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Abstract—This paper proposes an optimal tuning of the inner
cascaded control gains in the grid-forming configuration. The
study delves into the intricacies of the system, presenting a
comprehensive mathematical model that describes both the plant
and the control. The significance of the optimization algorithm
in the tuning of the control gains is highlighted compared to
the conventional methods. In high-power applications, where the
switching frequency is restricted to limit the power losses, the
conventional tuning methods often fall short of achieving optimal
performance and the stability of the system. This underscores the
need for advanced approaches that can address these limitations
and optimize the control gains more effectively. A detailed
comparison is conducted between the conventional tuning and the
proposed optimization method, in which the objective is to obtain
an active power response that is decoupled from the the inner
control loops dynamics while ensuring stability and exhibiting
acceptable dynamic of the AC voltage loop. By leveraging the
optimization algorithm, the control gains are adjusted to achieve
this desired behavior, resulting in improved overall performance
of the grid-forming-based system.

Index Terms—Grid-forming Control, Optimal Gains Tuning,
Small-Signal Stability, EMT Simulations

I. INTRODUCTION

In transmission systems with high penetration rate of
inverters-interfaced generation, the way to control the power
inverters should be improved in order to overcome the limi-
tations of the conventional grid-following control [1], [2]. In
other words, the way to control power inverters has to be
changed from “following the grid” to “supporting the grid”.
In this context, the grid-forming capability seems to be a
suitable alternative for this aim thanks to the potential it brings
to the power system e.g., voltage source behavior, inherent
inertia emulation and the ability to operate in both grid-
connected and standalone mode. Several grid-forming variants
have been proposed in the literature. These solutions adopt
more or less the idea of mimicking the swing equation of
a synchronous machine (SM) [3], [4], [5], [6] to generate
the control angle. Regarding the AC voltage magnitude, it is
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managed by a lower control level (i.e., inner control). One
common solution to control the AC voltage magnitude is the
cascaded control structure [7], [8], [9], [10]. This solution is
favored for industrial applications because of the simplicity
of its implementation and its ability to generate a current
reference that serves to protect the inverter against faults.
Yet, precise tuning of the controllers for the high power
applications remains the major challenge with such a technique
due to the limited switching frequency.

The overall control is typically tuned to achieve the de-
sired dominant behavior, while the inner cascaded control is
configured for a sufficiently fast response to avoid interactions
with the power controllers. The bandwidth of the inner current
control loop is restricted by the switching frequency, which in
turn limits the bandwidth of the voltage control loop, thereby
affecting the power control loops and the overall stability.
Conventional tuning methods, although capable of ensuring
stability, often fail to achieve decoupling between the power
dynamics and inner control dynamics [7]. Numerous studies
have addressed control design in high-power applications,
where the switching frequency is below 5 kHz. A systematic
approach to consider all dynamic states of the system and their
potential interactions is the establishment of a small-signal
state-space model for the tuning of multi-loop controllers in
power converters [1], [7]. This approach facilitates compre-
hensive analysis and design of control strategies. Various tech-
niques have been proposed in the literature, such as utilizing it-
erative methods based on pole placement in the complex plane
using sensitivity parameters [7], or maximizing the damping
factors while limiting the natural frequencies of eigenvalues
[9], or by simply neglecting the AC voltage feed-forward in
the inner current loop [11]. The aforementioned methods have
demonstrated improvements over the conventional tuning for
low-switching frequencies. However, it is worth noting that
the methods in [7], [11] present an oscillatory response of the
AC voltage and falls short in achieving decoupled behavior
due to the slow response of the AC voltage, while the method
proposed in [9] allows achieving a fast AC voltage response,
however, it does not explicitly integrate decoupling conditions.
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Fig. 1. Grid-Forming Control-based Two-Level VSC

To overcome the limitations of the conventional methods,
This paper introduces an alternative iterative optimization
method based on the time-domain response. The objective is
to achieve a desired AC voltage response while maintaining
the quasi-static response of the active power. A small-signal
state-space model is derived, where the controllers’ and feed-
forward gains serve as the only remaining variables. By
fulfilling the objective and the constraint, the active power and
inner control loop dynamics are expected to be decoupled, re-
sulting in an active power response resembling the quasi-static
behavior, along with acceptable capacitor voltage dynamics.

