in revenue generated across solutions.

amount to 40% of the demand on a given day. The RTS-GMLC
case also distributes its generators on a network that introduces
additional constraints onto the model. We will consider both
the case where the generators are all located on a single bus
without the effect of network constraints (which we refer to
as “CopperSheet”) and the case with the network included.

Given the much smaller set of generators, there are fewer
opportunities for exact and partial symmetry, yet there are still
quite a few clusters of sizes ranging from 2 to 6 of generators
with the exact same specifications. Joining these generators
into equivalence classes reduces the complexity from 73
generators to 39 classes with an average 1.87 generators per
cluster. When introducing the network, only generators on
the same bus can be joined together and so the number of
generators per cluster decreases further.

We considered instances a month apart in the year 2020
where we used the forecasted demand and renewable energy
to produce a well-posed problem that we solved to a MIP gap
of 0.1%. With the small set of generators, it is computationally
tractable to enumerate all solutions for a giving instance.
We enumerated all such solutions and counted the maximal
solution set size, where all solutions are pairwise a given
hamming distance apart. These counts for the CopperSheet
case are given in Table I. Note that in certain instances, there
is exactly 1 solution within the desired MIP gap. The case with
the network included produced even fewer solutions because
there are more constraints on the model.

Even with such a sparse set of solutions, there still exist
large deviations in the possible revenue and profit gener-
ated for each given generator. With the high penetration
of renewable energy in the power grid, the possibility of
demarginalization exists wherein renewable energy is not fully
dispatched, causing the price (in all three schemes) to drop to
zero (since renewable energy has zero marginal cost in our
model). This means that many generators are operating at a
complete loss but cannot be turned off because the shutdown
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TABLE I
NUMBER OF SOLUTIONS FOR THE RTS-GMLC COPPERSHEET INSTANCE

THAT ARE PAIRWISE A GIVEN HAMMING DISTANCE APART. NOTE THAT
FOR HAMMING DISTANCE 1, THIS IS JUST THE NUMBER OF SOLUTIONS TO

THE UNIT COMMITMENT PROBLEM.

Instance 1 10 50 100

2020-01-31 214.0 2.0 2.0 1.0
2020-03-01 4.0 2.0 2.0 1.0
2020-03-31 126.0 1.0 1.0 1.0
2020-04-30 2.0 2.0 2.0 1.0
2020-05-30 11.0 1.0 1.0 1.0
2020-06-29 2.0 1.0 1.0 1.0
2020-07-29 4.0 1.0 1.0 1.0
2020-08-28 1.0 1.0 1.0 1.0
2020-09-27 1012.0 43.0 3.0 1.0
2020-10-27 1.0 1.0 1.0 1.0
2020-11-26 2.0 2.0 1.0 1.0
2020-12-26 3.0 3.0 1.0 1.0

Fig. 5. Hourly profits for 3 solutions for a specific generator in the 2020-
01-30 instance in the RTS GMLC CopperSheet power system. The generator
202 STEAM 4 is scheduled to run for all 48 hours but for certain stretches
of time is operating at a complete loss due to demarginalization. This was
computed using the aCHP pricing scheme.

cost is comparable to running the generator at a loss for 48
hours. An example of this can be seen in Figure 5.

We computed revenues and profits on a per-generator basis
for each near-optimal solution computed in each instance.
Differences appear primarily due to deciding whether one
generator should be shut down for an entire day or kept on,
and the bulk of the costs comes from the hour of shut down
or start up. This behavior can be seen in the UC schedule and
hourly profits in Figures 6 and 7. In the profit plot, we observe
that on startup it incurs a big cost due to starting up, and only
at peak power usage times do we see large profits.

In assessing the difference between pricing schemes, we
note that there are not large disparities between the different
pricing schemes. As for the CAISO instances, we plot the

Fig. 6. Hourly profits in the aCHP pricing scheme on a hourly basis for
generator 315 CT 6 in the RTS GMLC CopperSheet system for two solutions
to the 2019-09-27 instance.

Fig. 7. Power generation on a hourly basis for generator 315 CT 6 in the RTS
GMLC CopperSheet system for three solutions to the 2019-09-27 instance.

average over all generators of the standard deviations of the
computed near-optimal solutions. This is displayed in Figure 8
for the CopperSheet case and Figure9 for the network. We
observe that in both network and non-network cases, the
variation among the pricing schemes is very close. Broadly,
we observe that the ELMP appears more variable than the
aCHP, which appears more variable than the LMP.

We suspect that the small differences between the pricing
schemes are due to the very low number of solutions in
consideration and furthermore, the low number of generators.
In the non-network case, we observed on average that ap-
proximately 10 generators exhibited any difference in power
produced, and in the network case, only an average of 6
generators exhibited any difference. Since the variation in
revenue occurred primarily due to flipping the schedule of
two generators, the difference in revenue might be explained
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Fig. 8. Averages of the standard deviations of the revenues across near-
optimal solutions in the RTS GMLC CopperSheet power system according to
various pricing schemes.

Fig. 9. Averages of the standard deviations of the revenues across near-
optimal solutions in the RTS GMLC Network power system according to
various pricing schemes.

by one pricing scheme valuing these two generators more than
another pricing scheme.

In comparing the no-network case with the network case,
we broadly observe that on average, the network case exhibits
lower variation, but not by a significant margin. This coincides
with our observation that the network case in general offers
fewer solutions and hence we would expect less variation. We
would need to observe more cases to make this claim with
more certainty however.

IV. CONCLUSION

The presence of both small and symmetric (or almost-
symmetric) generators of a power system introduces the po-
tential for there to be a large, diverse set of near-optimal so-
lutions to the UC problem. When analyzed from an economic
perspective, near-optimal solutions can exhibit great disparity

in how they distribute revenues and profits among generators.
Especially in the case of power systems with a large number
of generators with a high proportion of low-power generators
(as in the CAISO system), there may exist solutions within an
optimality gap of 0.01% where revenue and profits may vary
dramatically.

Minimizing the volatility of revenues and profits among
generators can be brought about in part by reducing the size
of the MIP gap so as to reduce the number of solutions (to
1 if possible) which ideally will eliminate highly disparate
solutions. Alternatively, certain pricing schemes can exhibit
lower levels of variation. Empirically, we have seen that in
the CAISO system, the aCHP pricing scheme expresses the
least variation, in part due to its solution-independent prices.
The choice of pricing scheme may reduce the presence of
significant variation.
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