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Abstract—This paper proposes a linear approximation of the
alternating current optimal power flow problem for multiphase
distribution networks with voltage-dependent loads connected in
both wye and delta configurations. We establish a set of linear
equations that exactly describes the relationship between power
changes at a bus and the corresponding values from a delta-
connected device under specific assumptions necessary for a
widely accepted linear model. Numerical studies on IEEE test
feeders demonstrate that the proposed linear model provides
solutions with reasonable error bounds efficiently, as compared
with an exact nonconvex formulation and a convex conic re-
laxation. Our experiments reveal that modeling delta-connected,
voltage-dependent loads as if they are wye-connected can lead
to significantly different voltage profiles. We also investigate
the limitations of the proposed linear approximation stemming
from the underlying assumptions, while emphasizing its robust
performance in practical situations.

Index Terms—Optimal power flow, distribution grids, delta-
connected devices, exponential loads, linear approximation.

I. INTRODUCTION

Optimal power flow (OPF) refers to an optimization prob-
lem that aims to find an optimal operating point for a power
grid while abiding by physical laws governing the electric
power flow as well as various operational limits imposed on
network components. OPF is often embedded in a variety of
optimization problems that arise in the planning and operation
of power grids (e.g., unit commitment and expansion planning
problems), but the power flow equations that formulate the
steady-state physics of power flow make OPF both nonconvex
and NP-hard even for radial networks [1]. Because of OPF’s
computational complexity and wide applicability, the past
decade has seen an active line of research that attempts to
reformulate OPF into a computationally tractable problem, es-
pecially as a convex relaxation and/or a linear approximation.
For a comprehensive review of various OPF formulations, we
refer readers to [2].

Most of the literature has focused on transmission grids
that feature balanced OPF that can be treated like a single-
phase network. OPF for distribution grids has received less
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attention because they are usually characterized by unidirec-
tional power flow over a huge radial network, which makes
their operations largely based on monitoring and controlling
a small subset of network components, rather than by solving
OPF. However, OPF in distribution grids becomes important
as an increasing number of distributed energy resources intro-
duce bidirectional power flow, which requires active controls
based on OPF. Moreover, the single-phase models may not
be directly applicable because of the unbalanced nature of
distribution grids, which calls for tractable multiphase OPF
formulations for distribution grids. In addition, it is important
to model the voltage dependency of loads in distribution grids
in order to employ conservation voltage reduction for reducing
consumption [3]. Given the increasingly important role of OPF
in distribution grids, ongoing efforts seek to develop an open-
source framework that facilitates the implementation of OPF
for distribution grids [4], [5].

For the unbalanced, multiphase OPF, semidefinite program-
ming (SDP) relaxations have been proposed for networks
with wye-connected constant-power loads [6], [7]. A linear
approximation has also been proposed by ignoring line losses
and assuming nearly balanced voltages [7]. The SDP relax-
ation is extended in [8] to networks with both wye- and
delta-connected devices by introducing an additional positive
semidefinite matrix that represents the outer product of bus
voltages and phase-to-phase currents in the delta connection.
In [9] the authors proposed an algorithm for achieving exact-
ness of this SDP relaxation that adds a penalty term in the
objective function. For voltage-dependent loads, approximate
representations of ZIP loads were proposed in [10] and [11].
In this paper we focus on multiphase OPF for networks
with delta-connected, exponential loads. The most related
work is [12], which proposed a convex conic relaxation of
exponential loads using power cones that can be added to an
SDP relaxation of the multiphase OPF problem.

Convex conic relaxations have several advantages in that
they provide lower bounds or even a globally optimal solution
(for constant load models) to the nonconvex OPF problems
and also are proven to be efficiently solvable by interior-
point methods. In practice, however, they often suffer from
numerical issues and show slow computation time when
solving large-scale problems. This makes the convex conic
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relaxations difficult to be embedded in planning and operations
problems with more features, for example, line switching and
transformer controls.

Alternatively, we propose a linear approximation of mul-
tiphase OPF with exponential load models configured as
either wye or delta connections. The main contribution of
this paper lies in establishing a set of linear equations that
exactly describes the relationship between the power with-
drawal/injection from a bus and that from a delta-connected
device under the assumptions required by the linear model
of [7]. We demonstrate numerically that the proposed model
yields solutions with reasonable error margins (e.g., less than
1% deviation in voltage magnitude) and shorter computation
times compared to the convex relaxation, across three IEEE
distribution feeders. Furthermore, a numerical experiment un-
derscores the significance of the proposed model by showing
that a nonlinear model neglecting delta-connected, voltage-
dependent loads may yield voltage profiles notably different
from those of alternating current (AC) OPF compared to the
proposed linear model. Additionally, it underscores the robust
performance of our proposed model even when the assump-
tions of low line losses and balanced voltage are reasonably
violated, while identifying potential limitations of the proposed
model for systems with very high voltage unbalance.

