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Abstract—The fast growth of renewable energies increases
the power congestion risk. To address this issue, the French
Transmission System Operator (RTE) has developed closed-
loop controllers to handle congestion. To guarantee their proper
functioning, RTE wishes to estimate the probability that the
controllers ensure the equipment’s safety. The naive approach to
estimating this probability relies on simulating many randomly
drawn scenarios and then use all the outcomes to build a
confidence interval around the probability. Although theory
ensures convergence, the computational cost of power system
simulations makes such a process intractable.

The present paper aims to propose a faster process using
machine-learning-based proxies. The amount of required simula-
tions is significantly reduced thanks to an accuracy-aware proxy
built with Multivariate Gaussian Processes. However, using a
proxy instead of the simulator adds uncertainty to the outcomes.
An adaptation of the Central Limit Theorem is thus proposed to
include the uncertainty of the outcomes predicted with the proxy
into the confidence interval. As a case study, we designed a simple
simulator that is tested on a small network. Results show that the
proxy learns to approximate the simulator’s answer accurately,
allowing a significant time gain for the machine-learning-based
process.

Index Terms—Certification of security properties, Congestion
management, Multivariate Gaussian processes, NAZA, Proxies

I. INTRODUCTION

Integrating renewable energies on a large scale poses chal-
lenges in the operation and management of power systems.
It leads to unpredictable and variable flow injections into
transmission lines, increasing the risk of power congestion. To
address these challenges, the French Transmission System Op-
erator (TSO), RTE, has adopted a decentralized management
approach, dividing the entire system into sub-transmission
areas (zones). Real-time constraints within each zone are man-
aged through a local closed-loop controller called NAZA [1],
[2], [3]. Designed to handle local problems with local actions,
it enables the management of battery devices, topological
modifications, and curtailment of renewable production [4]
inside the zone. Alongside the massive deployment of these
controllers across the network, RTE aims to obtain guarantees
regarding their proper functioning. Given a set of renew-
able power production scenarios, RTE seeks to compute the
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probability psafe of NAZA, ensuring the equipment’s safety.
Equipment’s safety is ensured if congestions are avoided
during the scenario simulation. If any line in the zone becomes
overloaded during the simulation, it is considered a security
threat.

The estimation of psafe relies on the law of large numbers.
The most basic approach is the brute-force process: scenarios
are randomly drawn and simulated until psafe is accurately
estimated. Central Limit Theorem (CLT) [5] ensures the con-
vergence of this process. The more iterations are performed,
the more accurate the estimation becomes [6]. In our case, only
extreme and thus rare-to-observe scenarios will likely pose a
security threat. A large number of scenarios must, therefore,
be drawn to observe enough threatening situations and obtain a
reliable estimation of the probability. Although it theoretically
works, the drawback of the brute-force process is that it
requires a lot of simulations. As power system simulations
are computationally costly, such a process is intractable in this
case. However, the outcome of many scenarios can be figured
out without a simulation. For instance, a scenario without wind
will surely not lead to congestion. Hence, learning a proxy of
the simulator to avoid unnecessary simulations and focus only
on the interesting ones can lead to considerable time gain.

The use of proxies to reduce global computational costs
meets a growing interest in all domains of power systems. In
2016, Canyasse et al. [7] used supervised learning algorithms
to build real-time proxies for solving ACOPF. Two years later,
Duchesne [8] investigated machine-learning proxies to deal
with SCOPF in the context of operation planning. Also, in
2018, Dalal et al. [9], [10] considered the Nearest Neighbors
algorithm to predict short-term decision outcomes and applied
it to the outage scheduling problem. More recently, in 2022,
Chen et al. [11] proposed a deep-learning-based proxy to
solve the SCED problem and handle real-time applications
efficiently.

In this paper, we will also use a proxy to address the
computational limitations of the brute-force approach. Our
new proxy-based process aims to avoid useless simulations
and achieve a faster estimation of psafe. Using batches of sim-
ulations, we train a multivariate Gaussian process (MGP)
[12] to predict the scenario outcome. Gaussian process (GP)
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also became very popular in the power systems community
[13], [14], [15]. Indeed, they provide exact confidence intervals
around the prediction and enable the incorporation of prior
knowledge of the system into the proxy [16]. Parameters
of the conditional distribution are continuously updated with
the new batch of data to enhance its accuracy throughout
the process. The confidence interval provided with the GP’s
prediction enables permanent assessment of the prediction’s
quality. If the uncertainty in the prediction of the scenario
outcome is acceptable, we keep the prediction and avoid a
simulation. Otherwise, we perform a simulation. This leads
to significantly sped-up iterations when the simulation is not
performed. Finally, the CLT is adapted using the Lyapunov
version to include the uncertainty of the proxy’s predictions
in the confidence interval of psafe’s estimation.