The remaining of this paper is organized as follows. In
section II, the grid-forming control is introduced and its
model is provided. In section III, a small signal model of
the grid-forming converter is derived and analyzed. Section
IV proposes an optimal method to design the inner control
gains. Finally, section V concludes the paper.

II. GRID-FORMING TWO-LEVEL VOLTAGE SOURCE
CONVERTER

A. Plant Modelling

Fig. 1 presents a Two-level VSC connected to an equivalent
AC grid via an LC filter. The equivalent AC grid is represented
by an AC voltage source in series with its impedance Rg , Lg .
The modeling of the plant in the Synchronous Rotating Frame
(SFR) is given by (1)-(3). The state variables im, ig and vc
are represented in the d − q synchronous frame. im, ig and
vc refer respectively to the converter current, the grid current
and the converter voltage across the capacitor.

Lf

ωb

dimdq

dt
= vmdq

− vcdq −Rf imdq
± ω∗

gLf imqd
(1)

Cf

ωb

dvcdq
dt

= imdq
− igdq ± ω∗

gCfvcqd (2)

Lg

ωb

digdq
dt

= vcdq − vgdq −Rgigdq ± ω∗
gLgigqd (3)

Lf , Lg , Cf denote respectively the converter filter reactance,
the grid reactance and the filter capacitor. ω∗

g and ωb are the
grid and the base frequencies, respectively. Along with the
equations mentioned earlier, (4) and (5) provide the active
power pvsc and the reactive power qvsc formulas.

pvsc = vcdigd + vcq igq (4)

qvsc = vcq igd − vcdigq (5)

The following sub-section will dive deeper into control
structure, detailing the mathematical models of power and
cascaded controls.

B. Grid-Forming Control

The adopted grid-forming control structure is illustrated
in Fig. 1. It consists of a cascaded inner control loops to
regulate the instantaneous AC voltage, and outer power control
loops, which define the AC voltage setpoint. In the following
sections, mathematical equations of each function are given.

1) Power Control Loop: The power controllers are in
charge of regulating the active and reactive power, with
separate loops for each, which are given by the Differential-
algebraic equations (DAEs) in (6)-(10). The reactive power
controller used in this work is a droop-based technique de-
scribed by (9)-(10), while the active power loop is built
adopting the Virtual Synchronous Machine concept in (6)-(8).

Ta
d∆ωm

dt
+ kd

(
∆ωm −∆ω∗

g

)
= p∗ − pvsc (6)
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1

ωb

dδm
dt

= ∆ωm (7)

ωm = ∆ωm + ω∗
g (8)

dqm
dt

+ ωfqm = ωfqvsc (9)

v∗cd = |v|∗ −mq (q
∗ − qm) (10)

The VSC frequency and angle are represented by ∆ωm

and δm, respectively, p∗ serves as the reference power. The
time constant of the rotational inertia is denoted as Ta. The
damping factor is represented by kd. Regarding the reactive
power equations, q∗, qm, mq and ωf denote the reactive power
setpoint, the filtred measured reactive power, the droop gain
and the cut-off frequency of the low-pass filter, respectively.
|v|∗ is the reference value for the magnitude of the capacitor
voltage.

2) Voltage Control Loop: The voltage loop aims to regulate
the AC voltage at the filter capacitor level. It consists of dual PI
controllers including the cross-coupling compensation terms
ωmvcdqCf , and the feed-forward terms KFFi

igdq :

dξd
dt

= kiv
(
v∗cd − vcd

)
(11)

dξq
dt

= kiv

(
v∗cq − vcq

)
(12)

i∗md
= KFFiigd + kpv

(
v∗cd − vcd

)
− ωmCfvcq + ξd (13)

i∗mq
= KFFiigq + kpv

(
v∗cq − vcq

)
+ ωmCfvcd + ξq (14)

v∗cq = 0 (15)

The variables ζdq , kiv , kpv and KFFi in (11)-(14) denote
respectively, the state variables of the voltage controllers
integrators, the integral gain of the voltage PI controller, the
proportional gain of the voltage PI controller and the grid
current feed-forward gain.

