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Abstract—This paper studies the impact of distributed energy
resources (DER) on economic displacements or delays of power
system investments. We investigate how the operational flexibility
from DER controllability can influence the integrated expansion
of transmission and energy storage. Given the interplay of flexi-
bility provision from different technologies, accurately represent-
ing uncertainties is essential to avoid over- or under-estimating
the flexible operational capabilities of DER. To address this
challenge, we propose a multi-stage stochastic expansion planning
model that can optimise transmission and storage investments, as
well as DER services against long-term uncertainties and detailed
operational constraints. We employ a four-stage scenario tree
to represent uncertainties and a Dantzig-Wolfe decomposition
within a column generation approach to tackle computational
challenges. Case studies performed on real Australian National
Electricity Market (NEM) scenarios demonstrate that a determin-
istic model overestimates the capabilities of controllable DER to
displace transmission investments, particularly in early stages.
Conversely, the proposed stochastic model provides a more mea-
sured assessment, maintaining a steadier estimate of transmission
displacement potential by controllable DER throughout various
stages.

Index Terms—Distributed Energy Resources, Investment Un-
der Uncertainty, Low-Carbon Power System Planning, Stochastic
Optimisation, Australian Power System.

NOMENCLATURE
Parameters
An Matrix linking operational and investment deci-

sions, node n
cfuel
n,g Fuel cost, node n, generator g [$/MW]

csup/sdn
g Startup/shutdown cost, generator g [$]
cshup/shdn
d Cost of load shift up/down, DER d [$/MW]
cred
d Cost of load reduction, DER d [$/MW]

cinv/op
n Vectors of investment/operational cost, node n

Dn,b,t Demand, node n, bus b, time t [MW]
Ēe, Ee Max./min. energy capacity, ESS e [MWh]
F̄l,t/F l,t Max. forward/reverse flow, line l, time t [MW]
Fg/Pg Full/partial outage rate, generator g [%]
LLn,a Largest load loss, node n, area a [MW]
NT Number of hours per representative period
Nn,g Maximum number of online units, node n, gen. g
P̄g/P g Max./min. power output, generator g [MW]

P̄ pr/sr+
g Max. capacity providing PR/SR, gen. g [MW]

P̄ ch/dch
e Max. charging/discharging power, ESS e [MW]

P̄ pr
e Max. cap. for primary reserves, ESS e [MW]
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P̃R
n,r,t Renewable output, node n, gen. r, time t [MW]

r Financial discount rate
Rup/down
g Up/downward ramp limit, generator g [MW]

RSg Primary reserve slope, generator g
Tup/dn
g Min. up/down times, generator g [h]

Tsup/sdn
g Startup/shutdown times, generator g [h]

Tpr/sr Time for primary/secondary reserve provision [s]
Trec
d Re-balance time duration for load shift, DER d [h]

VoLL Value of Lost Load [$/MW]
yn Number of years from node n to root node
z̄L/E
n,l̂/ê

Capacity for investment, node n, line l̂ / BESS ê

z̄D
n,d Installed units, node n, DER d
Z̄n Vector of max. total installed units, node n
αg Derating factor due to partial outage, gen. g
γ̄shup/shdn
d Max. up/down load shifting capacity, DER d [MW]

γ̄red
d Max. load reduction capacity, DER d [MW]

∆f db Freq. response deadband target deviation [Hz]
∆f qssf−/+

Target QSS frequency low/high events [Hz]
ζd Payback effect penalisation, DER d [%]
ηch/dch
e Charging/discharging efficiency, ESS e [%]
κ̃n,d̃,t Reference power, node n, DER d̃, time t [MW]
ξn,h,w Cap. factor, node n, hydro gen. h, period w [%]
πL/E
n,l̂/ê

Investment cost, node n, line l̂/ESS ê [$]

ρn Probability of node n
σa Load damping factor, area a [%/Hz]
ωw Weight over one year, representative period w

Variables and functions
eE
n,e,t State of charge, node n, ESS e, time t [MWh]
esh/up/dn
n,d,t State shift/up/down, node n, DER d, time t [MWh]
fn,l,t Power flow, node n, line l, time t [MW]
f p/n
n,l,t Positive/negative slack, node n, line l, time t [MW]
LSn,b,t Load shedding, node n, bus b, time t [MW]
nn,g,t Online units, node n, generator g, time t
pn,g,t Power output, node n, generator g, time t [MW]
pc
n,r,t Power curtailment, node n, gen. r, time t [MW]

p
dch/ch
n,e,t Dis/charging power, node n, ESS e, time t [MW]

ps
ty

n,g/e,t Power scheduled for reserve service s (pr/sr), type
ty (up/down), node n, gen. g/ESS e, time t [MW]

xL
n,l̂

Integer variable for investment, node n, line l̂

xE
n,ê Integer variable for investment, node n, ESS ê

zL
n,l Total installed units, node n, transmission line l
zE
n,e Total installed units, node n, ESS e

X inv/op
n Vector of investment/operation variables, node n

Zn Vector of total installed units, node n
γshup/shdn
n,d,t Up/downward shift, node n, DER d, time t [MW]