The objective of this work is two-fold:
• Train an accurate proxy of a black-box simulator using a

MGP
• Show that with an accurate proxy, the machine-learning-

based process converges much faster toward psafe for a
given precision, with even a greater gain for demanding
precision

The article’s structure is as follows: Section II introduces the
notations, reminders on the MGP, and problem formulation.
Section III presents both the brute-force and the proxy-base
processes. Section IV provides the computational results of the
case study. Conclusions and future perspectives are discussed
in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Throughout this paper, upper-case (lower-case) boldface
letters will be used for matrices (column vectors), and (.)T

denotes the transposition. Given a zone of the electric network,
we use the following notations :

• ZL = {L1, ..., LL} is the set of lines in the considered
zone, L is its cardinality

• ZN = {N1, ..., NN} is the set of nodes in the considered
zone, N is its cardinality

• Pn is the allowed renewable power injection at node Nn

• PAn is the available renewable power injection at node
Nn

• Pmax
n is the maximum renewable power that can be

produced at node Nn, and PAn

Pmax
n

∈ [0, 1] is the relative
available renewable power injection

• Fl and F̄l are respectively the power flow and the IST of
line Ll

B. Multivariate gaussian process

Consider an unknown function h : RN → RL that repre-
sents the non-deterministic answer y ∈ RL of a system to an
input x ∈ RN . We model y = h(x)+N (0, σ2

0I). Multivariate
Gaussian process [17] (MGP) regression aims to learn the
underlying dynamic of h by supposing that it is the realization

of a multivariate stochastic Gaussian process. The following
elements fully characterize the multivariate stochastic process:

• Its mean function : µ : RN → RL

• Its correlation (kernel) function : k : RN × RN → R
• Its output covariance matrix : Ω, a L× L matrix
Prior knowledge of the system’s dynamic can be incorpo-

rated into these three elements. For a given x ∈ RN , µ(x)
represents the prior expected value of h(x). Usually, as no
specific information about h is known, the choice is µ = 0,
which is also our choice here. The kernel function k(x1,x2)
measures to what extent y1 and y2, the outputs of x1 and x2,
are correlated. Its selection has to be adapted to the problem.
For our problem, we choose the stationary squared exponential
kernel function :

k(x1,x2) = σ2
f exp

(
−|x1 − x2|2

2l2

)
+ σ2

0δ(x1,x2)

It is a parametric function with parameters θ =
[
σ2
0 , σ

2
f , l

]
.

Parameter σ2
0 represents the variance of the system’s answer

to the same input, σ2
f reflects the signal variance, and l

corresponds to the characteristic length-scale of the kernel. The
optimal parameters are learned by maximizing the likelihood
[12], [18]. The squared exponential kernel results in a smooth
prior on h and reflects that similar scenarios are expected
to have similar threat potential for the network. Knowing
one scenario’s outcome only provides local information about
neighbors’ scenarios’ outcomes. The correlation between their
output indeed decreases exponentially with the distance. Fi-
nally, the process’s output covariance matrix reflects the
correlations between the output’s coordinates. This matrix
allows the posterior distribution of the MGP to preserve the
covariance structure of the output. The choice of Ω = IL
implies that coordinates are decorrelated. The MGP then boils
down to training L separate univariate GP to predict each
coordinate independently. In this work, Ω is fixed at the
beginning of the process. It represents the line’s maximum
flow correlation and is chosen appropriately regarding the
network’s structure. An extension of this work to integrate
an estimation of Ω across the process’s iterations is planned.
We now define the following variables :

