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Abstract—Digital controllers are involved in every aspect of
today’s power systems, from local device-level to wide-area su-
pervisory applications. However, the existing dynamic simulation
tools are still struggling to capture an accurate response of such
systems with adequate computational performance. The reason
is that digital controllers introduce numerous discontinuities to
the simulation and handling them is computationally expen-
sive, thus forcing the users to compromise between accuracy
and simulation performance. This paper investigates different
traditional approaches for incorporating digital controllers in
power system dynamic simulations and compares them with new
interpolation-based approaches in terms of simplicity, accuracy,
and performance.

Index Terms—Digital controller, power system dynamics, in-
terpolation, Jacobian.

I. INTRODUCTION

The number of modern digital components has substantially
increased in power systems in the last few decades. Controllers
are one of the components that are changing rapidly, either
with the introduction of cutting-edge digital technologies or
by replacing the old analog ones with digital equivalents. The
discrete nature of digital controllers introduces discontinuities
in the set of differential-algebraic equations (DAEs) describing
the dynamics of power systems. These discontinuities can be
categorized as state or time events [1].

State events are referred to as discontinuities happening
due to a change in the equations of the system at unknown
times, e.g. when a controller limit is reached and one or more
equations must be modified. On the other hand, time events
happen at specific times during the simulation, e.g. every time
a digital controller samples and acts. While the simulation of
systems containing state events requires detecting and locating
the discontinuity, time events are exempt from this process as
the exact time of the event is known beforehand.

The accurate treatment of both types of events requires
stopping the simulation, reducing the time step to “land”
on the event’s time, updating the equations and variables,
calculating a new set of initial values, and then resuming
the simulation [1]. The solution of this hybrid DAE system
[2] requires formulating the Jacobian of the simulated system
and updating it after each discrete event. In this approach, the
overall computation burden is heavy since the time steps are
limited to the difference between the sampling times of the
various digital controllers [3].

Currently, the most used approach to handle digital con-
trollers in power system dynamic simulations is to approxi-
mate them with their analog equivalents [4]. In this way, all
the time events are ignored, and the controller equations are
integrated alongside the system DAEs, leading to an increased
system Jacobian that incorporates the controller equations. The
benefit of this approach is the ability to use variable time-
step simulation algorithms, since the controller equations are
continuous without discrete time-events. However, besides the
inaccuracy introduced by this approximation, the approach is
becoming increasingly difficult to follow since modern digital
controllers involve complicated algorithms and non-equation-
based models, such as model predictive controllers (MPCs) or
AI-driven controllers. In addition, using the continuous equiva-
lent controller may lead to complex, ill-defined behaviours [5].

Another approach to treat the discrete events (both state
and time) introduced by digital controllers is by shifting all
the discontinuities within a time-step to the end of the time-
step without reducing the time-step [6]. Although this method
is computationally inexpensive, it leads to inaccuracies and
situations like cycling between states [7].

Finally, the interpolation-based method (IBM) proposed in
[8], provides an accurate and computationally fast method
to integrate the digital controllers in large time steps over
multiple time events without reducing the time step. This is
made possible by interpolating the state variables of the system
at each digital controller sampling time and including the
controller output in the DAEs model. In this way, the outputs
of the controllers are estimated and corrected at each Newton
iteration. This method treats the digital controller as an input-
output black-box model, thus allowing to incorporate non-
equation-based controllers. Including the controller response to
the Jacobian of the system, however, can be challenging since
the size of the Jacobian varies in each time step depending
on the number of controller actions within the time step.
Moreover, the digital controller output during the time step
is piece-wise constant between two sampling times based on
a Zero-Order-Hold (ZOH) approach.

This paper investigates different approaches for incorporat-
ing digital controllers in power system dynamic simulation and
presents alternative options, making the user able to reach a
compromise between simplicity, accuracy, and performance.
The highlights of the paper are as follows:
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Fig. 1. A continuous system under control by a digital controller scheme

• Reviewing four different methods allowing the numerical
simulation of power systems with digital controllers, and
comparing them using case studies in terms of simplicity,
accuracy, and performance.

• Comparing alternative, interpolation-based methods pro-
posed by the authors.