3) Current Control Loop: Similarly to the voltage loop,
the current loop aims to regulate the AC current at the
filter reactance level, which serves for current limitation and
protection in case of faults. The control loop consists of dual PI
controllers including the cross-coupling compensation terms
ωmicdqLf , and the feed-forward terms KFFvvcdq :

dσd

dt
= kii

(
i∗md

− imd

)
(16)

dσq

dt
= kii

(
i∗mq

− imq

)
(17)

v∗md
= KFFv

vcd + kpi

(
i∗md

− imd

)
− ωmLf imq

+ σd (18)

v∗mq
= KFFv

vcq + kpi

(
i∗mq

− imq

)
− ωmLf imd

+ σq (19)

v∗md
= vmd

(20)

v∗mq
= vmq

(21)

The variables σdq , kii, kpi and KFFv
in (16)-(19) denote

respectively, the state variables of the current controllers
integrators, the integral gain of the current PI controller, the
proportional gain of the current PI controller and the capacitor
voltage feed-forward gain.

III. SMALL SIGNAL MODEL AND ANALYSIS

The plant and control equations combination (1)-(21) result
in a system of 24 equations, out of which 13 are differential,
and 11 are algebraic. The 24 equations can be written in the
following state-space form:

dxdiff

dt
= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)

y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(22)

with xalg = [vmdq
, pvsc, qvsc, ωm, v∗cdq , v

∗
cdq

, i∗mdq
]T ,

xdiff = [vcdq , imdq
, igdq ,∆ωm, δm, qm, ζdq, σdq]

T and u =
[p∗, q∗, v∗, vgd ]

T .
To study the system stability and dynamic behavior, a first

step consists in linearizing the system, The linearization of the
studied system must produce augmented matrices of minimal
order 13. The calculation process for the augmented matrices
is outlined as follows:

A =
∂f

∂xdiff
− ∂f

∂xabg
× ∂g

∂xalg

−1

× ∂g

∂xdiff

B =
∂f

∂u
− ∂f

∂xalg
× ∂g

∂xalg

−1

× ∂g

∂u

C =
∂h

∂xdiff
− ∂h

∂xalg
× ∂g

∂xalg

−1

× ∂g

∂xdiff

D =
∂h

∂u
− ∂h

∂xalg
× ∂g

∂xalg

−1

× ∂g

∂u

(23)


d∆xdiff

dt
= A∆xdiff +B∆u

∆y = C∆xdiff +D∆u
(24)

To use properly the Jacobian method on DAE systems,
it is necessary for the number of algebraic and differential
variables to match the number of algebraic and differential
equations, respectively. Additionally, the matrix ∂g

∂xalg
must

not be singular [12].

A. Conventional Tuning [7]

With the assumption of an ideal decoupling of d− and
q−axes components, the current controller’s open-loop trans-
fer function can be written as:

hc,dq(s) ≈
(
kpi +

kii
s

)
︸ ︷︷ ︸
PI controler

· 1

1 + Tvs︸ ︷︷ ︸
PWM approx

· 1

Rf (1 + Tfs)︸ ︷︷ ︸
Filter reactance

(25)

Tf =
Lf

Rf · ωb
, Tv ≈ 1

2 · fsw
(26)

Tv and Tf given in (26) are defined respectively as the time
constant of the Pulse Width Modulation (PWM) approximation
function and the time constant of the grid currents. The delay
effect caused by the switching frequency fsw of the converter
PWM has been taken into account in order to properly tune
the parameters of the inner current control loop. The PWM’s
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effect is approximated with a first-order transfer function as
given in (25). The open-loop transfer function has no poles
near or on the jw − axis. The current controller’s PI tuning
is done via the Modulus Optimum method (MO). MO method
is a cancellation of the most dominant pole of the open-
loop transfer function, and a gain selection with the purpose
of achieving critical damping for the closed-loop transfer
function. The controller’s gains are given as in (27), where
it is clearly demonstrated that both gains, and consequently
the bandwidth, are limited by the switching frequency.

