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Abstract—The increasing volatility of electricity prices due to
increased uncertain renewable energy generation gives rise to in-
teresting short-term arbitrage opportunitites for Energy Storage
Systems (ESS) operators. Whereas prior research has shown the
possibility to exploit inter-temporal arbitrage opportunities in the
real-time balancing market, this paper formulates a two-stage op-
timization methodology that allows ESS operators to also engage
in inter-market arbitrage by participating in both the day-ahead
and real-time balancing markets. However, the effectiveness of
such a strategy is heavily influenced by expected inter-market
price differentials, which is known to be difficult to predict when
it involves the imbalance price. To address this issue, we propose
a risk-averse approach by incorporating the conditional value at
risk in the ESS objective function. The proposed methodology is
applied to a case study of the Belgian electricity market, where
we demonstrate the effectiveness of (i) the combined market
participation compared to an ESS participating in either market,
and (ii) the risk-aware methodology by showcasing improved ex-
post out-of-sample profit performance of a risk-averse compared
to a risk-neutral ESS.

Index Terms—Balancing market, day-ahead market, energy
storage, model predictive control, stochastic optimization.

NOMENCLATURE

Sets and Indices
Ω Set of scenarios, indexed ω
R+ Set of upward regulation bids, indexed r+

R− Set of downward regulation bids, indexed r−

T Set of time steps, indexed t
Decision Variables
ϕω Total profit for scenario ω
CVaRβ Conditional Value at Risk for risk level β [C]
e+t Energy discharged at time step t [MWh]
e−t Energy charged at time step t [MWh]
eDA,+
t Discharging energy offered in day-ahead at time step

t [MWh]
eDA,−
t Charging energy offered in day-ahead at time step t

[MWh]
eimb,+
t Discharging energy offered in RT at time step t

[MWh]
eimb,−
t Charging energy offered in RT at time step t [MWh]
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P imb
t,ω Imbalance price for scenario ω at time step t

[C/MWh]
sr

+

t,ω Activated energy for upward regulation at for scenario
ω at time step t [MWh]

sr
−

t,ω Activated energy for downward regulation at for sce-
nario ω at time step t [MWh]

SoCt State of Charge at time step t [MWh]
V aR Value at Risk [C]
Parameters
β Risk level of the CVaRβ [-]
∆t Duration of a time step [h]
ηc Charging efficiency [-]
ηd Discharging efficiency [-]
P d Maximum discharging power [MW]
SoC Maximum energy content [MWh]
P c Maximum charging power [MW]
SoC Minimum energy content [MWh]
PDA
t Day-ahead price at time step t [C/MWh]

Sr+ Upper boundary for upward reserve interval r+

[MWh]

Sr− Upper boundary for downward reserve interval r−

[MWh]
SIt,ω System Imbalance for scenario ω at time step t [MW]

I. INTRODUCTION

As the share of intermittent renewable energy sources in
today’s energy mix continues to increase, the need for grid
flexibility grows and prices in short-term electricity markets
become more volatile. This creates arbitrage opportunities for
Energy Storage Systems (ESS). The conventional approach
involves inter-temporal arbitrage, a strategy centered around
tactically scheduling the ESS’s charging and discharging
actions while considering price variations of an electricity
market over time. When operating in multiple markets, inter-
market arbitrage becomes an alternative strategy. The goal of
inter-market arbitrage lies in capitalizing on price differences
between two parallel markets [1]. This paper focuses on com-
bining Real-Time (RT) balancing actions of an ESS with Day-
Ahead (DA) market participation, specifically in European-
style markets, and as such capture the possibility of both inter-
market and inter-temporal arbitrages.
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Multi-market participation typically involves a combination
of the day-ahead (DA) market, reserve market and RT bal-
ancing market. A first stream of scientific research focusing
on ESS participation in a multi-market setting considers joint
participation in the DA and reserve markets. Here, the ESS
optimizes its bids placed in the DA and reserve markets,
considering possible outcomes of reserve activation. The un-
certain character of those activations poses a major challenge
in this line or research, as it results in uncertainty on the
state of charge at a particular time. Various strategies exist
for managing the uncertainty associated with RT activations
during the DA decision moment. One approach is to model
the ESS so that it can meet its reserve capacity in all scenar-
ios, which corresponds to a worst-case perspective. In [20],
Kahliniserobari and Wu ensure with worst-case constraints that
the ESS is able to deliver all of its cleared reserve capacity,
but do not explicitly model the underlying uncertainty, and
therefore cannot capture balancing market revenues. A similar
constraint on reserve activations is employed by Schillemans
et al. in [2] while considering uncertainty in the revenue from
activations through probabilistic intervals of possible System
Imbalance (SI) values. In [4], the worst-case reserve activation
constraints are combined with scenarios of the SI, allowing
them to develop a model for a risk-averse BESS by means
of the Conditional Value at Risk (CVaR). Such worst-case
scenario approaches are highly restricting in the capacity that
is allocated to the reserve market. This sparked Toubeau et
al. [3] to introduce probabilistic constraints on the reserve
activations leveraging scenarios of the SI, allowing the ESS to
bid more aggressively in the reserve market at the expense of
not being able to deliver the reserves in all scenarios.