γred
n,d,t Load reduction, node n, DER d, time t [MW]
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δsdn/sup
n,g,t Shutdown/startup, node n, gen. g, time t [MW]
∆pg-loss

n,a,t Gen. contingency size, node n, area a, time t [MW]
λn,j Binary variable to select column j in node n
µn,e,t State of operation, node n, ESS e, time t
µn/πn Dual variables for DW decomposition, node n
νn,g,t Power-on status, node n, generator g, time t

Ωsty

n,a,t Allocation of power for reserve service s (pr/sr),
type ty (up/down), node n, area a, time t [MW]

Indices and sets
a, b ∈ A,B Areas, buses in the system
d, d̃ ∈ D,Db DER in the system, in bus b
e ∈ E ESS in the system
ẽ, ē ∈ Eb, Ea ESS in bus b, in area a
ê ∈ Ec ⊂ E Candidate ESS
g ∈ G Synchronous generators in the system
g̃, ḡ ∈ Gb,Ga Synchronous generators in bus b, in area a
h ∈ GH ⊂ G Hydro generators in the system
j ∈ Kn Indices of elements in Zn

l ∈ L Transmission lines in the system
l̃ ∈ Lfrom

b ,Lto
b Transmission lines from, to bus b

l̂ ∈ Lc ⊂ L Candidate transmission lines
n ∈ N Nodes in the scenario tree
m ∈ Pn Predecessor nodes of node n
r, r̃ ∈ R,Rb Variable renewable gen. in the system, bus b
t ∈ Tw Hours within a representative period w
w ∈ Wn Representative periods, node n
Xn Feasible operational decisions, node n
Zn Feasible total installed units, node n

I. INTRODUCTION

In transitioning towards low-carbon power systems, dis-
tributed energy resources (DER) can play a prominent role in
providing flexibility services and displacing network invest-
ments, particularly in transmission lines and energy storage.
The ability of DER to reshape load patterns, mitigate con-
gestion in transmission systems, reduce reliance on high-cost
generation units, and facilitate the integration of variable re-
newable energy underscores its potential value. Nevertheless, it
is crucial to understand the real-world implications and analyse
the potential of DER in economically displacing transmission
and energy storage investments [1], considering various oper-
ational modes (centrally controlled or decentralised), detailed
models of system operation, and long-term uncertainties. Our
hypothesis posits that deterministic and stylised models, which
overlook multiple sources of uncertainty and operational de-
tails, can distort the capacity of DER to displace investments
in system infrastructure, a pitfall to avoid, as this can lead to
sub-optimal investment decisions [2].

Regarding system expansion planning, numerous studies
have explored the impact of DER technologies on system
investments from an economic perspective. For instance, de-
mand response [3]–[5], electric vehicles [6], and distributed
generation [7]–[9] have demonstrated positive outcomes, high-
lighting DER as a source of flexibility capable of displacing
system investments and reducing the risk of having stranded
assets. DER influence in energy markets was studied in [5],
[10], presenting considerable operational savings depending on

the market share and aggregation capacity. From a modelling
standpoint, DER integration has been approached through
deterministic [6], [11], robust [3], and two-stage stochastic [4],
[5] frameworks to study the integration of different flexible
technologies emerging on the demand side.

Regarding uncertainty representation, most industry-based
deterministic models often overlook uncertainties [2], while
academia has increased its focus on addressing these issues
[12], [13]. In particular, by quantifying uncertainty through
probabilities, stochastic models strike a better cost-risk bal-
ance, and to better capture the decision dynamics and facilitate
anticipatory strategic investments, recent research has further
explored multi-stage models [2], [14], [15]. However, prior
works in this domain have yet to investigate the integration of
DER in system planning as an active flexibility source within
multi-stage investment frameworks while addressing uncer-
tainties across multiple scenarios. Bridging this gap in power
system planning is of utmost importance given the increasing
penetration of DER in modern grids, the deployment of which
is surrounded by uncertainty, impacting demand growth as
well as the available demand-side flexibility and, consequently,
the need for investments in utility-scale assets.

In this context, we present a multi-stage, stochastic expan-
sion planning model. It optimises investments in transmission
and energy storage and the operation of controllable DER
services while considering long-term uncertainties. Due to
its multi-stage nature, it integrates and captures the grow-
ing DER penetration and controllability along with other
sources of uncertainty within multiple investment periods. As
transmission system operators and planners do not influence
decisions in distribution networks, investment in new DER
is out of the scope of this work. The proposed framework
also incorporates unit commitment and security constraints and
spans representative weeks over several years. We employ a
column generation algorithm within a Dantzig-Wolfe decom-
position to handle the large-scale optimisation problem. We
develop a set of case studies on the Australian power system,
utilising real scenarios and system parameters from the system
operator (AEMO). Through these, we determine the influence
of DER controllability and uncertainty modelling in changing
transmission and energy storage investment portfolios and the
differences between employing deterministic and stochastic
models for its valuation in expansion planning. Hence, the
main contributions are:

1) Provide a stochastic power system expansion planning
framework incorporating a model for flexible technologies
(DER), accounting for demand response and distributed stor-
age as virtual power plants (VPP), and its operating modes
(controllable and non-controllable) within a detailed system
operation under uncertainty.