This paper is organized as follows. Section II defines prelim-
inaries on the network model, formalizes the AC OPF problem
with only wye-connected, constant-power loads, and describes
its linear approximation. In Section III, their extensions to the
networks with delta-connected, voltage-dependent loads are
explained and proposed. Section IV reports numerical results,
and Section V concludes the paper.

II. PRELIMINARIES

The parameters and variables are summarized in Tables
I, II and Figures 1, 2, respectively. Throughout this paper,
calligraphic letters denote sets, and bold-faced letters denote
vectors or matrices depending on the context. Complex num-
bers are denoted by non-bold, upper-case letters. For a matrix
A, diag(A) denotes a vector constructed by the diagonal
elements of A; we abuse notation and use diag(a) for a vector
a to represent a matrix in which its diagonal is composed of a
and off-diagonal elements are all zeros. For a complex vector
or matrix A, AH denotes its conjugate transpose.

Most distribution grids involve three phases and are operated
in radial (i.e., tree) structures, so we focus on the case where
the graph is a tree (i.e., (N , E) is connected and |E| = n). We
consider each phase a, b, c an integer 0, 1, 2, respectively, so
that for ϕ ∈ P , (i) ϕ+ refers to (ϕ+1) mod 3 and (ii) ϕ− :=
(ϕ+2) mod 3. For example a+ = b and a− = c. The electric
power Sb

l withdrawn from bus i by load l ∈ L(i) is a function
of the bus voltage, say, fl(V i). The form of the function fl
depends on how the load is modeled (e.g., constant power,
constant impedance, exponential load) and configured (e.g.,
delta or wye). In this preliminary section, fl(V i) is considered
as a constant function fl(V i) = S0

l for its nominal power S0
l .

TABLE I: Parameters

Notation Description

(N , E) an undirected graph representing a distribu-
tion grid

N set of buses, indexed with {0, 1, · · · , n},
where 0 denotes the substation bus that serves
as the slack bus

E set of lines, indexed by a tuple (e, i, j) with
i < j, where e denotes an integer for indexing
the line and i, j ∈ N denote its two end buses

Nleaf ⊆ N set of leaf buses
P = {a, b, c} three phases of the network
Px ⊆ P phases of a network component x, where x

can be an index of a network component
B,G, L set of all shunt devices, generators, and loads,

respectively
B(i), G(i), L(i) set of all shunt devices, generators, and loads

connected at i ∈ N
V ref

0 reference complex voltage specified for the
slack bus 0 ∈ N

viϕ (and viϕ) lower (and upper) bound of voltage magni-
tude squared at i ∈ N on ϕ ∈ P

For each line (e, i, j) ∈ E :
Y sh

eij (and Y sh
eji) shunt admittance matrices of e near i (and j)

Ze series impedance matrix of e
For each shunt device s ∈ S:
Y sh

s admittance matrix of s
For each generator k ∈ G:
Sk feasible region of power output of k; e.g.,

{pk + iqk : p
k
≤ pk ≤ pk, qk

≤ qk ≤ qk}
for some p

k
, pk, q

k
, qk∈ R3).

For each load l ∈ G:
S0

l nominal complex power load of l

TABLE II: Variables

Notation Description

For each bus i ∈ N :
V i = [Viϕ]ϕ∈P bus voltage at i
Ish
s = [Ishsϕ ]ϕ∈P current injection to i from s ∈ B(i)

Ig
k = [Igkϕ]ϕ∈P current injection to i from k ∈ G(i)

Ib
l = [Iblϕ]ϕ∈P current withdrawal from i to l ∈ L(i)

Sg
k = [Sg

kϕ]ϕ∈P power injection at i from g ∈ G(i)
Sb

l = [Sb
lϕ]ϕ∈P power withdrawal from i to l ∈ L(i)

For each line (e, i, j) ∈ E :
Ieij = [Ieijϕ]ϕ∈P current flowing through e from i
Is
eij = [Iseijϕ]ϕ∈P series current flowing through e from i

Ish
eij = [Isheijϕ]ϕ∈P shunt current flowing through e from i

Seij = [Seijϕ]ϕ∈P series power flowing through e from i
Ieji,Is

eji,I
sh
eji,Seji those from its end-bus j

For each load l ∈ L:
Sd
lϕ = pdlϕ + iqdlϕ power consumption of l on ϕ ∈ P

Vlϕ voltage applied to l on ϕ ∈ P
Idlϕ current passing through l on ϕ ∈ P

In Section III, we consider a more general form of fl(V i) that
can model delta-connected voltage-dependent load.