Another line of research in multi-market participation con-
siders the Day-Ahead Market (DAM) in conjunction with
participation in an energy market closer to Real-Time (RT),
rather than focusing on ancillary services like the previous
research stream. One key benefit of this approach is that
it removes the uncertainty tied to reserve activation. This
topic has been explored most prominently in the context
of US-style RT markets. This typically involves a two-stage
approach, with a first optimization in day-ahead, and a re-
optimization closer to RT with updated information, e.g. on
price forecasts. The second stage is often modeled through
Model Predictive Control (MPC), where the ESS optimizes
its schedule deploying a receding horizon. There are two
distinct approaches: in [8]–[11], the potential outcomes in the
RT are not considered in the DA market, which decouples
(and as such, simplifies) the problem. However, this does not
allow for exploiting arbitrage opportunities in the day-ahead
optimization stage. In [12], Arteaga et al. co-optimize DA
and RT decisions, deploying a robust optimization approach
to hedge against the price uncertainty.

However, in the setting of European electricity markets,
there is no direct equivalent to the US RT-market. Indeed, the
demand side of European RT balancing markets constitutes the
activated reserves, driven by the SI. This makes price profiles
much more volatile and uncertain compared to the US RT

market which is driven by energy demand. The continuous
intraday market differs from the US RT market by its contin-
uous nature with bi-lateral trades, potentially resulting in many
prices for a single delivery period, increasing the complexity
of modeling this market compared to one with a single
clearing. Metz et al. have explored the possbility for ESSs to
exploit both intertemporal and intermarket arbitrages between
the German 15-minute and 60-minute continuous intra-day
market in [5]. On the other hand, Bottieau et al. propose
an implicit balancing strategy. This entails deliberate out-of-
balance actions that allow market participants to engage in the
RT balancing market without day-ahead commitments. Smets
et al. further elaborated this approach in [7] by introducing a
strategic ESS deploying an MPC algorithm to exploit these
implicit balancing opportunities. It is noteworthy that such
an implicit balancing strategy resembles, but is distinct from
participation in the US RT-market. The demand side of the RT
balancing market is dominated by the SI - leading to reserve
activations - as opposed to to energy load in the US RT market.
This SI is much more difficult to predict [13], leading to more
volatile and uncertain prices compared to the US RT market.

As of yet, no research has explored the potential of com-
bining ESS inter-temporal and inter-market arbitrage through
re-optimization in the context of European electricity markets.
Moreover, no previous work investigated the effect of risk-
aversion in such two-stage approaches. To address this gap,
we develop a two-stage model where in the first stage, a risk-
averse ESS co-optimizes its anticipated profits in both DA
and RT balancing market. The second stage entails an MPC
algorithm based on [7] re-optimizing the implicit balancing
actions in RT. The scientific contribution of this work is
threefold:

• We develop a two-stage model allowing ESSs to explore
both inter-temporal and inter-market arbitrage opportu-
nities between the day-ahead and RT balancing market,
taking into account price uncertainty in the latter through
scenarios.

• We propose a risk-averse methodology through the condi-
tional value at risk to manage the balance of engagement
in inter-market as opposed to inter-temporal arbitrages.

• We apply the methodology to a realistic case study of the
Belgian balancing market using actual price and system
imbalance data to show the effectiveness of the proposed
method.

II. METHODOLOGY

In this section, we construct an optimization framework that
represents a strategic ESS, operating in the DA market as well
as the RT balancing market through implicit balancing. Section
II-A outlines the concept of the model, followed by section
II-B that translates the concept into an optimization program.
Lastly, section II-C discusses the scenario generation technique
used to represent the uncertainty in the RT balancing market.
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Fig. 1. High-level overview of the model used in this paper.

A. Market dynamics and decision stages

Figure 1 provides a high-level overview of the methodology.
The model consists of two bi-level optimization problems,
each representing one decision stage: the DA stage and the
RT stage.