kpi =
Lf

2 · ωb · Tv
, kii =

Rf

2 · Tv
(27)

The voltage control loop parameter tuning is constrained
by the bandwidth of the current control loop. The closed-loop
current controller can be expressed by a first-order transfer
function for simplification. With the assumption of an ideal
decoupling of the d− and q−axes components, the voltage
controller’s open-loop transfer function can be written as:

hv,dq(s) ≈
(
kpv +

kiv
s

)
︸ ︷︷ ︸
PI controller

· 1

1 + Teq,cc · s︸ ︷︷ ︸
current controller

· 1

Tcc · s︸ ︷︷ ︸
filter capacitor

(28)

Teq,cc ≈ 2 · Tv, Tcc =
Cf

ωb
(29)

The open-loop transfer function has a pole near the jw −
axis, consequently, the MO method is not the right one to
use in this situation. The Symmetrical Optimum method (SO)
is used for the voltage control loop. SO principle is based
on obtaining the maximum phase margin at the open-loop
transfer function’s crossover frequency. PI gains are expressed
as follows :

kpv =
Tcc

a · Teq,cc
, kiv =

Tcc

a3 · T 2
eq,cc

, a = 2ζ + 1 (30)

Usually, the voltage control bandwidth is chosen to be at
most one-tenth of the current control bandwidth.

B. Validation of the Linearized Model

The verification of the linearized model is essential as the
optimization approach introduced in this paper hinges on the
time-domain outcomes derived from this linear representation.
To affirm the model’s validity, time-domain simulations have
been performed in Fig. 2 and Fig. 3. The latter employ the
conventional tuning gains and system parameters listed in
Table I and II. The simulations illustrate the active power and
capacitor voltage responses in response to a change of the
active power and AC voltage references. The outcomes unveil
the match between the linearized and nonlinear models.

C. Limitations of the Conventional Tuning

Tuning of both control loops’ parameters relies heavily on
the switching frequency of the converter, i.e. conventional tun-
ing would give acceptable results in high switching frequency
applications. However, for lower switching frequencies (i.e.
high-power applications), the stability region reduces as well.

TABLE I
CONVENTIONAL INNER CONTROLLER’ PARAMETERS

kpv 0.47 p.u kiv 89.52 p.u

kpi 0.95 p.u kivi 9 p.u

KFFv 1 KFFi
0

TABLE II
SYSTEM AND POWER CONTROL PARAMETERS

Lf 0.1 p.u Lg 0.1 p.u

Rf 0.003 p.u Rg 0.003 p.u

Vm 1 p.u Vg 1 p.u

Cf 0.2 p.u Ta 2 s

kd 3110 p.u ωf 2π10 rad / s
ω∗
g 1 p.u ωb 2π50 rad / s

mq 0 p.u

fsw 3 KHz

Fig. 2. Active Power Response to ∆p∗ = 1 p.u.

Fig. 3. Capacitor Voltage Response to ∆|v|∗ = 0.1 p.u.

With smaller stability regions, more problems are encountered,
since even if stability is ensured, the dynamics might be
affected negatively due to close control loops bandwidths as
demonstrated in [2], [9] and as shown in Fig. 2 and Fig. 3.

D. Prior alternative Control tuning Methods

Various algorithms based on the pole placement method
have been proposed in the literature to overcome the lim-
itations of the conventional tuning [2], [9], [7], [10], [11].
The method in [2], [7] determines the eigenvalues for a
wide range of controller gains and selects the one with the
highest damping factor. In [7], the authors have studied the
parameters sensitivity and their impact on the eigenvalues
evolution in order to move the pole further in stable plan. In
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[10], [11], the authors have highlighted the significant effect of
the feed-forward terms on the stability of the AC voltage i.e.,
referring to [11], the system dynamics can been significantly
improved by neglecting the voltage feed-forward term in
the current control loop, and by using the controller gains
based on the conventional tuning. Although prior methods
show improvements over the conventional tuning for low-
frequency applications, the decoupling aspect between inner
and outer controls has not been considered, resulting in control
interactions between the power loops and the AC voltage loop.