• Xm = [x1, ...,xm] the inputs vectors
• Ym =

[
y1

T , ...,ym
T
]

the corresponding simulated out-
puts

• Mm = [µ(x1), ..., µ(xm)] the corresponding mean
vectors

• Σm = (k(xi,xj))i,j∈[1,m] the covariance matrix be-
tween the input vectors

• xm+1 a new input vector
• Σ[1,m],m+1 = [k(x1,xm+1), ..., k(xm,xm+1)] the

covariance vector between the new input and the old ones
The joint distribution of Ym+1 is a matrix-variate gaussian

distribution [19] MN (Mm+1,Σm+1,Ω) [17]. Similarly to
the univariate GP, we can derive the conditional distribution
of ym+1|y1, ...,ym :
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µ∗ = µ(xm+1) +Σ[1,m],m+1
TΣm

−1(Ym −Mm)

σ∗ = k (xm+1,xm+1)−Σ[1,m],m+1
TΣm

−1Σ[1,m],m+1
T

ym+1 ∈ RL ∼ N (µ∗, σ∗Ω)

The obtained multivariate conditional distribution is very
similar to the univariate case. The observed points matter
for the mean µ∗ and the covariance matrix’s scale σ∗. The
covariance matrix’s shape is always Ω, which ensures that the
conditional distribution preserves the correlations between the
output coordinates.

C. Problem formulation

Given :
• A zone of the power network
• A black-box simulator S to simulate the zone’s behavior

in answer to power injections
• A set of renewable power injection scenarios X
, we aim to estimate the probability psafe to draw a scenario

x ∈ X well-handled by NAZA, i.e., that do not lead to
overloaded lines.

Hypothesis on the zone
The zone is composed of L lines, N generator nodes, and

a NAZA controller to handle congestion management. We
consider the following working hypothesis :

1) NAZA controller can curtail each node’s renewable
energy power injections, thus reducing Pn ≤ PAn.

2) Each generator produces the maximum available or
allowed power

3) The loads are constants
4) DC approximation: we neglect the reactive power

Renewable energy generation scenario
We model a renewable energy production scenario x by

the vector of the N available renewable power injections at
each network node. To facilitate the MGP learning, we draw
the relative available renewable power injection. Our set of
scenarios X then boils down to [0, 1]N , which is easier to
explore and will be referred to as the information structure.
To preserve the spatial correlation of the nodes, the power
injection vector x is generated using a truncated multivariate
Gaussian distribution.

x =


x1

.

.

.
xN

 ∼ N|X (0,Σnodes) −→


PA1 = x1 × Pmax

1

.

.

.
PAN = xN × Pmax

N


We consider here a very restrictive subspace of low-

dimensional scenarios. Our main goal is to show how an MGP
can learn the multivariate answer of a black-box function.
Future work will deal with more complex scenarios, including
a temporal aspect, to simulate the network’s behavior on many
time steps.

Network simulation
The network’s evolution is simulated using a network sim-

ulator S. It takes as input a renewable power production
scenario x and returns the vector of the lines’ relative power
flow y ∈ RL. For line l, the relative power flow is y(l) = Fl

F̄l
.

The network simulator used here is a simple simulator im-
plemented by the authors (more details are provided in the
experiments section). Again, an extension of this work, on a
real zone of the French transmission network and using a real
network simulator [20] is planned.

Well-handled scenarios
A scenario x is considered well-handled by NAZA if

no congestions on any lines occur. Line Ll is considered
congested if its power flow exceeds the IST. Thus, denoting
by f the Boolean function that indicates whether a scenario
is well-handled or represents a security threat, we have :

f (y) = z =

{
1 if ∀l ∈ [1, L],y(l) <= 1
0 if ∃l ∈ [1, L],y(l) > 1


x1

.

.

.
xN



Pmax
1

.

.

.
Pmax
N




PA1 = x1 × Pmax
1

.

.

.
PAN = xN × Pmax

N



Simulator S

Zone Z

Lines features


y1
.
.
.
yL



Black-box

z ∈ {0, 1}
f

Fig. 1. Black-box function taking as input a renewable energy generation
scenario x and returning 0 if a congestion occurred, 1 if security was ensured

The zone, the nodes, lines features, and the simulator
constitute a black-box function, as illustrated in Fig.1. The
goal of this work is to estimate as precisely and as fast as
possible the probability for the black-box function to return 1:
psafe = P (f ◦ S(x) = 1). The following section will detail
two processes to estimate psafe.