The upper-level problem of the DA stage determines the
ESS’s most profitable commitments in the DA market based
on exogenous price data, PDA

t , while already considering
possible future profits through implicit balancing. The lower-
level problem represents the balancing market clearing, which
takes scenarios of the SI, SIt,ω , information on bids placed in
the balancing market, and the upper-level implicit balancing
decisions as input to return the imbalance price. As such, the
ESS is modeled as price-maker in the RT balancing market.

In contrast to the obtained DA schedule in the first stage,
the RT charging schedule can still be re-optimized during the
following RT optimization stage. The RT stage is covered
by the second part of the model, which is a rolling horizon
implementation of a bi-level optimization problem that is
similar to the problem of the DA stage. This time, the DA stage
outcome (eDA,+

t and eDA,−
t ) is considered as input, together

with updated SI scenarios. The RT charging schedule is re-
optimized for every time step. This allows for the integration
of up-to-the-minute data regarding the ESS’s SoC and the ob-
served SIs, leading to improved predictions and consequently,
a more optimal RT charging schedule. The MPC algorithm
from this paper adopts a a three-step procedure inspired by [7].
The first step involves the generation of scenarios for a limited
amount of future time steps, drawing upon past data. Secondly,
these scenarios serve as the basis for re-optimizing the ESS
implicit balancing schedule. In the last step, the charging or
discharging decision of the first time step will be executed and
a new SoC of the ESS will be observed.

B. Model formulation

In this section, we discuss the optimization problems in-
troduced in Section II-A. Problem (1) represents the upper
level of the DA stage optimization. Equation (1a) is the
objective function of the upper-level problem, consisting of
two terms. The first term’s purpose is to maximise the total
profit ϕω for each scenario ω with a probability πω . The

total profit is further defined in equation (1b) and is the sum
of the profit in the DA market and the anticipated profit
from the balancing market. Decision variables eDA,+

t and
eDA,−
t express the discharging and the charging energy in the

DA market respectively, determining the ESS’s DA schedule.
Similarly, eIMB,+

t and eIMB,−
t define the foreseen RT bal-

ancing schedule. The second term of the objective function
focuses on maximizing the CVaRβ . In doing so, the profit
within the lowest β quantiles will be kept as high as possible,
making the model Risk-Averse (RA). The CVaRβ is defined by
equations (1c)-(1d). By adjusting factor γ and risk level β, the
ESS owner can modify its risk awareness. Equations (1e)-(1f)
define the relation between the discharging and the charging
energy on the DA market and the balancing market. Their
sum equals the physical discharging and charging energy;
e+t and e−t . For each time step, the State of Charge (SoC)
is calculated based on the charge or discharge actions from
the previous time step (1g). The cyclic boundary condition
(1h) ensures that the ESS returns to the same SoC every day.
Additionally, (1i) implies that the ESS does not surpass the
maximum and minimum allowed SoC. Constraints (1j)-(1o)
inhibit the ESS from exceeding the charge and discharge limits
with its DA and physical (dis)charge actions. Technically, only
the latter are subject to the ESS’s physical properties, since
excess (dis)charging in the DA market can be compensated
by implicit balancing actions (counteracting the DA bids in
RT). Nonetheless, to avoid extreme DA participation strategies
that could limit the flexibility in the RT balancing market,
we choose to impose limits on the DA schedule. The binary
variables zt and zDA

t in constraints (1j)-(1o) guarantee that
the ESS cannot simultaneously charge and discharge.

max
ΞDA

γ
∑
ω∈Ω

πωϕω + (1− γ)CVaRβ (1a)

subject to:

ϕω =
∑
t∈T

[
PDA
t · (eDA,+

t − eDA,−
t )

+ P imb
t,ω · (eimb,+

t − eimb,−
t )

]
∀ω ∈ Ω (1b)

CVaRβ = VaR − 1

β

∑
ω∈Ω

πωξω (1c)

0 ≤ ξω ≥ VaR − ϕω ∀ω ∈ Ω (1d)

e+t = eDA,+
t + eimb,+

t ∀t ∈ T (1e)

e−t = eDA,−
t + eimb,−

t ∀t ∈ T (1f)

SoCt+1 = SoCt + e−t ηc − e+t /ηd ∀t ∈ T (1g)
SoC1 = SoC|T |+1 = SoCinit (1h)

SoC ≤ SoCt ≤ SoC ∀t ∈ T (1i)

0 ≤ eDA,+
t /ηd ≤ P d ·∆t · zDA

t ∀t ∈ T (1j)

0 ≤ eDA,−
t ηc ≤ P c ·∆t · (1− zDA

t ) ∀t ∈ T (1k)