Power flows are governed by the following physical laws:
(i) Due to Ohm’s law, V i −V j = ZeI

s
eij , Ish

eij = Y sh
eijV i,

Ish
eji = Y sh

ejiV j for (e, i, j) ∈ E and Ish
s = −Y sh

s V i for
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Fig. 1: Notations for line (e, i, j) ∈ E

Fig. 2: Notations for bus i ∈ N

i ∈ N and s ∈ B(i).
(ii) Due to Kirchhoff’s current law, for i ∈ N , we

have
∑

(e,i,j) or (e,j,i)∈E(I
s
eij + Ish

eij) =
∑

s∈B(i) I
sh
s +∑

k∈G(i) I
g
k−
∑

l∈L(i) I
b
l . For (e, i, j) ∈ E , Is

eij = −Is
eji.

(iii) Due to the power equation, for (e, i, j) ∈ E and ϕ ∈
P , Seijϕ = Viϕ(I

s
eijϕ)

H and Sejiϕ = Vjϕ(I
s
ejiϕ)

H . For
i ∈ N and ϕ ∈ P , Sg

kϕ = Viϕ(I
g
kϕ)

H , ∀k ∈ G(i) and
Sb

lϕ = Viϕ(I
b
lϕ)

H , ∀l ∈ L(i).

We introduce auxiliary variables W i for V iV
H
i , ∀i ∈ N ,

M eij for V i(I
s
eij)

H and Leij for Is
eij(I

s
eij)

H , ∀(e, i, j) ∈ E ,
using (1a) and (1b). We can replace Kirchhoff’s current laws
for buses and lines in (ii) with (1h) and (1f) by taking the
conjugate transpose of both sides, multiplying both sides by
Vi from the left, and applying Ohm’s law and the power
equations given in (i) and (iii) respectively. In summary, these
physical laws can be represented as the following set of
constraints, often referred to as a branch-flow model [7]:

W i = V iV
H
i ,∀i ∈ Nleaf , (1a)

∀(e, i, j) ∈ E ,[
W i M eij

MH
eij Leij

]
=

[
V i

Is
eij

] [
V i

Is
eij

]H
, (1b)

V j = V i −ZeI
s
eij , (1c)

Iseijϕ = 0, ∀ϕ /∈ Pe, (1d)

Seij = diag(M eij), (1e)
Seji = −Seij + diag(ZeLeij), (1f)

Sb
l = S0

l ,∀l ∈ L, (1g)

∀i ∈ N , ∑
(e,i,j) or (e,j,i)∈E

(Seij + diag(W i(Y
sh
eij)

H)) =

−
∑

s∈B(i)

diag(W i(Y
sh
s )H) +

∑
k∈G(i)

Sg
k −

∑
l∈L(i)

Sb
l . (1h)

A. Multiphase AC OPF

Each k ∈ G incurs cost Ck(S
g
k) for generating Sg

k ∈ Sk.
OPF aims to minimize the total generation cost for satisfying
the load while abiding by the physical laws, namely (1), as
well as a set of operational limits. These constraints include
generation bounds, voltage bounds, and substation voltage:

Sg
k ∈ Sk, ∀k ∈ G, (2a)

v2iϕ ≤ diag(W i)ϕ ≤ v2iϕ, ∀i ∈ N , ϕ ∈ P, (2b)

W 0 = V ref
0 (V ref

0 )H . (2c)

In summary, the OPF can be formulated as

(AC) : min

{∑
k∈G

Ck(S
g
k) : (1), (2)

}
.

B. Linear approximation of (AC)

Gan et al. [7] proposed a linear approximation of (AC) based
on the assumption below:

Assumption 1. (a) Line losses are small; that is,
diag(ZeLeij) ≪ Seij for (e, i, j) ∈ E .