III. PROCESSES PRESENTATION

A. Brute-force process

The brute-force process is the vanilla way to estimate psafe.
We randomly sample scenarios in X , compute f ◦ S using
the network simulator, and use the CLT to build a confidence
interval around psafe. We iterate the sampling until a satisfying
confidence interval is reached. Given the m simulation results
z1, ..., zm, zm = 1

m

∑m
i=1 zi their average, Qα the 1 − α
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Algorithm 1 Brute-force process
Inputs :

• scenario sampler X
• network simulator S
• confidence interval precise enough : CIgood? tool
• confidence interval level 1− α

Output : I = [pmin, pmax], 1 − α confidence interval level
around psafe

1: Initialize m = 0 and Im = [0, 1]
2: Initialize the bag of outputs B = {}
3: while not CIgood?(Im) do
4: Draw a scenario xm using X
5: Increase m = m+ 1
6: Compute the outcome zm = f ◦ S(xm)
7: Add outcome zm to the bag B = B ∪ {zm}
8: Compute Im of level 1− α using B
9: end while

quantile of the standard normal distribution, the asymptotic
confidence interval [6] of level 1− α around psafe is :

Iα = [pmin, pmax]

pmin =
zm +

Q2
α
2

2m −Qα
2

√
zm(1−zm)

m +
q2α

2

4m2

1 +
Q2

α
2

m

pmax =
zm +

Q2
α
2

2m +Qα
2

√
zm(1−zm)

m +
q2α

2

4m2

1 +
Q2

α
2

m

The brute-force process is summarized in Algorithm 1.

B. Proxy-based process

The issue with the brute-force process is the very high
amount of required simulations to get an accurate estimation
of psafe, especially if psafe is close to 0 or 1. Fig.2 depicts the
number of simulations required for the brute-force process to
reach the desired relative precision on the estimated probability
for different values of psafe. To reduce the number of required
simulations, we propose to learn the response y = S(x) of
the simulator to a scenario. We train a MGP-based proxy S̃
with the previously simulated scenarios.

In this new process, we sample batches of scenarios. For
each input scenario xi, the MGP-based proxy provides the
probability density function (PDF) gi of the output yi ∈ RL.
Integrating this PDF allows us to compute the probability
pi =

∫
[1,∞]L

gi(y)dy for scenario xi to lead to congestion.
If the confidence in the outcome is high enough, i.e., if pi
is either very small or very high, we keep the prediction and
avoid a simulation. Otherwise, a simulation is performed to
obtain the outcome. Fig.3 illustrates the decision mechanism to
decide when to keep the prediction or simulate the outcome. At

010203040

101

102

103
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105

106

Precision in %

N
um

be
r

of
si

m
ul

at
io

ns

psafe = 0.5
psafe = 0.75
psafe = 0.95

Fig. 2. Number of simulations required for the brute-force process to reach
a desired relative precision, depending on psafe probability, each point is the
average of 100 simulations

the beginning of the process, only a few outcomes are available
to train the proxy. Its quality is poor, and the prediction’s
confidence is often insufficient to avoid the simulation. Most
scenarios are thus simulated. However, the more samples are
drawn, the better the proxy becomes. At some point, most
predictions will be confident enough to avoid the simulation,
resulting in a considerable time gain for the probability esti-
mation. The proxy-based process is detailed in Algorithm 2.

pi
0 1

psup = 0.99pinf = 0.01

Prediction is :
congestion

Prediction is :
safety ensured

Proxy is not trusted :
a simulation is performed

Fig. 3. Proxy use decision mechanism

We compute the confidence interval using only simulated
outcomes in the brute-force process. There is no uncertainty
on any zi. In the machine learning process, it is different.
When the outcome is predicted, zi is no longer known with
100% confidence because 0 ≤ pi ≤ 1. Such uncertainty must
be considered in the confidence interval around the estimation
of psafe. The classic version of the CLT must be adapted to
our problem.