IV. ALGORITHM PROPOSED FOR CONTROL PARAMETER
TUNING

The main objective of the proposed algorithm is to achieve
a stable system with a desired behavior. To accomplish this
objective, the gains kpv , kpi, kiv , kii, KFFv, and KFFi are
optimized. The optimization process aims to closely match
the behavior of an desired objective function, while respecting
some imposed constraints. The algorithm specifically focuses
on the time-domain responses of capacitor voltage and the
active power, with the capacitor voltage response as the
objective function and active power response as the constraint.

Various works such as [2], have proposed a quasi-static
model for active power. This model describes the transfer func-
tion of the dominant active power behavior, considering only
the dominant poles and disregarding faster dynamics that may
arise from different state variable dynamics. Consequently, the
quasi-static active power model is employed as a constraint
function in this optimization. The goal is to decouple the
active power behavior from the capacitor voltage dynamics.
Therefore, the optimization algorithm imposes sufficiently
fast capacitor voltage dynamics, which being restricted the
converter bandwidth. The inclusion of KFFv and KFFi in
the control loops is motivated by the optimization purposes,
i.e., it has been found that eliminating the feed-forward grid
voltage enhances the stability of responses with different
Short Circuit Ratio configurations, as suggested in [10], [11].
By incorporating KFFv and KFFi as part of the optimized
parameters, the algorithm gains additional degrees of freedom,
leading to the potential for better outcomes.

In order to describe the procedure, it is essential to define
the desired behavior of the capacitor voltage and the power
constraint.

A. The desired voltage response

To avoid interactions between capacitor voltage dynamics
and power dynamics, it is crucial to achieve a rapid voltage
behavior. To accomplish this, a first-order voltage dynamics
with a targeted time constant of Tdes = 50ms is chosen as
the desired voltage behavior for the optimization. The desired
voltage transfer function is expressed as:

∆vdescd
=

1

1 + Tdes · s
∆v∗cd (31)

B. The Quasi-static power response

The quasi-static active power response is given by the
equation below:

∆pdesvsc =
1

1 + kd

Kcωb
s+ Ta

Kcωb
s2

∆p∗ (32)

where Kc referred to the synchronizing torque equal to Kc =
VmVg/Xg . Both the grid and converter’s voltage amplitudes,
denoted by Vm and Vg respectively.

C. Procedure of Optimization

The objective of the optimization process is to achieve a
fast response of the capacitor voltage vc while preserving the
quasi-static behavior of the active power pvsc. The output
variables vc and pvsc from the linearized model in (24)
are used as inputs for optimization function. To accomplish
the aforementioned objective, the desired behaviors for both
the capacitor voltage response and the quasi-static response
of the active power are taken into consideration. Based on
these desired responses, an objective function and a non-
linear constraint are formulated. Instead of traditional pole
placement, a curve-fitting approach is utilized to minimize
error and ensure that the system behaves as closely as possible
to the desired response, while still adhering to the constraint.

1) The objective function: The objective function is de-
scribed as follows:

Fobj =
∣∣∣∣vcd(kT )− vdescd

(kT )
∣∣∣∣
2

(33)

T stands for a sampling time (for this work T = 100µs),
and the time range must also be defined to optimize for
this particular range.

2) The constraint function: The constraint function fo-
cuses on the active power behavior and is described as
follows:

Fconst =
∣∣∣∣Pvsc(kT )− pdesvsc(kT )

∣∣∣∣
2

(34)

Using curve fitting rather than pole placement, results in an
automatic placement of poles that achieves a close match to the
desired behavior. The algorithm, outlined in (35) utilizes a vec-
tor of optimized parameters (gains) denoted by x. Additionally,
lower and upper bounds, lb and ub, are employed to restrict
the controller’s bandwidth. lb has been set to zero while ub is
defined from the conventional tuning method. The coefficient
m in (35) defines the tolerated norm error and the accuracy
of the algorithm in respecting the constraint i.e., smaller m
results in a high accuracy between the dynamic active power
and the desired quasi-static active power. In this paper the
tolerated norm error is set to m = 0.2.