0 ≤ e+t /ηd ≤ P d ·∆t · zt ∀t ∈ T (1l)

0 ≤ e−t ηc ≤ P c ·∆t · (1− zt) ∀t ∈ T (1m)
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zDA
t ∈ {0, 1} ∀t ∈ T (1n)
zt ∈ {0, 1} ∀t ∈ T, (1o)

where ΞDA = {eDA,+
t , eDA,−

t , eimb,+
t , eimb,−

t , zDA
t , zt|t =

1, . . . , 96}.
Analogous to [6], [7], Problem (2) defines the lower-level

optimization, depicting the clearing of the balancing market
as performed by the Transmission System Operator (TSO).
The objective function (2a) minimizes the TSO’s cost of
activating balancing reserves. Balancing reserves can provide
both upward sr

+

t,ω and downward regulation sr
−

t,ω . This activa-
tion follows the Available Regulation Capacity (ARC) merit
order, defined by bids r+/− with specified prices Λr+/−

t and
quantities Sr+/−

t .
The first constraint (2b) represents the energy balance of

the grid, where the SI, adjusted with the upper-level implicit
balancing decisions, is offset by the activated reserves. This
equation assumes the TSO to have perfect knowledge of the
SI and that the ESS is the only market player to take on these
out-of-balance actions. The dual variable of this constraint,
P imb
t,ω , is the imbalance price which is used in the upper-

level decision making. The uncertainty on the SI at the time
of decision-making is represented with scenarios, which is
further discussed in Section II-C. Constraints (2c)-(2d) define
the boundaries of each level of reserves.

min.
∑

r+∈R+

Λr+

t sr
+

t,ω −
∑

r−∈R−

Λr−

t sr
−

t,ω (2a)

subject to:∑
r+∈R+

sr
+

t,ω −
∑

r−∈R−

sr
−

t,ω

+ (eimb,+
t − eimb,−

t ) + SIt,ω ·∆t = 0 : P imb
t,ω ∀t, ω (2b)

0 ≥ −sr
+

t,ω ≥ −Sr+ : νr
+

t,ω, µ
r+

t,ω ∀t, ω (2c)

0 ≥ −sr
−

t,ω ≥ −Sr− : νr
−

t,ω, µ
r−

t,ω ∀t, ω (2d)

The optimization problem used in the RT stage is very
similar to that of the DA stage. Since the DA charging schedule
is fixed in the RT stage, eDA,+

t and eDA,−
t are no longer

decision variables, but they are still used as parameters in
equations (3c) and (3d). Furthermore, the RT model does not
include the CVaRβ . Even though risk-aversion in RT might
be interesting for further research, previous research showed
that a risk-neutral approach provides better overall profits
for RT optimization [7]. The upper-level problem of the RT
optimization is represented by equations (3a)-(3j). The lower-
level problem is identical to the lower-level problem of the
DA stage.

max
ΞRT

∑
ω∈Ω

πωϕω (3a)

subject to:

ϕω =
∑
t∈T

[
P imb
t,ω · (eimb,+

t − eimb,−
t )

]
∀ω ∈ Ω (3b)

eimb,+
t = e+t − eDA,+

t ∀t ∈ T (3c)

eimb,−
t = e−t − eDA,−

t ∀t ∈ T (3d)
SoC1 = SoC|T |+1 = SoCinit (3e)

SoC ≤ SoCt ≤ SoC ∀t ∈ T (3f)

SoCt+1 = SoCt + e−t ηc − e+t /ηd ∀t ∈ T (3g)

0 ≤ e+t /ηd ≤ P d ·∆t · zt ∀t ∈ T (3h)

0 ≤ e−t ηc ≤ P c ·∆t · (1− zt) ∀t ∈ T (3i)
zt ∈ {0, 1} ∀t ∈ T, (3j)

where ΞRT = {eimb,+
t , eimb,−

t , zt t = 1, . . . , |T |}.
A possible way to solve these bi-level problems is to

transform them into a single-level problem. Because the lower-
level problem is linear, it can be replaced by its Karush-Kuhn-
Tucker (KKT) conditions, which turns the problem into a
mathematical program with equilibrium constraints (MPEC)
[14]. After the substitution of the lower-level problem, there
are two sources of non-linearities left. The first non-linearity
is the bi-linear term in the objective function, consisting of the
prodruct of the imbalance price and the (dis)charging energy
offered in RT. It can be eliminated using the KKT conditions,
see e.g. [21]. Secondly, the Fortuny-Amat or ’Big-M’ approach
[22] can be applied to replace the non-linear complementarity

constraints. The model now becomes a mixed-integer linear
programming problem (MILP), that can be processed by a
solver through a branch-and-cut algorithm, given that the
amount of integer variables is not too large [14], [15].