C. Central Limit Theorem adaptation

Let x1, ...,xm ∈ X be m scenarios :
• z1, ..., zm ∈ {0, 1} denote the true answers given by the

simulator
• ∀i ∈ [1,m],P(zi = 1) = psafe

• w1, ..., wm ∈ {0, 1} denote the answers’ prediction
• We define ∀i ∈ [1, p], qi = P(wi = zi)
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Algorithm 2 Proxy-based process
Inputs :

• scenario sampler X
• network simulator S
• MGP proxy S̃
• confidence interval precise enough : CIgood? tool
• confidence interval level 1− α

Output : I = [pmin, pmax], 1 − α confidence interval level
around psafe

Hyperparameters :
• Batch size mbatch

• MGP parameters
• Proxy usage confidence threshold pinf and psup

1: Initialize m = 0 and Im = [0, 1]
2: Initialize proxy S̃
3: while not CIgood?(Im) do
4: Draw mbatch scenarios x1, ...,xmbatch using X
5: Increase m = m+ 1
6: for i ∈ [1,mbatch] do
7: Compute the probability pi = P(zi = 1) = S̃(xi)
8: if pi ≤ Pmin or pi ≥ Pmax then
9: Draw wi ∼ B(pi)

10: if wi = 1 then
11: Set qi = pi
12: else
13: Set qi = 1− pi
14: end if
15: else
16: Set wi = S(xi)
17: Set qi = 1
18: end if
19: Add outcome (wi, qi) to the bag B = B∪{(wi, qi)}
20: end for
21: Update MGP parameters with simulated samples in B
22: Compute Im of level 1− α using B
23: end while

We suppose that we observe w1, ..., wm and q1, ..., qm, we
look for a confidence interval of level 1− α around psafe.

Proposition 1
We set :

Zm =

∑m
i=1 wi − (1− qi)∑m

i=1 2qi − 1

vm =
(
∑m

i=1 2qi − 1)
2∑m

i=1(2qi − 1)2

σ2
m =

∑m
i=1 qi(1− qi)∑m
i=1(2qi − 1)2

Then,

√
vm

Zm − psafe√
σ2
m + psafe(1− psafe)

−→d N (0, 1)

Proof : See Annex A

The MGP does not provide us directly wi, nor P(wi = zi),
but only pi = P(zi = 1|MGP prediction). The previous
proposition cannot be directly applied. The issue is overcome
by generating wi using a Bernoulli distribution B(pi) and
choosing qi = pi if wi = 1 or qi = 1 − pi if wi = 0. Then,
we have P(wi = zi) = qi in all cases. All the information the
MGP provides is contained in qi, and the random drawings
ensure the correctness of the propositions.

If there is no uncertainty on the observations w1, ..., wm,
i.e. ∀i ∈ [1, p], qi = 1, then wi ∼ B(psafe) and we retrieve
the CLT for the zi. On the contrary, if predictions provide no
information, i.e., ∀i ∈ [1, p], qi = 0.5, then wi ∼ B(1/2)
and we retrieve the CLT for balanced Bernoulli variables.
Our resulting CLT is a combination of these two CLT. The
balance between the two is determined by the qi. Both terms
Zp and vp can be interpreted as the average w and p while
σ2
p is an additional variance term. It represents a measure of

the quantity of uncertainty contained in the observations. The
evolution of this term will be studied in the experiments.

Proposition 2
Denoting by Qα the 1− α quantile of the standard normal

distribution, the asymptotic confidence interval around psafe

is [pmin, pmax] with :

pmin =

Zm +
Q2

α
2

2vm
−Qα

2

√
Zm(1−Zm)

vm
+

σ2
m

vm

[
1 +

Q2
α
2

vm

]
+

Q2
α
2

4v2
m

1 +
Q2

α
2

vm

pmax =

Zm +
Q2

α
2

2vm
+Qα

2

√
Zm(1−Zm)

vm
+

σ2
m

vm

[
1 +

Q2
α
2

vm

]
+

Q2
α
2

4v2
m

1 +
Q2

α
2

vm

Proof : See Annex B

IV. COMPUTATIONAL RESULTS

A. Details on the case study

Simulator details
Both processes’ performances are tested on a small network

of L = 5 lines and N = 10 generator nodes. Flows on the
lines are computed using the PTDF [24], and Pmax values,
considered as features of the zone. When faraway topological
changes occur outside the area, it usually results in modifying
the PTDF values. Including topological changes in the scenario
x would result in an exploding dimension, making the MGP
inefficient. Such phenomenon is thus considered a disturbance:
at each simulation, we add a small white noise ϵn to the PTDF.
Our modeling, however, does not embody significant changes
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Fig. 4. Selection of the curtailment value β for a given scenario based on
historical curtailment decisions

close to the zone, as it would completely redefine the PTDF
values. It is one of the limitations of this model.