The rest of the paper is organized as follows. In Section II,
the different methodologies for the numerical simulation of
digital controllers are briefly reviewed. A discussion of the
Jacobian structure of the system for the different methods is
conducted in Section III. Section IV provides numerical case
studies to showcase the performance of each approach. Finally,
conclusions are drawn in Section V.

II. METHODOLOGIES

To discuss different methods, a simple system controlled by
a digital controller is considered, as shown in Fig. 1. Power
systems are usually modeled with a set of DAEs and a dynamic
simulation of the system consists of the solution of the DAE
Initial Value Problem (IVP) over a specific time horizon. The
system equations are as follows:

0 = F (ẏ(t),y(t), e(t))

y(0) = y0, e(0) = e0
(1)

where y(t) is the vector of differential-algebraic variables of
the system, and e(t) is the continuous output of the controller
fed to the system.

The controller model can be generally formulated as:

ek = ζ(ek−1,y(kT )) (2)

where ζ is the controller function based on the previous output
of the controller ek−1 and the quantized state variables under
monitor by the controller y(kT ) at the k-th sampling time
with period T .

For the solution of the problem DAE IVP, (1) is discretized
using a numerical integration method and the discretized
algebraic equations are solved for each time-step using a
Newton method [9]. Considering the discrete time steps tn,
the step size is given as hn = tn − tn−1, and the solution of
the states at each time-step y(tn) = yn can be obtained from
the following residual function:

g(y(tn), e(tn)) = 0 (3)

This set of equations ignores state events and only focuses
on time events. It should be noted that in the case of digital
controllers, any state events that take place within a digital

hn

tn−1 tn

Fig. 2. Schematic of integration using analog treatment method

controller are transformed to time events. For instance, if a
state variable reaches a limit but the limit is monitored and
controlled by a digital controller, then the changes to apply
the limit will take place at the next digital control action. In
the case of other state events, we assume that they are handled
using a zero-crossing detection of their guard functions and a
time-step reduction [2]. The rest of this section reviews four
different approaches for treating the time events stemming
from the digital controller sampling actions.

A. Analog treatment method

In the analog treatment method (ATM), the digital control
behavior of (2) is approximated with a continuous equivalent
DAE model:

0 = ζ′(e(t),y(t)) (4)

Then, the controller DAEs are solved alongside (1) for the
time step tn, as is shown in Fig. 2. In other words, the
discrete nature of the digital controllers is ignored, and no
special treatment is performed for the discontinuities [4]. This
method is widely used since it is simple and fast. However, it
introduces inaccuracies if the sampling rate of the controller
is different from the time step size. Moreover, the simulation
of non-equation-based controllers is not possible using ATM.

B. Step reduction method

The step reduction method (SRM) handles every time event
by reducing the time step hn to “land” on the discontinuity [1],
calculating the controller’s output ek, then integrating the
system’s equation using e(t) = ek as an input. This means
that (2) is solved prior to (1) and e(t) is considered constant
throughout the time-step integration process.

This method is the most accurate (closer to reality). How-
ever, it is computationally heavy since the maximum time step
size is limited to the sampling rate of the controller. As shown
in Fig. 3, the time step hn is denied, and instead, the new time
step with the size hnew

n = tn,1 − tn−1 is selected, where tn,1
denotes the first sampling of the controller within the time step
hn, and pn is the last sampling within the same time step.

C. Simplified simulation method

Contrary to SRM, which reduces the simulation time step to
match the controller sampling period, the simplified simulation
method (SSM) proposed in [7] “shifts” the sampling of the
controller forward to match the time step. Or, more accurately,
it shifts the control action of the digital controller to coincide
with the next simulation step, as it is illustrated in Fig. 4. The
time-step is then repeated until no further control actions are
detected within the time step. In this approach, the system
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Fig. 3. Schematic of integration using step reduction method. The black
vertical lines denote the simulation time steps, while the light-blue vertical
lines denote the digital controller sampling period.
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Fig. 4. Schematic of integration using simplified simulation method
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Fig. 5. Schematic of integration using interpolation-based method

equations (1) are first solved to acquire yn and then (2) to
compute ek, before recomputing the time step.