Even though the lower-level problem of the RT model
computes the imbalance price, it is not used to calculate the
actual revenues from the RT balancing market participation.
After all, the price from the model is based on estimations
of the SI. Instead, the realized imbalance price is determined
ex-post, by adding the ESS’s charging or discharging action
to the realized SI and finding their associated imbalance price
through the ARC merit order.

C. Scenario generation

To capture the uncertainty in the balancing market, we
propose to use scenarios of the SI. As the SI exhibits signifi-
cant auto-correlation, these scenarios ideally capture the inter-
temporal dynamics of the SI. To achieve this, we leverage the
probabilistic forecasting method proposed in [16], which uses
random sampling from a multivariate normal distribution and
historical data of the random variable to be forecast to produce
scenarios with covariance in line with historical data.

This technique acknowledges that an uncertain variable,
SIi can be transformed into a uniformly distributed variable
Yi by applying its cumulative distribution function (CDF).
This variable can then be transformed to a normally dis-
tributed variable Xi by applying the inverse probit function.
This transformation is applied to historical data of the SI,
where every quarter hour of the day is assumed to have
a different distribution. The covariance matrix of this data
then allows to capture the historical correlations by randomly
sampling scenarios of z-scores from a multivariate normal
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distribution with that covariance matrix. Upon applying the
probit function and the inverse cumulative distribution func-
tions, these z-scores are transformed to SI data. We add
upon this methodology by taking into account the latest
realized SI values through conditional distributions.. Vector
XSI = {Xt−J , ..., Xt−1, Xt, Xt+1, ..., Xt+K−1} consists of
the transformed uncertain SI variables of the past J quarter
hours and the future K quarter hours. The vector follows
a multivariate Gaussian distribution XSI ∼ N (µ0,Σhist)
with:

XSI =

(
X1

X2

)
µ0 =

(
µ1

µ2

)
Σhist =

(
Σ11 Σ12

Σ21 Σ22

)
,

(4)

where 1 refers to the future quarter hours (i = t...t+K−1) and
2 refers to the quarter hours in the past (i = t−J...t−1). The
conditional multivariate normal distribution (XSI,1|XSI,2 =
xSI,2) can be constructed by applying the conditional distribu-
tion properties of normal distributions [17] on the multivariate
Gaussian distribution XSI . From this distribution, n random
vectors xSI,1 with length K can be generated, where n is the
desired number of scenarios. In doing this, the SI scenarios for
the next K quarter hours leverage the latest J SI realizations
through the historical covariance.

III. CASE STUDY

The proposed methodology is applied to a case study of
the Belgian electricity market. In section III-A, we detail the
case study design by outlining the data, parameters and the
different model variants. Section III-B gives a comprehensive
analysis of the outcomes for the risk-neutral and risk-averse
models. Section III-C offers a high-level comparison of the
different models.

A. Case study design

The optimization model considers a time step size of 15
minutes, equal to the granularity or the settlement period of
the Belgian balancing market. While the ESS is assumed
to have perfect price foresight in the day-ahead market1,
the uncertainty on the imbalance price is captured through
scenarios of the SI, which from the lower level optimization
yield scenarios of the imbalance price. We require three types
of input: the DA prices, the ARC merit order of each quarter
hour and the realized SI per quarter hour. The Belgian TSO
(Elia [18]) and the European Network of Transmission System
Operators for Electricity (ENTSO-e [19]) publish these sets
of data on their online platforms. The ARC merit order has
power activation intervals of 100MW. The CDFs, used for
scenario generation, are made up of the SI data from January
2015 until February 2023. There are 96 CDFs in total, one for
every quarter hour of the day. The number of scenarios is taken
to be 25, which is a trade-off between result consistency and

1We make this assumption based on the well-known result that state-of-the
art forecasters can make much more accurate predictions of the day-ahead
price than the imbalance price. As such, we single out the effect of uncertainty
in the balancing market in our analysis.

computational efficiency. In Table I, we show the computation
times of (i) the single DA optimization and (ii) the total
of the 96 RT re-optimizations as function of the amount of
considered SI scenarios. We conclude that the computation
time increases quasi-linearly with the amount of considered
scenarios, and hence the proposed model is scalable. In this
case study, we model a 20MW/20MWh ESS with a charging
and discharging efficiency of 90% each. The maximum and
minimum SoC are set to 20MWh and 0MWh respectively,
with an initial SoC of 10MWh.