min
x

Fobj(x) such that
{

Fconst(x) ≤ m
lb ≤ x ≤ ub

(35)

x = [kpv , kpi , kiv , kii , KFFv , KFFi ]
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TABLE III
CASCADED PI CONTROLLER’ PARAMETERS

Gains Conventional Method in [7] Method in [11] Method in [9] Proposed

kpv 0.47 p.u 1.795 p.u 0.47 p.u 0.52 p.u 0.89 p.u

kiv 89.52 p.u 80.79 p.u 89.52 p.u 1.16 p.u 47.01 p.u

kpi 0.95 p.u 0.63 p.u 0.95 p.u 0.73 p.u 0.89 p.u

kii 9 p.u 20 p.u 9 p.u 1.19 p.u 7.54 p.u

kffv 1 p.u 1 p.u 0 p.u 1 p.u 0.99 p.u

kffi
0 p.u 0 p.u 0 p.u 1 p.u 0.94 p.u

Optimization

Method in [7]

Conv. Tuning

Method in [9]

Method in [11]

Fig. 4. Active Power change of p∗ = 1 p.u

Method in [7]

Method in [11]

Method in [9]

Optimization

Conv. Tuning

Method in [7]

Method in [11]

Method in [9]

Optimazation

Conv. Tuning

Fig. 5. Capacitor Voltage change of |∆v|∗ = +10%

V. SIMULATION AND RESULTS

In this section, time-domain responses are recorded for both
pvsc and vcd to observe how the system performs under the
constraint function imposed on the active power while aiming
to achieve the desired behavior of the capacitor voltage. Two
different scenarios are considered in this analysis to assess the
system response to both power reference change and voltage
reference change. The system response is shown for four
sets of gains listed in Table III: gains obtained through the
proposed algorithm, through conventional tuning, through the
algorithm detailed in [7], and finally, through the the solution
proposed in [11]. Time-domain simulation results and dynamic
behaviors are recorded for two test cases:

• ∆p∗ change of 1 p.u at t=1 s shown in Fig. 4.

• ∆|v|∗ change of 0.1 p.u at t=1 s shown in Fig. 5.
One can notice form the obtained results that with the

conventional tuning parameters and those from [7], [11], the

active power response, although stable, displays significant
oscillations. This indicates that the power behavior is not
effectively decoupled from the capacitor voltage response,
which is confirmed by the capacitor voltage response.
Comparing the optimized control gains to those obtained by
the method in [9], it can be observed that with both methods
the power response obtained for a power reference change
aligns closely the quasi-static active power response, resulting
in satisfactory outcomes. The capacitor voltage based on the
proposed optimal method reaches a steady state at the time
specified by the objective function i.e, 50ms. Again, the ob-
tained voltage response based on the proposed method is still
closer to the one obtained using the method in [9]. Although
the obtained results look almost similar to those obtained
using the gains from [9], the tuning methods are different.
Additionally, the proposed method includes the decoupling
between the inner and the outer loops as a constraint for the
tuning, while in [9], the control layers decoupling has not been
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Fig. 6. Capacitor Voltage Response to ∆|v|∗ = 0.1 p.u.

explicitly studied and considered.
To evaluate the stiffness of grid-forming converter based on
the proposed tuning, a simulation result has been presented in
Fig. 6, considering very weak grid AC system (Short Circuit
Ratio of SCR = 1.5). One can notice the that system is stable
for AC voltage change with an operating point of 1 p.u.

VI. CONCLUSION

This work has proposed an optimization method for the
inner grid-forming controllers. The goal was to produce a
set of parameters that would result in a stable and decoupled
dynamics with satisfactory behavior. A small-signal model has
been derived to be used for the optimization purpose. The
latter has involved defining an objective and constraints to
achieve decoupled behavior while closely approximating the
quasi-static active power model’s response in the time-domain.
To demonstrate the effectiveness of this method, a compar-
ison was conducted with conventional tuning methods. The
obtained results have shown significant improvements, where
the power response was decoupled from the faster voltage loop
dynamics, allowing the latter to reach a predetermined short
rise time.