The computational performance of this method is better than
SRM but the accuracy suffers. An important drawback of this
method is that in the case of multiple time events within a
time step, only one is considered, and the rest are ignored.

D. Interpolation-based method

Unlike the previous methods, the Interpolation-based
method (IBM) does not reduce the simulation time-step, and
computes all the controller sampling actions in every time-
step. It achieves this by calculating the controller outputs ek
by sampling its system state variables between tn−1 and tn
[8]. This approach is shown in Fig. 5.

To describe it better, let’s define the residual function to be
solved for time tn denoted by g as:

g(yn, en,pn) = 0 (5)

The last output of the controller in the time step en,pn
depends

on the samplings before it that can be formulated as:

en,g = ζ(en,g−1, xn,g, tn,g) (6)

where xn,g denotes the interpolated value of the controller’s
desired system’s state variable for the g-th controller sampling
at time tn,g . It should be noted that x is a subset of y that

is being observed by the controller, which can be calculated
using an interpolation polynomial w

(m)
n for each Newton

iteration m:

x(m)
n,g = w(m)

n (tn,g), ∀g ∈ [1, pn] (7)

For example, a second-order Taylor expansion or Adams
family-based interpolator can be used for wn.

By adding (6) to (1) and solving them together, the con-
troller output is corrected at each Newton iteration. To do that,
an expanded state variables vector can be defined as follows:

zn =

[
zn,1
zn,2

]
(8)

with:

zn,1 = yn (9)

zn,2 =
[
en,1 en,2 . . . en,g . . . en,pn

]T
(10)

where zn,1 contains the continuous system state variables
while zn,2 has the controller’s outputs for each sampling time
en,g .

Therefore, the new residual vector corresponding to the new
state variables vector is defined as follows:

g̃ =

[
g̃1
g̃2

]
(11)

with:

g̃1(zn) = g(yn, en,pn) (12)

g̃2(zn) =


en,1 − ζ(en,0,xn,1)

...
en,g − ζ(en,g−1,xn,g)

...
en,pn

− ζ(en,pn−1
,xn,pn

)

 (13)

where g̃1 contains the continuous system residuals while g̃2
has the controller’s outputs residuals for each sampling time.

Finally, the Newton iteration to be solved is:

J (m)
n (z(m+1)

n − z(m)
n ) = −g̃(z(m)

n ) (14)

where J
(m)
n is the Jacobian matrix of the extended system at

the m-th Newton iteration, given by:

J (m)
n =

[
A B
C D

]
=

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2
∂g̃2

∂zn,1

∂g̃2

∂zn,2

]
(15)

Sub-matrices A, B, C, and D, correspond respectively to
the controlled system Jacobian, the impact of the controllers
on the controlled system, the impact of the system on the
controllers, and the controller system Jacobian.
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III. JACOBIAN MATRIX FORMULATIONS

Let’s assume that the number of continuous system equa-
tions of (1) is a and the digital controller equations b.

In the case of the ATM, the size of the Jacobian matrix
formed to solve the problem is equal to (a + b) × (a + b)
since all the equations are solved together at the same time-
step. The size of the Jacobian matrix is constant throughout
the simulation.

For both SRM and SSM, the size of the Jacobian matrix
depends only on the number of continuous system equations
and is equal to a×a since the controller outputs are computed
before/after the solution of the DAEs for the specific time step
and remains constant for all the time steps.

Contrary to the previous methods that have a constant
size of Jacobian matrix for the whole simulation, the size of
Jacobian matrix for IBM varies for each time step depending
on the size of the simulation time step hn and the number of
digital controller samplings pn falling within it. For example,
assuming only one digital controller with one equation (b = 1),
the Jacobian matrix is formulated as (a+ pn)× (a+ pn).