2) Analyse the impact of DER and its operating modes on
displacing system investments over time and across multiple
scenarios from a techno-economic point of view, showing the
need to account for a detailed uncertainty representation in
expansion planning to adequately value DER.

3) Assess how the choice of the modelling setting, whether
multi-stage stochastic or deterministic, impacts the robustness
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of investment portfolios when incorporating DER controllabil-
ity across multiple scenarios.

The remainder of this paper is structured as follows. Sec-
tion II presents the multi-stage stochastic expansion planning
model. Section III delves into the system data utilised and the
case studies considered. Section IV presents the results and
discussion. Section V concludes.

II. THE STOCHASTIC POWER SYSTEM EXPANSION
PLANNING MODEL

This section presents the multi-stage stochastic expansion
planning model, expanding [2], [16] by including an op-
erational model for DER through aggregators. The model
minimises the expected investment and operational costs and
allows managing (i) long-term uncertainty through a multi-
stage scenario tree, associated with investment costs, fuel
prices, installed capacity of variable renewable energy (VRE),
DER and energy storage, the retirement of coal units and
load growth. (ii) detailed short-term operational constraints
(unit commitment, reserves to manage short-term uncertainty,
storage and DER flexibility services) related to the capacity
of technologies to cope with VRE outputs and demand.

A. Multi-stage scenario tree approach

The expansion planning model is formulated as a multi-
stage stochastic problem to account for long-term uncertain-
ties. These uncertainties, associated with different parameters
(investment costs, fuel prices, installed VRE, DER and energy
storage, the retirement of coal units and load growth) are mod-
elled using a scenario tree with |S| decision stages and |N |
nodes. The root node (i.e. n = 1) represents the initial state of
the system. Nodes n in each stage s represent potential states
of the uncertain parameters within that stage. A node consists
of an operational and an investment phase. Investments for the
current node and its successors (child nodes) are determined
within the investment phase, taking into account the lead times
of candidate technologies.

For technologies with lead times (e.g. transmission lines),
the investment decisions are made in each node n of the
scenario tree prior to the disclosure of uncertain parameters
in the subsequent stage. This ensures the new infrastructure is
feasible under multiple stochastically modelled scenarios. This
seeks to represent the reality of the infrastructure planning
problem, where here-and-now and wait-and-see decisions for
large-scale assets are made under the uncertainty of the future
that the system could face. Subsequently, the operation of
the system at each node n employs the existing and new
infrastructure to meet different operational requirements.

B. Mathematical formulation

1) Objective function: shown in (1), aims to minimise the
discounted expected value of the total cost. The expected total
cost includes the investment and operational costs of every
node n of the scenario tree. The investment cost for each node
(2) is calculated by summing up the annuities paid for new
transmission and storage assets if the decision is made to invest
in them. The operational cost of the system (3) is given by the
operation of a set of representative weeks Wn for each node n.

The operational cost includes costs for fuel, start-up and shut-
down of synchronous units, controllable DER services (load
shifting and reduction), and load shedding.

min
X inv

n ,Xop
n

∑
n∈N

ρn

(1+r)yn

(
C inv

n

(
X inv

n

)
+ Cop

n

(
Xop

n

))
(1)

C inv
n (X inv

n ) =
∑

l̂∈Lc πL
n,l̂

(xL
n,l̂

+ zL
n,l̂

) +
∑

ê∈Ec πE
n,êz

E
n,ê (2)

Cop
n (Xop

n ) =
∑

b∈B
∑

w∈Wn

∑
t∈Tw

ωw

(∑
g̃∈Gb

(
cfuel
n,g̃pn,g̃,t

+ csup
g̃ δsup

n,g̃,t + csdn
g̃ δsdn

n,g̃,t

)
+

∑
d̃∈Db

(
cshup
d̃

γshup
n,d̃,t

+ cshdn
d̃

γshdn
n,d̃,t

+ cred
d̃
γred
n,d̃,t

)
+ VoLL · LSn,b,t

)
(3)

2) Investment constraints: the construction of new assets is
modelled through non-anticipativity constraints (4)-(5) [17].
These constraints guarantee that an investment made at a
certain node n in the scenario tree is irreversible and will be
available in the subsequent nodes connected to said node (child
nodes). These also limit the number of new units installed in
each node. For transmission lines, we consider a lead time
of one stage between the investment decision (xL

n,l̂
) and the

availability of the asset (zL
n,l̂

). Thus, new lines cannot be
installed in the first investment stage (root node, n = 1) as
imposed in (6). This condition is not imposed for BESS. We
assume that BESS can be installed without a lead time (within
the same stage), reflecting the reality and a key benefit of this
technology. To represent real candidate projects, investment
variables are binary for transmission lines and integer for
BESS, as shown in (7)-(8).

zL
n,l̂

≤
∑

m∈Pn
xL
m,l̂

≤ z̄L
n,l̂

∀n, l̂ (4)

zE
n,ê ≤

∑
m∈Pn

xE
m,ê ≤ z̄E

n,ê ∀n, ê (5)

zL
1,l̂

= 0 ∀l̂ (6)

xL
n,l̂

, zL
n,l̂

∈ {0, 1} ∀n, l̂ (7)

xE
n,ê, z

E
n,ê ∈ Z ∀n, ê (8)