The real NAZA controller cannot be integrated into our
simulator. Our scenarios have no temporal dimension, and
NAZA actions are based on the past flow increase estimation.
To model fictitious actions, we thus add a β ∈ [0, 1] coefficient
that curtails the available renewable power for all nodes.

Fl = β

N∑
n=1

(PTDFl,n + ϵn)xn

β is selected based on the minimum required cur-
tailment that avoids congestion for scenarios with sim-
ilar total power injection in the zone. More specifi-
cally, given a set of scenarios x1, ...,xJ , we compute
the minimum required curtailment that avoids congestion:
βj = arg max

β∈[0,1]

{
β
∑N

n=1(PTDFl,n + ϵn)x
j
n < 1

}
. Then,

for another scenario x, we randomly draw its curtail-
ment value β among the set of candidates : Cand(x) ={
βj , j ∈ [1, J ],

∣∣∣∑N
n=1 xn − xj

n

∣∣∣ < η
}

, with default value to
1 if the set is empty. Fig.4 illustrates the β selection procedure.
Again, the goal of this simple fictitious simulator is only to
illustrate the proxy-based process. It will be tested with real
network simulators, including a real NAZA automaton.

Convergence criterion
We sample random scenarios until a certain amount of

simulations has been reached. For the brute-force process,
the number of simulations matches the number of sampled
scenarios. More iterations can be performed for the proxy-
based process, depending on the proxy’s accuracy.

Computational details Over the iterations, we might have
tens of thousands of simulated scenarios to be considered to
train the MGP. It, however, implies inverting a covariance

0 20 40 60 80 100
0

5 · 10−2

0

0.15

0.2

0.25

0.3

Dimension

Ti
m

e
in

s

Evaluation time

Fig. 5. Integral evaluation time depending on the dimension, 10000 averaged
simulations per point

matrix with a dimension equal to the number of simulated
scenarios, thus over tens of thousands. It is too time and space-
consuming to be efficiently computed. Nevertheless, when
computing the likelihood of a new scenario, many previously
simulated scenarios will be very different. Their correlation
with the new input will be negligible. All these scenarios
could thus be neglected when estimating the parameters of the
conditional distribution. Inspired by [21], we consider only a
small proportion of the simulated scenarios when computing
the likelihood of a new input x0.

• At most N∗ scenarios
• Only neighbors scenarios that are at a distance less than

d∗: d(x,x0) < d∗

The last point that deserves to be highlighted is the compu-
tation of the integral for pi. Both processes are implemented
in Python; we use the Scipy library [22] to approximate the
integral numerically. In small dimensions, the evaluation of
the integral is fast. In higher dimensions, the time quickly
increases, cf Fig.5. It is another limitation to overcome to
generalize this approach to bigger networks.

B. Proxy performances

In this subsection, we illustrate how the MGP manages to
learn the behavior of the black-box function to act as a proxy
of the simulator. We plot three different indicators.

First, we display in Fig.6 the evolution of σ∗ across the
process’s iterations. σ∗ is the scale of the covariance matrix
of the posterior distribution. A small σ∗ reflects a low variance
and thus a high confidence in the predicted outcome. σ∗
entirely depends on the point we wish to predict, rendering the
plot irregular. To catch the global trend, we display a moving
average.

In the beginning, the MGP has no observations to learn
from. The variance of the posterior distribution is σ∗ =
σf + σ0 = 1, an arbitrary prior choice. Throughout the
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Fig. 6. Evolution of the 200 mobile average of σ∗ during the proxy-based
process

process, we simulate more scenarios, increasing the chances
of having many correlated points close to the new sampled
observation. Mathematically, this boils down to a higher value
for the Mahalanobis term Σ[1,m],m+1

TΣm
−1Σ[1,m],m+1

T ,
and thus a lower variance. The decrease of σ∗ illustrates the
increasing density of simulated scenarios in the information
structure, directly linked to a downward variance posterior
distribution and a high confidence in the prediction. σ∗ could
amount to a loss function, whose decrease attests that our MGP
indeed learns the simulator’s answer.

The second indicator is related to the evolution of con-
fidence in the outcome’s prediction across the process’s it-
erations. We plot in Fig.7 the evolution of the prediction’s
entropy: H(zi) =

−pilog(pi)−(1−pi)log(1−pi)
log(2) . A small entropy

characterizes a probability close to 0 or 1, thus a confident
prediction, while a higher entropy stands for a more uncertain
prediction. Again, we display a moving average to avoid a
very irregular plot.