The increasing size of the Jacobian matrix for each con-
troller action within a time step can lead to simulations that
have a Jacobian matrix many times larger than the system
under simulation. For example, let’s consider a small system
modeled with ten DAEs (a = 10) and 4 controllers (NC = 4).
Within a certain time step, each has 5 control actions leading
to a total of 4 × 5 = 20 interpolation points. Thus, the size
of the Jacobian matrix is equal to 30 × 30, which is 9 times
larger than the controlled system. Moreover, since the number
of control actions pn can change between each time step, the
Jacobian matrix needs to be frequently recomputed. To achieve
a reasonable performance versus accuracy, a “dishonest” Ja-
cobian approach can be used by simplifying the sub-matrices
B, C, or D in (15). A dishonest Newton method maintains the
computation of the residuals accurate but uses an approximate
Jacobian matrix. This way, the overall computation time
decreases while the convergence rate becomes slower [10].
Some examples are shown below and compared in Section IV.

It should be noted that the sub-matrix D is approximated by
an identity matrix for all the variations due to the unknown
nature of the controllers. In other words, based on (13), D is
a bidiagonal band matrix with non-zero elements on the main
diagonal and the one below that. However, if we consider the
controllers as input-output black-box models, the automatic
computation of the lower diagonal is complicated or even
impossible. Setting the lower diagonal to zero leads to an
identity matrix approximation for D.

A. IBM-A

The most simplified one can be defined as the following:

J (m)
n =

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2
≈ 0

∂g̃2

∂zn,1
≈ 0 ∂g̃2

∂zn,2
≈ Ipn

]
(16)

where the sub-matrices B and C are replaced by zeros. In
other words, the impact of controllers on the system and the

impact of the system on the controller is neglected within a
Newton iteration. This allows to decouple the two systems and
exchange at each Newton method. This, however, might lead
to more Newton iterations before convergence.

B. IBM-AB

This approximation maintains sub-matrix C to zero but
considers the sub-matrix B, which includes the impact of
controller outputs on the system’s equations:

J (m)
n =

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2
≈ ∂g̃1

∂en,pn
∂g̃2

∂zn,1
≈ 0 ∂g̃2

∂zn,2
≈ Ipn

]
(17)

It is noticeable that in each time step, only the last output
of the controller feeds back to the system. Therefore, B is a
sparse matrix that has only one non-zero element per input
that comes from a controller. This approximation leads to an
upper block triangular Jacobian matrix.

C. IBM-AC

This approximation maintains sub-matrix B to zero but
considers the sub-matrix C, which has the impact of the system
state variables on the controller equations:

J (m)
n =

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2
≈ 0

∂g̃2

∂zn,1
≈ ∂g̃2

∂yn

∂g̃2

∂zn,2
≈ Ipn

]
(18)

This sub-matrix is also a sparse matrix with non-zero elements
for each sampling of the controller per system variable that
is monitored. This approximation leads to a lower block
triangular Jacobian matrix.

D. IBM-ABC

This variation has both sub-matrices B and C included
simultaneously.

IV. NUMERICAL RESULTS

In this section, two case studies are considered to benchmark
the methods reviewed and the IBM Jacobian approximation
variations in terms of simplicity, performance, and accuracy.
A variable-step predictor-corrector integration method utilizing
a pair of second-order Adams-Bashford and Adams-Moulton
is used for solving all the case studies [11], and for the IBM,
a second-order Taylor expansion polynomial is used for the
interpolation. The same set of system and controller DAEs is
solved for all methods except ATM (due to the use of analog
equivalents). In addition, a uniform quantization method with
16 bits is considered for A/D and D/A blocks (see Fig. 1). The
increasing rate and decreasing rate for adjusting the time steps
are equal to 1.25 and 0.5, respectively. Finally, the minimum
and maximum values for the time steps are considered 1 ms
and 1 s, respectively.

Furthermore, Euclidean distance is used to compare the
accuracy of different trajectory results of different methods,
as formulated [12]:

d(α, β) =

√√√√ N∑
n=1

(αi − βi)2 (19)
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Fig. 6. Simulation results for the methods SRM, ATM, SSM, and IBM-AB
for the stable system controlled by the integral controller

where d denotes the distance between time series of trajec-
tories α and β, and N is the total number of time steps. It
should be noted that due to the variable time-step approach,
the time-series trajectories might not align on the same points
of time. Thus, a first-order linear interpolation is first used to
estimate the solution in points between them. All solvers for
all methods are implemented in MATLAB 2021 [13].