TABLE I
COMPUTATION TIME OF DA AND RT OPTIMIZATION FOR VARYING

NUMBER OF SCENARIOS BY A RA ESS ON DAY 3.

Number of scenarios 1 5 10 25 50

Optimization time DA [s] 1 2 13 128 640
Optimization time RT [s] 18 70 288 1482 5659

To analyze the effect of risk-related features of our proposed
model, two different model variants will be applied to each
day. For the first variant, γ is set to zero in (1a), resulting
in Risk-Neutral (RN) decisions in the DA stage. The second
variant assumes γ = 0.5 and β = 0.1 in (1), making it
a RA implementation. The re-optimizations in RT are risk-
neutral, both for the RN and the RA model variant. To compare
the performance against other potential strategies, three other
variants are tested: one where the ESS only operates in the
day-ahead market (DAM), one where the ESS only operates
in the balancing market (IMB) and one variant that operates
in both markets, but with additional perfect foresight of the
imbalance price (PF). The RN, RA and IMB variants are run
with the same set of scenarios that vary for three different
days. February 13th, 2023 (day 1), September 19th, 2022 (day
2) and June 29th 2022 (day 3). These days are selected for
having different values of correctly predicted signs of the Day-
ahead and Real-time Price Difference (DRPD). This DRPD is
defined as

DRPDt = imbalance pricet − day-ahead pricet. (5)

Correctly predicting the DRPD sign is expected to strongly
affect the efficacy of inter-market arbitrage actions. As shown
in Figure 4, the SI scenarios used for the three selected days
result in values of correct DRPD sign prediction covering
multiple values across the spectrum of possible outcomes.

B. Results
Table II compares the results for all five different model

variants for the selected days. The total daily energy
(dis)charged represents the sum of all (dis)charge actions.
The total expected profit and CVaRβ are obtained during the
optimization in the DA stage and are the results of equation
(1b) and (1c) respectively. Furthermore, the actual (ex-post,
out-of-sample) profit is given for each stage. Figures 2 and
3 present the results of day 3, for the RN and the RA case
respectively.
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TABLE II
(DIS)CHARGING BEHAVIOUR, CVARβ AND PROFITS OF A 20MW/20MWH ESS.

RN RA DAM IMB PF
DAY 1 DA RT DA RT DA RT DA RT DA RT
E ch. [MWh] 126 312 161 239 33 - - 133 366 233
E dis. [MWh] 260 157 185 193 41 - - 108 111 461
CVaR [C] -2 348 - 7 481 - - - - - - -
profit [C] 18 628 1 158 3 375 20 417 2 624 - - 11 776 -37 199 93 329

tot. profit [C] 19 785 23792 2 624 11 776 56 130

DAY 2 DA RT DA RT DA RT DA RT DA RT
E ch. [MWh] 87 343 155 235 56 - - 139 205 408
E dis. [MWh] 302 102 204 160 59 - - 113 247 329
CVaR [C] -3526 - 24527 - - - - - - -
profit [C] 71 642 -21 987 30 489 4 180 12 869 - - 20 251 11 121 130 026

tot. profit [C] 49 655 34 669 12 869 20 251 141 147

DAY 3 DA RT DA RT DA RT DA RT DA RT
E ch. [MWh] 41 365 119 242 33 - - 116 395 164
E dis. [MWh] 351 36 236 103 41 - - 94 84 454
CVaR [C] -27 350 - 13 512 - - - - - - -
profit [C] 95 745 -98 740 42 713 -32 667 6 312 - - 8 126 -95 635 184 022

tot. profit [C] -2 995 10 046 6 312 8 126 88 386

Fig. 2. Results on day 3 by the RN model. The first graph compares the
day-ahead price with the actual and expected imbalance price. The second
and third figure show the discharge actions in the DA and RT balancing
market respectively. The bottom figure depicts the ex-post out-of-sample
profits attained in both markets.

1) Risk-neutral case: Figure 2 shows that the ESS is not
always operating at maximum power. This can be explained by
the price-maker behaviour of the ESS in the balancing market
resulting from bi-level model formulation. When offering
balancing energy, the SI may fall within a different interval of
the ARC merit order. This causes prices to possibly become
less favourable. The ESS can strategically choose to withhold
energy right to the point where the SI does not cause an
undesirable price change, in order to avoid the effect of
’cannibalisation’ of its revenues.