In the beginning, the posterior distribution is N (0,Ω). Ω
scale is adapted so that the prior probability is unbiased: p1 =
q1 = 1

2 and H(z1) = 1. The congestion probability is mainly
influenced by whether or not µ∗ is close, relatively to σ∗, to
the congestion limit, i.e., the boundaries of the [0, 1]N volume.
As σ∗ decreases, it becomes less and less likely to be close to
the border. Thus, the computed probabilities are increasingly
extreme, close to 0 (confidence in an overload) or very close
to 1 (confidence in a safe line).

Finally, the last interesting factor to display is the % of
simulated scenarios since the beginning of the certification
process. The lower the % is, the more simulations were
avoided, and thus the better the proxy is.

Initially, the proxy’s confidence is insufficient to replace a
real simulation, and most scenarios are simulated. Then, as the
proxy quality improves and the prediction’s entropy decreases,
the proxy is used more and more often. Over the last 1000 of
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Fig. 7. Evolution of the 200 mobile average of the proxy’s prediction entropy
during the proxy-based process
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Fig. 8. Evolution of the total % of simulated scenarios since the beginning
during the proxy-based process

sampled scenarios, less than 50% are simulated, leading to
20% of avoided simulations.

C. Processes performances

To conclude the experiments section, we present the per-
formances of each process for probability estimation. Given
a maximum amount of simulations, we compare in Table 1
the estimated psafe probability and the confidence interval
obtained by both processes.

The brute-force process performs 100,000 iterations and
reaches a relative error of 0.05%. Comparatively, the proxy-
based process gets over 125,000 iterations and avoids more
than 25,000 simulations. The proxy-based confidence interval
is computed with more iterations, leading to a smaller relative
error and a smaller length. The performance gap is almost
20% above the brute-force process. Since the proxy is con-
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psafe = 0.9044
Brute-force Proxy-based

Number of itera-
tions

125575 100000

pmin 0.9018 0.9023
pmax 0.9067 0.9064
Relative error 0.05% 0.041%
Confidence interval
length

0.0049 0.0041

TABLE I
PROCESSES PERFORMANCES COMPARISON

tinuously enhanced across the simulations, the gap between
the two processes would be even more significant for a higher
maximum amount of simulations.

psafe = 0.9044

pmin = 0.9023 pmax = 0.9064

pmin = 0.9018 pmax = 0.9067

: Brute-force process
: Proxy-based process

Fig. 9. Confidence intervals obtained by both processes

V. CONCLUSION

In this work, we proposed two processes to estimate the
probability of observing congestion on a network. The network
and its simulator are a black-box function that outputs the
maximum flow observed on each line for a given renewable
energy production scenario. The brute-force process draws
and simulates scenarios until it reaches a satisfying proba-
bility estimation. As power system simulations are often very
long, it is time-consuming. The proxy-based process trains
a Multivariate Gaussian Process to predict the black box’s
answer, with an exact confidence interval on the prediction.
The simulation is avoided when the proxy is confident enough
in the prediction. For a given budget of simulations, it leads
to a much more accurate probability estimation, with an
error reduced by 20%. Many simulations are not performed,
allowing the process to run more iterations. The MGP manages
here to efficiently learn the multivariate answer of a black-
box function with correlated components while providing
explicability and theoretical guarantees about the prediction’s
error. Multivariate Gaussian processes are of great interest for
approximating power systems behaviors and can be applied to
many problems.

We supposed in this work that the output’s correlation ma-
trix Ω was known, while in practice, it has to be learned. A first
extension of this work will be to propose an estimation method
of this matrix during the process. Also, the kernel choice
can be discussed. This paper aimed to illustrate the proxy-
based certification process on a simple black box involving
low-dimensional inputs. We aim to extend it to more realistic
simulations with a real network and complex scenarios.
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ANNEX A: PROOF OF PROPOSITION 1

The proof relies on the Lyapunov version of the CLT
[23]. It states that for m given random independent variables
X1, .., Xm, with expected value µi and variance σ2

i , if for
some δ > 0, Lyapunov condition is satisfied :

s2m =

m∑
i=1

σ2
i

lim
m→∞

1

s2m

m∑
i=1

E
[
|Xi − µi|2+δ

]
= 0

Then,

1

sm

m∑
i=1

(Xi − µi) −→d N (0, 1)