A. Two-state system with integral controller

For the first test system, an integral controller is monitor-
ing a simple continuous system (see Fig. 1) containing two
differential equations defined as follows:[

ẏ1
ẏ2

]
=

[
a b
−b 0

][
y1
y2

]
+

[
−b
0

]
e(t) (20)

The integral controller is modelled as follows:

ek = ek−1 +KIT (u(kT )− y2(kT )) (21)

where u is the setpoint, the integral gain KI is set to 0.07,
and sampling time T is set to 0.1.

The output of the system y2 is illustrated for a stable
and unstable scenarios (different b values) in Figs. 6 and 7,
respectively. It should be pointed out that only IBM-AB is
used for this case study. As can be seen, the response of SRM,
ATM, and IBM-AB is almost identical, with SSM being the
most inaccurate.

Figures 8 and 9 show the time steps taken for the stable and
unstable systems, respectively. It can be seen that SRM limits
the time steps to the difference between controller sampling
times while other methods are able to increase time step size
with no limitation. In addition, it is noticeable that ATM has
the fastest time step increase. Furthermore, the number of
Newton iterations for solving the stable and unstable system
and for all the methods is listed in Table I.

B. Kundur system

In this section, the Kundur test system [14], illustrated in
Fig. 10, is used to better showcase the difference between
different methods and test the accuracy and performance of
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Fig. 7. Simulation results for the methods SRM, ATM, SSM, and IBM-AB
for the unstable system controlled by the integral controller
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Fig. 8. Step size results for the methods SRM, ATM, SSM, and IBM-AB for
the stable system with the Integral controller
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Fig. 9. Step size results for the methods SRM, ATM, SSM, and IBM-AB for
the unstable system with the Integral controller

different IBM variations. The test system consists of 11 buses,
4 synchronous generators, and 2 loads. For each machine,
one digital exciter and one digital governor are considered as
shown in Figs. 11 and 12, respectively [15], [16]. While the
controllers are represented using the s-domain block diagrams,
their discrete equivalents are used for the simulation of digital
controllers as explained in [4]. The difference equations of the
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TABLE I
PERFORMANCE COMPARISON BETWEEN SRM, ATM, SSM, AND IBM-AB

FOR A SYSTEM CONTAINING ONE INTEGRAL CONTROLLER IN TERMS OF
THE NUMBER OF NEWTON ITERATIONS

Method SRM ATM SSM IBM-AB

Stable case 6338 336 830 1180

Unstable case 6151 2497 2561 2895

G1 G3

1 5 6 7 8 9 10 11 3

2 L7
C7 C9

L9

25 km 10 km
110 km 110 km

10 km 25 km

G2 G4

4

Fig. 10. Schematic of Kundur test system

Vter 1
1+STSM

−

V0

Kp

Ki
S

SKf

1+STf

Ge
1+STe

Vf
+ ++

−

V max
f

V min
f

Fig. 11. Schematic of the digital exciter of Kundur test system [15]
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Fig. 12. Schematic of the digital governor of Kundur test system [16]

controllers are obtained using the forward Euler method. The
system has 8 digital controllers in total. The sampling time T
of the digital controllers is set to 210 ms, 220 ms, 230 ms,
and 240 ms for the governors, and 41 ms, 42 ms, 43 ms, and
44 ms for the exciters.

A short circuit on bus 3 for 200 ms is simulated using all
four methods. The simulation outputs are shown in Figs. 13,
14, 15, and 16, for the voltage of bus 1, the speed deviation of
the third generator, the governor output of the third generator,
and the exciter output of the third generator, respectively. An
upper limit equal to 2 per unit is considered for the third
exciter to assess the accuracy of the methods while facing
non-linearity in the controllers, and the results are illustrated
in Fig. 16.