Another observation can be made when looking at the
choice of either charging or discharging in the DA stage of the
RN model. The ESS chooses to charge when the average of
the scenarios’ imbalance prices exceeds the DA price. When
the imbalance price is lower, energy will be discharged. This
affirms the significant role of the expected DRPD (5). The RN
model thus favors inter-market arbitrage over inter-temporal
arbitrage. This further becomes clear from observing in Table
II the (im)balance of offered charge and discharge energy
within a specific market. On day 3, the expected DRPD is
mostly negative throughout the day. This triggers the ESS to
place more consecutive discharge offers in the DA market
than it can physically deliver, which we will refer to as
over-offering. This is possible as combined participation in
the DA market and the RT market allows such over-offering
to be offset in the other market. On day 3, the ESS sells
(350MWh) more than eight times the amount of energy that it
buys (41MWh), meaning that the DA profit will naturally be
high (C95 744). This does imply that the ESS must counteract
some of these offers in RT, leading to an opposite imbalance
of offered charge and discharge energy in the RT balancing
market. Interestingly, the effect of discharging more energy in
the DA market is observed for all the selected days, which
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can be explained through the observation that the ARC merit
order tends to exhibit very low price values for the activation
of downward reserves.

The strategy of over-offering and operating at full capacity
can make for great profits, but at the same time limits the
ESS’s flexibility in the RT balancing market, possibly leading
to high risks when imbalance price predictions are very
different from the actual prices. The CV aRβ confirms that in
the worst 10% of cases, the average profit will be negative
(C−27 350). Due to the balancing market’s volatile prices
and the low number of instances with correct DRPD sign
predictions, the ESS still made a considerable loss (C98 740).
For day 1 and day 2, the RN model does manage to make
a profit, which is substantially larger than the profit obtained
by the models that operate in the two markets separately, but
significantly lower than the attainable profit (under perfect
price foresight). The latter is the result from the highly volatile
and uncertain imbalance prices: whereas our proposed method
tends to favor profits in the DA market, the PF model make
most profit in the RT balancing market.

In case there is no DA participation, the RT out-of-balance
positions are limited to the physical properties of the ESS
and inter-temporal arbitrage. The maximum charging energy
would then only be 5.56MWh. However, pay attention to the
different scales for the (dis)charge energy per quarter hour in
figure 2: the maximally possible imbalance position now lies
at 11.12MWh. Take for example quarter hour 1. In the DA
market, the ESS decides to place a charging bid, anticipating
that the imbalance price for that quarter hour will - on average
- be higher. That prediction turns out to be correct. Maximally
charging in DA means that it is possible to take an out-of-
balance position in the opposite (discharging) direction that is
twice as large as the case without DA participation, leading to
increased profit compared to the attainable profit without DA
market participation.

2) Risk-averse case: In contrast to the RN variant, the RA
variant makes a trade-off between maximizing the average
profit of the worst 10% of scenarios and maximizing the profit
for all scenarios. Figure 3 shows the outcome of the RA model
on day 3. We observe that the RA model is more careful in
placing DA bids. Indeed, fewer of the bids in the DA market
are at full capacity. Additionally, the periods of over-offering
are less frequent and shorter.

The ESS decision-making is still strongly influenced by
the expected DRPD. However, when taking the CVaRβ into
account in the objective, there are some quarter hours at which
the charging schedule does not strictly follow the expected
DRPD. For example, in quarter hour 2 in figure 3, the ESS now
decides to charge in the DA stage, leading to a higher profit.
For all three days, the negative CVaRβ’s of the RN variants
have turned positive and are significantly higher, which suggest
that there is a smaller chance of a very low resulting profit.

Overall, the contrast between the amount of energy
that the ESS charges and discharges in DA is now less
pronounced. On day 2 for example, the difference between
the total charged and discharged energy in the DA market

Fig. 3. Results on day 3 by the RA model. The first and second graph
show the discharge actions in the DA and RT balancing market respectively.
The bottom figure depicts the ex-post out-of-sample profits attained in both
markets.

shows 48.79MWh, as opposed to 214.93MWh for the RN
case. Rather than discharging a lot more than physically
possible and having to rely on the RT balancing market for
compensation, the RA case opts for an approach with more
inter-temporal arbitrage, resulting in more flexibility in the
RT balancing market, which is especially useful when the
DRPD predictions are inaccurate. Less over-offering in the
DA stage results in lower profits in the DA markets, but leads
to higher profits in the balancing market.