In our case, one can easily check that ∀i ∈ [1,m] :

wi ∼ B ((2qi − 1)psafe + (1− qi))

E [wi] = (2qi − 1)psafe + (1− qi)

V (wi) = qi(1− qi) + psafe(1− psafe)(2qi − 1)2

Let A1, ..., Am be m random independant variables follow-
ing the Bernoulli distributions B(a1), ..., B(am), then :

s2m =

m∑
i=1

ai(1− ai)

E
[
|Ai − µi|2+δ

]
= ai(1− ai)

2+δ + (1− ai)a
2+δ
i

≤ 2ai(1− ai)

Since we suppose that the simulator’s answer is non-
deterministic, there is always a residual uncertainty on the
result’s prediction. It implies that qi(1−qi) does not converge
toward 0 and thus the serie

∑m
i=1 qi(1 − qi) diverges toward

+∞. We deduce that :

lim
m→∞

m∑
i=1

E
[
|Ai − µi|2+δ

]
s2+δ
p

≤ lim
m→∞

2
∑m

i=1 ai(1− ai)

(
∑m

i=1 ai(1− ai))
1+ δ

2

= 0

Lyapunov’s condition is thus verified for our set of Bernoulli
variables. We apply the theorem to W1, ...,Wm:

∑m
i=1 Wi − (2qi − 1)psafe − (1− qi)√∑m

i=1 qi(1− qi) + psafe(1− psafe)(2qi − 1)2

=

∑m
i=1 Wi − (1− qi)− psafe

∑m
i=1(2qi − 1)√∑m

i=1 qi(1− qi) + psafe(1− psafe)
∑m

i=1(2qi − 1)2

=

√
(
∑m

i=1(2qi − 1))
2∑m

i=1(2qi − 1)2

∑m
i=1 Wi−(1−qi)∑m

i=1(2qi−1) − psafe√∑m
i=1 qi(1−qi)∑m
i=1(2qi−1)2 + psafe(1− psafe)

=
√
vm

Zm − psafe√
σ2
m + psafe(1− psafe)

ANNEX B: PROOF OF PROPOSITION 2

Asymptotically, we know that
√
vm

Zm−psafe√
σ2
m+psafe(1−psafe)

∼
N (0, 1). To obtain the result, we solve the following inequality
:

− qα
2
≤

√
vm

Zm − psafe√
σ2
m + psafe(1− psafe)

≤ qα
2

=⇒ vm

(
Zm − psafe

)2
σ2
m + psafe(1− psafe)

≤ q2α
2

=⇒ Zm
2
+ psafe

2 − 2psafeZm ≤ σ2
m

q2α
2

vm
+ psafe

q2α
2

vm

− psafe
2
q2α

2

vm

=⇒

[
1 +

q2α
2

vm

]
psafe

2 +

[
−2Zm −

q2α
2

vm

]
psafe

+

[
Zm

2 − σ2
m

q2α
2

vm

]
≤ 0

∆ =

[
2Zm +

q2α
2

vm

]2

− 4

[
1 +

q2α
2

vm

][
Zm

2 − σ2
m

q2α
2

vm

]

= 4Zm
2
+

q4α
2

v2m
+ 4Zm

q2α
2

vm
− 4Zm

2
+ 4σ2

m

q2α
2

vm

− 4Zm
2 q

2
α
2

vm
+ 4σ2

m

q4α
2

v2m

= 4
q2α

2

vm

[
Zm

(
1− Zm

)
+ σ2

m

[
1 +

q2α
2

vm

]
+

q2α
2

4vm

]

We can finally derive the expressions of pmin and pmax :
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pmin =

Zm +
q2α

2

2vm
− qα

2

√
Zm(1−Zm)

vm
+

σ2
m

vm

[
1 +

q2α
2

vm

]
+

q2α
2

4v2
m

1 +
q2α

2

vm

pmax =

Zm +
q2α

2

2vm
+ qα

2

√
Zm(1−Zm)

vm
+

σ2
m

vm

[
1 +

q2α
2

vm

]
+

q2α
2

4v2
m

1 +
q2α

2

vm
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