As can be seen, ATM has the worst accuracy since it ignores
the digital nature of the controller. This is also reflected in
Table II which lists the Euclidean distance of the bus 1 voltage
and speed deviation of the third generator with respect to SRM
as the reference trajectory. It is also not the fastest method
anymore which is reflected in Fig. 17 that shows the time
steps taken for all four methods. Furthermore, it can be also
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Fig. 13. Voltage of bus 1 of Kundur test system
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Fig. 14. Speed deviation of the generator 3 of Kundur test system
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Fig. 15. Governor output of the generator 3 of Kundur test system

seen in Table III which summarizes the performance in terms
of the number of Newton iterations, the number of function
evaluations, and the average execution time of five repetitive
simulations. The reason that ATM is not the fastest method
anymore is that the size of the system to be solved is increased
by the number of controllers’ equations.

SSM has the fastest performance, as was expected since it
doesn’t change the size of the system Jacobian matrix (unlike
IBM) and doesn’t reduce the time steps (unlike SRM). On
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Fig. 16. Exciter output of the generator 3 of Kundur test system
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Fig. 17. Step size results for the methods SRM, ATM, SSM, and IBM for
the Kundur test system

TABLE II
ACCURACY COMPARISON BETWEEN ATM, SSM, AND IBM WITH

RESPECT TO SRM FOR KUNDUR SYSTEM USING EUCLIDEAN DISTANCE

Method ATM SSM IBM-A

ϵ(V1) 0.1359 0.1160 0.1138

ϵ(Speed deviation 3) 0.007697 0.0009768 0.0004236

TABLE III
PERFORMANCE COMPARISON BETWEEN SRM, ATM, SSM, AND IBM-A

FOR KUNDUR SYSTEM IN TERMS OF THE NUMBER OF NEWTON
ITERATIONS, FUNCTION EVALUATIONS, AND RUNTIME

Method SRM ATM SSM IBM-A

N. Newton iterations 9633 1255 1160 1241

N. function evaluations 1782105 292415 214600 229585

Average runtime (s) 33.01 6.21 3.88 4.45

the other hand, IBM has the best accuracy compared to ATM
and SSM, even in the most simplified version of its Jacobian
matrix, while its performance is similar to SSM.

The same simulation is repeated for the IBM variation
methods. The accuracy and performance results are listed in
Table IV and Table V, respectively.

As the sub-matrixes are added, the number of Newton
iterations decreases due to the more accurate Jacobian. How-

TABLE IV
ACCURACY COMPARISON BETWEEN IBM-A, IBM-AB, IBM-AC, AND

IBM-ABC WITH RESPECT TO SRM FOR KUNDUR SYSTEM USING
EUCLIDEAN DISTANCE

Method IBM-A IBM-AB IBM-AC IBM-ABC

ϵ(V1) 0.113806 0.113755 0.113805 0.113754

TABLE V
PERFORMANCE COMPARISON BETWEEN IBM VARIATIONS FOR KUNDUR
SYSTEM IN TERMS OF THE NUMBER OF NEWTON ITERATIONS, FUNCTION

EVALUATIONS, AND RUNTIME

Method IBM-A IBM-AB IBM-AC IBM-ABC

N. Newton iterations 1241 1209 1233 1206

N. function evaluations 229585 238121 393337 392652

Average runtime (s) 4.45 5.41 27.47 24.89

ever, the run time increases since they require many more
function evaluations to be calculated. It can be noticed that
specifically, the sub-matrix C calculation leads to a significant
increase in function evaluations and consequently performance
drop. Among all the variations investigated, IBM-AB seems a
reliable option both in terms of accuracy and performance.

V. CONCLUSION

In this paper, four methods to incorporate digital controllers
into the dynamic simulation of power systems are presented
and compared (both qualitatively and experimentally). Two
case studies were utilized to compare the methods in terms of
accuracy and performance.

It was shown that for systems with many digital controllers,
the analog treatment method, which is widely used today, is
not always the fastest method and it lacks accuracy. Also, it
was shown that the IBM has the highest accuracy relative to
our reference method SRM while it has performance similar
to the SSM, which is the fastest method. Furthermore, several
IBM variations based on simplified Jacobian matrix formations
were introduced and their accuracy and performance were
compared, showing that perfecting the Jacobian may lead to a
significant performance drop. However, it is shown that adding
the sub-matrix B that takes into consideration the impact of
the controller’s output on the system’s equations can be the
best choice since it reduces the required number of Newton
iterations.
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