REFERENCES

[1] “High Penetration of Power Electronic Interfaced Power Sources
(HPoPEIPS),” ENTSO-E, Technical, Mar. 2017. [Online]. Available:
https://consultations.entsoe.eu/system-development/entso-e-connection-
codes-implementation-guidance-d-3

[2] T. QORIA, “Grid-forming control to achieve a 100% power electronics
interfaced power transmission systems,” ENSAM, Paris, 2020.

[3] S. D’Arco and J. A. Suul, “Equivalence of Virtual Synchronous Ma-
chines and Frequency-Droops for Converter-Based MicroGrids,” IEEE
Trans. Smart Grid, vol. 5, no. 1, pp. 394–395, Jan. 2014, doi:
10.1109/TSG.2013.2288000.

[4] T. QORIA, F. GRUSON, F. COLAS, G. Denis, T. PREVOST, and
G. Xavier, “Inertia effect and load sharing capability of grid forming
converters connected to a transmission grid,” The 15th IET international
conference on AC and DC Power Transmission, UK, p. 6, Jan. 2019.

[5] M. Ashabani, F. D. Freijedo, S. Golestan, and J. M. Guerrero, “Inducvert-
ers: PLL-Less Converters With Auto-Synchronization and Emulated In-
ertia Capability,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1660–1674,
May 2016, doi: 10.1109/TSG.2015.2468600.

[6] T. Qoria, E. Rokrok, A. Bruyere, B. Francois, and X. Guillaud, “A PLL-
Free Grid-Forming Control With Decoupled Functionalities for High-
Power Transmission System Applications,” IEEE Access, vol. 8, pp.
197363–197378, 2020, doi: 10.1109/ACCESS.2020.3034149.

[7] S. D’Arco, J. A. Suul, and O. B. Fosso, “Automatic Tuning of Cascaded
Controllers for Power Converters Using Eigenvalue Parametric Sensitivi-
ties,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1743–1753, Mar. 2015,
doi: 10.1109/TIA.2014.2354732.

[8] Z. Li, C. Zang, P. Zeng, H. Yu, S. Li, and J. Bian, “Control of a Grid-
Forming Inverter Based on Sliding-Mode and Mixed H2/H∞ Control,”
IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3862–3872, May 2017,
doi: 10.1109/TIE.2016.2636798.

[9] T. Qoria, F. Gruson, F. Colas, X. Guillaud, M. Debry, and T. Prevost,
“Tuning of Cascaded Controllers for Robust Grid-Forming Voltage Source
Converter,” in 2018 Power Systems Computation Conference (PSCC),
Jun. 2018, pp. 1–7. doi: 10.23919/PSCC.2018.8443018.

[10] M. H. Ravanji, D. B. Rathnayake, M. Z. Mansour and B. Bahrani,
”Impact of Voltage-Loop Feedforward Terms on the Stability of Grid-
Forming Inverters and Remedial Actions,” in IEEE Transactions on
Energy Conversion, vol. 38, no. 3, pp. 1554-1565, Sept. 2023, doi:
10.1109/TEC.2023.3246566.

[11] G. Denis, T. Prevost, P. Panciatici, X. Kestelyn, F. Colas and X. Guillaud,
”Improving robustness against grid stiffness, with internal control of
an AC voltage-controlled VSC,” 2016 IEEE Power and Energy Society
General Meeting (PESGM), Boston, MA, USA, 2016, pp. 1-5, doi:
10.1109/PESGM.2016.7741341.

[12] Q. Cossart, F. Colas, and X. Kestelyn, “A Novel Event- and Non-
Projection-Based Approximation Technique by State Residualization for
the Model Order Reduction of Power Systems with a High Renewable
Energies Penetration,” IEEE Trans. Power Syst., pp. 1–1, 2020, doi:
10.1109/TPWRS.2020.3010891.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024