C. High-level overview

Of the five model variants, the DAM model variant is the
least profitable (with the exception of day 3, where it is the
second to least profitable) followed by the IMB variant that
yields higher profits due to the volatile imbalance prices and
higher clearing frequency compared to the DA market [7].
Both of these model variants are limited to inter-temporal
arbitrage. Comparing their performance to the RN and RA
variants leads to the conclusion that there is significant merit
in inter-market arbitrage between the DA and RT balancing
market. The PF model provides the maximum achievable profit
for each day. The charging behaviour in the DA stage and the
RT stage again demonstrates the application of inter-market
arbitrage. When comparing the RN and RA models to their
PF counterpart on the loss-making day 3, it is clear that more
correct predictions would have lead to more charging in the
DA market and discharging in the balancing market, i.e. the
opposite of what happened in the RN case.

As was shown, the profit performance of both the RN
variant and the RA variant are highly dependent on the
accuracy of the price forecasts in the DA stage. Since the
DRPD is estimated based on scenarios in the DA stage and
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Fig. 4. Experimental probability distribution of the number of correctly
predicted DRPD signs. The distribution is obtained by generating 25 scenarios
for each day of one year. Then, the sign of the predicted DRPD (which is
the average of the 25 values of each scenario) is compared to the sign of the
realized DRPD. The number of quarter hours where both of these signs are
equal is counted for each day.

since the sign of that DRPD estimation determines the ESS’s
(dis)charging actions, the number of correctly predicted DRPD
signs is a good indicator for the expected performance of the
model. Figure 4 displays them on a distribution for an entire
year (April 2022 - March 2023). The case of day 2 has the
most correct predictions (59), followed by day 1 (54) and day 3
has the least accurate predictions (30). As expected, the ESS
is most profitable in day 3 when the RA model is applied,
yielding a profit of C10 046. The case of day 2 shows the
best result under the RN model with a profit of C49 655.
Interestingly, even though for day 1 the amount of correctly
predicted DRPD signs is 54 - or 56 % of the instances that
day - the RA model performs best with a profit of C23 792,
albeit with a relatively small improvement compared to the RN
model. Thus, the general trend is that the RA variant is more
profitable when DRPD predictions are less accurate. Provided
that it is notoriously difficult to correctly predict imbalance
prices [13], we can conclude that the proposed risk-averse
strategy is beneficial for profit maximization in this setting
of inter-market arbitrage between the DA and RT balancing
markets.

D. Sensitivity of risk level

While the results in Table II show the actions of a RA ESS,
the level of risk-aversion has to be pre-defined by the ESS
operator and a priori it is unclear what the optimal risk level
is. In this section, we illustrate the impact on the profitability
of the ESS when the level of risk-aversion is modulated via
the parameter β in Eq. (1c), which is the percentile of worst-
case scenarios considered in the objective function through the
CVaR. β = 1 corresponds to the risk-neutral case, whereas
β = 0.1 is the level of risk-aversion that was assumed in
Table II. Table III shows the profits obtained in the DA and
RT balancing market, as well as the combined profit, assuming
varying values of β for day 2. As a general trend, the more
risk-averse the ESS behaves (i.e. the lower the value of β),
the lower the profit from the DA market, and the higher the
profit from the RT market. This is in line with the observation
from Table II, where we concluded that a RN operator is more
inclined to exploit expected inter-market price differentials in

TABLE III
ESS PROFITABILITY IN THE DA AND RT BALANCING MARKET AS A

FUNCTION OF RISK LEVEL β ON DAY 2.

β

0.01 0.05 0.1 0.25 0.5 1

Profit DA [kC] 30.3 30.3 30.5 36.7 51.5 71.6
Profit RT [kC] 4.6 4.3 4.2 2.2 -9.5 -22.0
Profit tot [kC] 34.9 34.7 34.7 34.5 41.9 49.7

the day-ahead optimization. For the specific case of day 2,
where the expected imbalance price tends to be below the DA
price, this leads to more discharge decisions and hence more
profit in the DA market.

IV. CONCLUSION

With increasing amounts of uncertain and intermittent elec-
tricity production from renewable energy sources, electricity
prices become more volatile. This constitutes a profit oppor-
tunity for storage operators. Whereas it has been shown that it
is possible to participate in real-time balancing markets with
implicit balancing actions, we have explored the interaction of
this strategy with participation in the day-ahead energy market.
Our case study of the Belgian balancing market demonstrates
that such a combined approach consistently yields higher ex-
post out-of-sample profits than participating in either market
separately. We also show that the difficult task of correctly
predicting the difference between the day-ahead and imbalance
price strongly affects the profit performance of our proposed
model. Due to the imbalance market’s highly volatile nature,
adopting a risk-averse attitude in the day-ahead optimization
stage is shown to result in superior profit performance com-
pared to a risk-neutral approach under many circumstances.
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