3) Power system constraints: equations model power bal-
ance, reserves, power flow, transmission and generation limits
and storage operation. Equation (9) ensures the power balance
for the demand in every bus b at every hour t, for each rep-
resentative period w and node n. The term κ̃n,d̃,t models the
reference power exchanges of non-controllable DER, which
can be controlled by means of the available flexibility services
they are able to provide.∑

g̃∈Gb∪Rb

pn,g̃,t+
∑
l̃∈Lto

b

fn,l̃,t−
∑

l̃∈Lfrom
b

fn,l̃,t+
∑
ẽ∈Eb

(
pdch
n,ẽ,t−pch

n,ẽ,t

)
= Dn,b,t − LSn,b,t +

∑
d̃∈Db

κ̃n,d̃,t +
∑
d̃∈Db

γshup
n,d̃,t

−
∑
d̃∈Db

γshdn
n,d̃,t

−
∑
d̃∈Db

γred
n,d̃,t

, ∀n, b, w, t (9)

Each synchronous unit (including hydro) is modelled
through (10)-(14). Units are capable of providing primary (pr)
and secondary (sr) reserves during high- and low-frequency
events. Downward (-) reserves are described by (10). Up-
ward (+) reserves are described by (11)-(13). Equation (14)
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accounts for maximum generation, considering outage rates.
The balance for each renewable generator is presented in
(15), ensuring the available renewable resource at time t is
balanced between injections and the curtailed power pc

n,r,t.
Maximum run-of-river generation, based on historical inflow
data, is presented in equation (16), while hydro unit capacity
factors constrain energy generation from reservoirs (17).

nn,g,tP g ≤ pn,g,t − ppr−
n,g,t − psr−

n,g,t ∀n, g, t (10)

pn,g,t +
ppr+

n,g,t

RSg
+ psr+

n,g,t ≤ nn,g,tP̄g ∀n, g, t (11)

ppr+
n,g,t ≤ nn,g,tP̄

pr+
g ∀n, g, t (12)

psr+
n,g,t ≤ nn,g,tP̄

sr+
g ∀n, g, t (13)

pn,g,t ≤ nn,g,t · P̄g (1− (Fg + Pg(1− αg))) ∀n, g, t (14)

pn,r,t + pc
n,r,t = P̃R

n,r,t ∀n, r, t (15)

pn,h,t ≤ P̄h · nn,h,t · ξn,h,w ∀n, h, t, w (16)∑
t∈Tω

pn,h,t ≤ NT · P̄h · nn,h,t · ξn,h,w ∀n, h, t, w (17)

The operation of storage technologies, as BESS, pumped
(PSS), and VPP, is described in equations (18)-(27). Integer
variable µn,e,t is used to determine in (18) and (19) the
power injection or consumption, while (20) limits the charging
and discharging power. Upward and downward reserves are
modelled through (21) and (22). The maximum level of
primary reserves (pr) is set through (23). The energy balance is
described in (24) and (25). Equations (26) and (27) guarantee
the storage has the capacity to provide reserves for the time
required in each service. VPP are not providing reserves.

pch
n,e,t ≤

(
1− µn,e,t

)
· P̄ ch

e ∀n, e, t (18)

pdch
n,e,t ≤ µn,e,t · P̄ dch

e ∀n, e, t (19)

pch/dch
n,e,t ≤ P̄ ch/dch

e zE
n,e ∀n, e, t (20)

ppr+
n,e,t + psr+

n,e,t ≤ µn,e,tP̄
dch
e − pdch

n,e,t + pch
n,e,t ∀n, e, t (21)

ppr−
n,e,t + psr−

n,e,t ≤
(
1− µn,e,t

)
P̄ ch
e + pdch

n,e,t − pch
n,e,t∀n, e, t (22)

ppr−
n,e,t, p

pr+
n,e,t ≤ P̄ pr

e ∀n, e, t (23)

eE
n,e,t = ηch

e pch
n,e,t −

pdch
n,e,t

ηdch
e

+ eE
n,e,t−1 ∀n, e, t : t > 1 (24)

Eez
E
n,e ≤ eE

n,e,t ≤ Ēez
E
n,e ∀n, e, t (25)

ppr+
n,e,tT

pr + psr+
n,e,tT

sr ≤ eE
n,e,t − Ee ∀n, e, t (26)

ppr−
n,e,tT

pr + psr−
n,e,tT

sr ≤ Ēe − eE
n,e,t ∀n, e, t (27)

Forward and reverse maximum capacity of transmission
lines are modelled as presented in (28). Equations (29)-(30)
use slack variables f p

n,l,t, f
n
n,l,t to define the transmission head

room in each direction.

− F l,tz
L
n,l ≤ fn,l,t ≤ F̄l,tz

L
n,l ∀n, l, t (28)

fn,l,t + f p
n,l,t = F̄l,tz

L
n,l ∀n, l, t (29)

fn,l,t + f n
n,l,t = −F l,tz

L
n,l ∀n, l, t (30)

Equations (31)-(32) describe the total allocation of power
for primary and secondary reserves of type ty in each area
a and time t. Equation (33) determines the size of the
contingency for the largest loss of generation in each area

a of the system. The quasi-steady state frequency (QSSF)
constraints [16] are modelled through (35)-(38), ensuring the
availability of primary and secondary upward and downward
reserves in the system to restore the QSSF in the case of the
biggest possible loss of generation or load in each area a.

Ωprty
n,a,t =

∑
ḡ∈Ga

pprty
n,ḡ,t +

∑
ē∈Ea

pprty
n,ē,t ∀n, a, t, ty (31)

Ωsrty
n,a,t =

∑
ḡ∈Ga

psrty
n,ḡ,t +

∑
ē∈Ea

psrty
n,ē,t ∀n, a, t, ty (32)

∆pg-loss
n,a,t ≥ pn,ḡ,t ∀n, a, ḡ, t (33)

D̄n,a,t = Dn,a,t − LLn,a ∀n, a, t (34)

Ωpr+

n,a,t ≥ ∆pg-loss
n,a,t + σaDn,a,t∆f qssf− ∀n, a, t (35)

Ωpr-

n,a,t ≥ LLn,a − σaD̄n,a,t∆f qssf+ ∀n, a, t (36)

Ωsr+

n,a,t ≥ ∆pg-loss
n,a,t − σaDn,a,t

∣∣∆f db
∣∣ ∀n, a, t (37)

Ωsr-

n,a,t ≥ LLn,a − σaD̄n,a,t

∣∣∆f db
∣∣ ∀n, a, t (38)

4) Unit-commitment (UC) constraints: these model the unit
scheduling, ramp limitations, startup/shutdown requirements,
and minimum on-off times of conventional generators [18].
The online unit count and transitions are detailed in (39),
with minimum up- and down-times Tup

g ,Tdn
g modelled through

(40) and (41), respectively. Also, (41) integrates transition
times Tsup

g , Tsdn
g for unit startup and shutdown. The change of

each unit g output between periods adheres to ramping ability
and unit activation patterns in (42). The maximum downward
change is determined by unit ramping and shutdowns in (43).
Equations (44)-(45) restrict the number of committed units.
For large generation clusters, integer variables νn,g,t, ng,t, δ

sup
g,t

and δsdn
g,t can be relaxed without significant errors [18].

nn,g,t − nn,g,t−1 = δsup
n,g,t − δsdn

n,g,t ∀n, g, t > 1 (39)

nn,g,t ≥
∑t

τ=t−Tup
g
δsup
n,g,τ ∀n, g, t (40)

nn,g,t ≤ Nn,g −
∑t

τ=t−Tsdn
g −Tsup

g −Tdn
g
δsdn
n,g,τ ∀n, g, t (41)

pn,g,t − pn,g,t−1 ≤ nn,g,t−1 · Rup
g + δsup

g,t · P g ∀n, g, t (42)

pn,g,t−1 − pn,g,t ≤ nn,g,t−1 · Rdown
g + δsdn

n,g,t · P g ∀n, g, t (43)

δsup
n,g,t − δsdn

n,g,t ≤ Nn,g · νn,g,t ∀n, g, t (44)

nn,g,t ≤ Nn,g · νn,g,t ∀n, g, t (45)

5) Controllable DER constraints: distributed energy re-
sources can offer various flexibility services through its con-
trollability, outlined in (46)-(51). Equations (46)-(48) model
the load shifting, where the shifted load is re-balanced at in-
tervals of Trec

d periods. Load shifting accounts for the payback
effect, parameterised by ζd, reflecting the interaction between
physical characteristics of different appliances (loads that can
be shifted) [19]. DER are capable of providing these flexibility
services (load shifting and load reduction/peak shaving) in
each bus b of the system, which are aggregated in the balance
equation (9) and limited through (49)-(51).

esh
n,d,t = γshdn

n,d,t · (1 + ζd)− γshup
n,d,t + esh

n,d,t−1 ∀n, d, t (46)

eshup
n,d,t = (1 + ζd) · eshdn

n,d,t ∀n, d, t : t mod Trec
d = 0 (47)

eshup/shdn
n,d,t = eshup/shdn

n,d,t−1 + γshup/shdn
n,d,t ∀n, d, t : t > 1 (48)
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0 ≤ γshup
n,d,t ≤ γ̄shup

d z̄D
n,d ∀n, d, t (49)

0 ≤ γshdn
n,d,t ≤ γ̄shdn

d z̄D
n,d ∀n, d, t (50)

0 ≤ γred
n,d,t ≤ γ̄red

d z̄D
n,d ∀n, d, t (51)

C. Solution methodology: Dantzig-Wolfe decomposition and
column generation algorithm

The proposed model is a complex Mixed-Integer Linear
Problem (MILP), which presents execution time and memory
challenges for large systems. To address this, prior research
[15] has explored techniques like the Dantzig-Wolfe (DW)
decomposition. This effectively handles computational burden
and allows obtaining an integer feasible solution for every
investment stage [17] by breaking down the problem into
independent subproblems. We reformulate the problem using
the approach outlined in [17]. It defines a feasible region Zn

for total installed units in each node n. This region is expressed
as a combination of a finite set of integer points {Ẑn,j}j∈Kn

in Zn. For each feasible vector of installed units Ẑn,j , there
exists an optimal operational plan X̂op

n,j . This allows Xop
n to

be expressed as a convex combination of different plans X̂op
n,j .

Zn = {Zn ∈ Z+|∃Xop
n ∈ Xn, AnX

op
n ≤ Zn ≤ Z̄n} (52)

Zn =
∑

j∈Kn
λn,jẐn,j ,

∑
j∈Kn

λn,j = 1, λn,j ∈ {0, 1} (53)

Xop
n =

∑
j∈Kn

λn,jX̂
op
n,j (54)

min
∑

n∈N ρn

(
cinv⊤
n X inv

n +
∑

j∈Kn
λn,jc

op⊤
n X̂n,j

)
(55)

s.t.:
∑

j∈Kn
λn,jẐn,j ≤

∑
h∈Pn

X inv
h [πn] (56)∑

j∈Kn
λn,j = 1, λn,j ∈ {0, 1} [µn] (57)

X inv
n ∈ Z+ (58)

(SP)n zsp
n = min ρnc

op⊤
n Xop

n − π⊤
n Zn − µn (59)

s.t.: Xop
n ∈ Xn (60)

AnX
op
n ≤ Zn ≤ Z̄n, Zn ∈ Z+ (61)

The master problem (55)-(58) is reformulated by substi-
tuting Zn and Xop

n in the original formulation. Constraints
(56)-(57) ensure the selection of one and only one vector
of operation and investments. The associated dual prices of
these constraints are πn and µn. The master problem can
be solved by using Column Generation, allowing obtaining
columns {Ẑn,j , X̂

op
n,j} by solving subproblem (SP)n for each

node n of the scenario tree, which minimises the reduced cost
of the generated column [17].

III. CASE STUDY APPLICATIONS

A. System characterisation and input data

Case study applications are based on the Australian NEM,
which has been divided into ten sub-regions by the system
operator for planning purposes, constituting the 10-bus system
model presented in Fig. 1. It illustrates the topology, existing
generation, transmission, storage, and expansion options. Key
parameters of transmission candidates are outlined in Table I.
Generation capacity, expected deployment of DER, retirement
of coal units, existing storage and investment and fuel costs
are obtained from the outcomes of ISP 2022 [20] for each
scenario.
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Fig. 1. Sub-regional topology of the National Electricity Market (NEM),
Australia. Existing and candidate transmission line flow paths are in black
and red, respectively. Circles contain the percentage of subregional installed
capacity relative to the system total, categorised by technology.

A clustered unit commitment approach [18] reduces the
number of generators to 59, comprising a total of 304 units.
The parameters of generators are described in Table II for the
year 2022 [20]. The VoLL in the NEM is 15,000 A$/MWh,
and the discount rate is 10%. The QSSF target for a generator
loss is 49.5 Hz, and the load damping factor is 2%. The
system’s largest single generation and load losses are 744 MW
and 300 MW, respectively. For existing and candidate BESS,
the round-trip efficiency is 81%, and for PSS is 70%.

TABLE I
RANGES OF PARAMETERS OF CANDIDATE TRANSMISSION LINES [20]

Reg. A Reg. B Nº Transfer limits [MW] Inv. Cost
options A to B B to A [$MM/MW]

CNQ GG 1 550 500 0.74
SQ CNQ 3 0 - 1500 300 - 1500 0.18 - 1.08
NNSW SQ 3 550 - 1800 800 - 2000 0.48 - 1.56
CNSW NNSW 11 585 - 2750 470 - 2750 0.18 - 2.72
CNSW SNW 6 600 - 5000 0 - 5000 0.18 - 3.76
SNSW CNSW 3 2000 - 2200 2000 - 2200 0.48 - 1.51
VIC SNSW 5 1930 - 2000 1500 - 2000 1.16 - 1.52
TAS VIC 2 750 750 1.87 - 3.17

TABLE II
TECHNO-ECONOMIC PARAMETERS OF SYNCHRONOUS GENERATORS [20]

Technology Coal Hydro OCGT CCGT Diesel

Number of units 48 104 85 19 22
Variable cost [$/MWh] 13-30 7.5 117-181 64-100 127-478
Start-up costs [k$] 27-57 – 0.4-6.5 12-46 –
Rated power [MW] 280-744 15-144 33-219 48-385 31-114
Forced outage rate [pu] 0.76-0.86 0.97 0.93-0.94 0.95 0.93
MSG [MW] 110-330 3-29 11-72 20-190 6-22
Ramp rate [MW/min] 4-8 – 3-7 2-11 –
Min up time [h] 8-16 – – 4-6 –

The controllable DER model assumes they actively partic-
ipate in the market, while the non-controllable model is a
behind-the-meter setting (fixed profiles). Distributed energy
storage is represented as a VPP operated by an aggregator
[20]. The demand response schema allows load shifting with
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a maximum recovery time Trec
d of 24 hours, with an additional

10% energy consumption payback. Reference capacities and
durations of flexible technologies are outlined in Fig. 2. The
DER trends for each scenario are illustrated in Fig. 3.
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Fig. 2. Regional disaggregation available capacities and duration of the
studied flexible DER technologies for AEMO’s Step Change scenario [20].
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Fig. 3. 15-year forecast for distributed energy resources and total annual
demand in AEMO’s 2022 Integrated System Plan scenarios. Controllable
distributed ESS corresponds to the capacity that is modelled as a VPP.

B. Multi-stage scenario tree
The multi-stage scenario tree employed in the problem

formulation is displayed in Fig. 4. This tree is built upon the
four scenarios devised by AEMO for their 2022 Integrated
System Plan [20] and covers a horizon of 20 years through the
4 stages considered. AEMO has assigned probabilities of 4%,
29%, 50%, and 17% to these scenarios, encapsulating varying
degrees of uncertainty across several critical parameters, in-
cluding load growth, VRE, decommissioning of coal units, fuel
and investment costs, and DER adoption (see Fig. 3). To refine
the scenario tree and emulate transitions between scenarios [2],
intermediate scenarios are created based on the information
provided for the original scenarios, resulting in a total of 18
scenarios. The probabilities for the transition between nodes,
ρn are determined by considering the number of child nodes
for each node and the probabilities of the original scenarios.
C. Case Studies

The studies analyse four cases to illustrate and assess the
impact of flexible technologies (VPP and demand response)
in joint transmission and storage expansion planning.

We determine the optimal investments by solving the 4-
stage stochastic optimisation model, following the scenario
tree structure and the deterministic problems obtained from
disaggregating the scenario tree into its individual scenarios,
as outlined in Fig. 4. For each setting, we develop a case
where flexible DER technologies can be centrally controlled
(i.e. active market participants) and another when they are not
able to be controlled (i.e. behind-the-meter model, without
market interactions). The investment candidates for the four
resulting cases are the ones described in Section III-A.

Fig. 4. (a) Multi-stage stochastic scenario tree and (b) deterministic scenarios
for the 2022 AEMO Integrated System Plan. The stochastic tree in (a) has
|S| = 4 stages and |N | = 32 nodes. This tree is disaggregated in (b) into
18 independent deterministic scenarios, each with a given probability ρs. For
example, the deterministic scenario 15 has a probability ρ15 = 0.3445, which
is obtained with the probability of each corresponding node that forms the
scenario from the scenario tree (1, 4, 12, 29).

IV. RESULTS AND DISCUSSION

In this section, we present and analyse the model’s invest-
ment portfolios for additional transmission and energy storage
under two main assumptions: (i) the modelling approach:
deterministic and stochastic, and (ii) the ability of DER to
provide operational flexibility (controllable / non-controllable).
We solved each case of the stochastic approach employing
the column generation algorithm outlined in section II-C,
imposing a maximum tolerance for the MIP gap of 1% for
each subproblem and master problem.

A. Impact of DER controllability on transmission investments

This section investigates the impact of flexible DER tech-
nologies on transmission investment portfolios and how the
modelling framework employed assesses this flexibility. We
modelled four stages and obtained the transmission invest-
ments. The investment results for both deterministic and
stochastic models are summarised in Fig. 5. Each subfigure
shows the probability of building a given aggregated transmis-
sion line capacity (i.e. the sum of the capacities of all lines
built) in each investment stage.

When employing the deterministic approach, enabling DER
controllability reduces expected installed transmission capacity
by 38%, 9% and 5% in the respective investment years (2027,
2032 and 2037) when comparing the results scenario by
scenario. Given these values and the corresponding probability
distribution, it is important to note that to reduce transmission
investments, this approach highly values the flexibility of
controllable DER in the first stage of investment and consid-
erably less in subsequent stages. This translates into a higher
investment risk, as the deployment of a higher capacity of
controllable DER is expected to occur in the long term than
in the short term (as outlined in Fig. 3). In particular, the
transmission infrastructure decided in 2022 (which becomes
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Fig. 5. Transmission investment results for each stage and modelling approach.

available in 2027) has the risk of not being feasible in the
range of all other scenarios in the subsequent stages.

Compared to the deterministic approach, the stochastic
model shows an expected reduction of 22% of installed
transmission capacity for 2027 and 23% for 2032 and 2037.
This means that the model is more conservative in the first
investment stage compared to the deterministic approach, and
places a higher value on controllable DER to reduce trans-
mission investments in later stages. These results showcase
the advantages of the proposed stochastic model in capturing
the growth of DER controllability, because the deployment is
expected to be higher in the long than short term. In addition,
the stochastic model shows that when DER controllability
is not enabled, there is a probability of 30% of making a
conservative decision to build significantly more transmission
capacity, as indicated by the yellow curve in Fig. 7c. However,
these investments are not made when DER are controllable,
as seen in the green curve of Fig. 7c. Indeed, the stochastic
model unlocks a risk-hedging value from the controllability of
flexible technologies so that the investments that do not have
a high probability are displaced, reducing the potential risk of
having stranded assets.
B. Range of transmission expansion requirements

Fig. 6 shows the results corresponding to the minimum and
maximum values of aggregated transmission capacity built.
For example, regarding the minimum, in the year 2032 for
the deterministic model, at least 1590 MW were built in the
18 scenarios. On the other hand, the maximum indicates the
higher installed capacity in at least one of the scenarios (other
scenarios build the same or less).
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Fig. 6. Results for minimum and maximum requirements for expansion of
capacity in transmission lines for each case.

The here-and-now decisions to build large-scale infrastruc-
ture that becomes available in 2027 are of crucial importance.

When employing the deterministic model, the capacity that
becomes available in that year varies from 0 to 4540 MW.
This extensive array of future options indicates a low level of
certainty regarding the required expansions across scenarios,
leading to investments being undertaken with higher risks,
even when controllable DER are enabled to actively participate
in the market.

If we examine the year 2027 in the stochastic model with
non-controllable DER, the investments are exactly 2740 MW,
giving the planner a reliable answer about the anticipatory
investments the system requires. Furthermore, when DER
controllability is enabled, 2140 MW are installed. Thus, the
stochastic model unlocks risk-hedging value from the con-
trollable technologies to reduce 600 MW of transmission
built while maintaining its ability to provide high certainty
regarding the necessary expansions in the first stage.

Moreover, the path of investments resulting from employing
the stochastic model presents higher robustness and anticipa-
tory capabilities over time. This refers to the ability of the
investment plan to perform well under a variety of different
scenarios, reducing the planner’s regret of having stranded
assets in the face of potential overestimations. In particular, the
case for the stochastic model with controllable DER presents
the lowest difference between minimum and maximum built
capacity across scenarios (as seen in the bar heights in
Fig. 6). This result stems from the ability of the model to
consider what benefits all scenarios, leading to a compromise
solution. In contrast, deterministic practices yield portfolios
tailored to specific scenarios, increasing the risk of investment
inefficiencies.

C. The impact of DER on displacing storage investments

The objective of this section is to understand the interplay
among the different sources that provide flexibility to the
system (utility-scale, distributed storage and demand response)
and how these interactions influence expansion decisions,
particularly in a system that is transitioning to have a large
number of flexible technologies. Fig. 7 shows the results of
the stochastic model for built utility-scale storage (BESS).

In the studied cases, DER are expected to have an increased
deployment towards the end of the period under analysis, as
shown in Fig. 3. Based on the results, for the case of non-
controlled DER, new BESS are deployed in the 3rd stage
(2032), as shown in Fig. 7b. On the other hand, when the
progressive integration of controllable DER is considered,
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Fig. 7. Probabilities of investment in utility-scale BESS for the stochastic
model.

investments are delayed to the fourth stage (2037), as seen in
Fig 7c. This is explained because the controllability of DER
also allows for energy arbitrage purposes, therefore offering
equivalent services to the grid. Thus, reducing the need for
additional investments. Particularly, in the final stage new
BESS are built in both cases, but with an expected reduction
of 66% of installed capacity when controllability is enabled,
thereby highlighting the impact of considering the deployment
of controllable DER in saving costs in new energy storage
investments.

V. CONCLUSIONS

This paper presented a comprehensive multi-stage frame-
work for power system expansion planning under uncertainty
with a model for controllable DER. We discussed four case
studies within the Australian NEM, assessing and highlighting
the potential and impact of DER in economically displacing
network investments, including energy storage.

The results showed that selecting a stochastic mathematical
framework is essential for progressively unlocking the risk-
hedging value of controllable DER to define adequate system
investment plans. In particular, the analysis shows that a deter-
ministic model places a higher value on DER controllability
for displacing network investments in the initial investment
stage while neglecting the long-term flexibility that control-
lable DER could provide. In contrast, the proposed stochastic
model steadily integrates the increasing controllability of DER
into investment decisions made during all the stages, taking
into account the higher DER penetration towards the end of the
planning horizon. The analysis also shows that the stochastic
model allows for narrowing down the investment candidates
the planner should consider to build in the subsequent stages.
Moreover, the range of built investment candidates is further
narrowed down when controllable DER are enabled. Finally,
the installation of utility-scale BESS is significantly reduced
when enabling DER controllability, providing insight for poli-
cymakers to design incentives encouraging the deployment of
DER for energy arbitrage purposes, and also highlighting the
key role the coordination of distributed energy storage can play
in future power systems serving as an alternative to utility-
scale options.

Further research will delve deeper into the specific impact
and valuation of controllable DER during extreme events. Ad-
ditionally, employing risk metrics and a risk aversion analysis
could help highlight the added value of operational flexibility
offered by DER to manage constrained periods of system
operation and the implications for expansion planning under
uncertainty.
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[2] B. Moya, R. Moreno, S. Püschel-Løvengreen, A. M. Costa, and P. Man-
carella, “Uncertainty representation in investment planning of low-
carbon power systems,” Electric Power Systems Research, vol. 212, 11
2022.

[3] D. Alvarado, A. Moreira, R. Moreno, and G. Strbac, “Transmission Net-
work Investment with Distributed Energy Resources and Distributionally
Robust Security,” IEEE Transactions on Power Systems, vol. 34, no. 6,
pp. 5157–5168, 11 2019.

[4] A. Inzunza, R. Moreno, A. Bernales, and H. Rudnick, “CVaR con-
strained planning of renewable generation with consideration of system
inertial response, reserve services and demand participation,” Energy
Economics, vol. 59, pp. 104–117, 9 2016.
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