(b) Voltages are nearly balanced; for example, if Pi =
{a, b, c}, then

Via

Vib
≈ Vib

Vic
≈ Vic

Via
≈ ej2π/3.

By Assumption 1 (b), for each (e, i, j) ∈ E , M eij can be
approximated with Seij as follows:

M eij = V i(I
s
eij)

H ≈ Γdiag(Seij), (3)

where γ = e−i2π/3 and Γ =

 1 γ2 γ
γ 1 γ2

γ2 γ 1

.

In addition, by multiplying both sides of (1c) and (1d) by
their conjugate transposes, we can further eliminate Is

eij and
V i and obtain

W j = W i +ZeLeijZ
H
e −M eijZ

H
e −ZeM

H
eij , (4a)

Leijϕ· = 0, ∀ϕ /∈ Pe, (4b)

where Leijϕ· denotes the row of Leij corresponding to ϕ. By
Assumption 1 (a), terms with ZeLeij in (4a) and (1f) can be
neglected, and we have

W j = W i −M eijZ
H
e −ZeM

H
eij , (5a)

Seji = −Seij , (5b)

and (4b) can be replaced by

Seijϕ = 0, ∀ϕ /∈ Pe. (6)
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(a) Wye connection (b) Delta connection

Fig. 3: Three-phase load configuration

Thus, we can exclude Leij from the model. As a result, we
obtain the following linear approximation:

(LP) : min
∑
k∈G

Ck(S
g
k)

s.t. (3), (5), (6),∀(e, i, j) ∈ E , (7a)
(1g) − (1h), (2). (7b)

III. EXPONENTIAL LOAD WITH DELTA CONNECTION

Most multiphase OPF models, including the OPF models
illustrated in Section II, assume that the amount of power
withdrawn from bus i by load l ∈ L(i) (i.e., Sb

l ) is constant.
In practice, however, Sb

l may change depending on the applied
voltage as well as how the load is connected to the bus
(e.g., delta or wye). In order to better incorporate the load
behavior, a more general load model for voltage-dependent
loads configured either as wye or delta can be included in the
OPF models.

A. Configuration of multiphase load

As illustrated in Figure 3, depending on how each indi-
vidual load of a multiphase load is connected, the relationship
between Sb

l and Sd
l = [Sd

lϕ]ϕ∈P as well as the voltage applied
to each individual load differs. Let Y ⊆ L and D ⊆ L
respectively denote the set of wye- and delta-connected loads.
Throughout this paper we assume that the neutral conductor
is perfectly grounded (i.e., Vn = 0).

Figure 3(a) illustrates a three-phase wye-connected load l ∈
Y at bus i ∈ N . Note that for each ϕ ∈ P , the voltage applied
to the load (i.e., Vlϕ) is Viϕ and the current passing through
the load (i.e., Idlϕ) is Iblϕ and thus

Sb
l = Sd

l . (8)

For a three-phase delta-connected load l ∈ D at bus i ∈ N ,
as illustrated in Figure 3(b), the voltage applied to the load is

V l = ΛV i, (9)

where

Λ =

 1 −1 0
0 1 −1
−1 0 1

 .

In addition, from Kirchhoff’s current law, we have

Ib
l = Λ⊤Id

l . (10)

Therefore,

Sd
l = diag(V l(I

d
l )

H) = diag(ΛV i(I
d
l )

H), (11a)

Sb
l = diag(V i(I

b
l )

H) = diag(V i(I
d
l )

HΛ). (11b)

By replacing each Ib
l with Id

l for l ∈ Y and with Λ⊤Id
l for

l ∈ D in the physical laws and introducing auxiliary variables
Ld

eij for Id
l (I

d
l )

H and X l for V i(I
d
l )

H , we can derive the
AC OPF problem with delta connections as follows:

(AC-D): min
∑
k∈G

Ck(S
g
k)

s.t. (1b) − (1f), (1h), (2), (12a)

Sd
l = S0

l ,∀l ∈ L, (12b)
∀i ∈ N , l ∈ D(i),[

W i X l

XH
l Ld

l

]
=

[
V i

Id
l

] [
V i

Id
l

]H
,

(12c)

Sd
l = diag(ΛX l), (12d)

Sb
l = diag(X lΛ), (12e)

Idlϕ = 0, ∀ϕ /∈ Pl, (12f)

(8),∀i ∈ N , l ∈ Y(i). (12g)

B. Linear approximation of (AC-D)

We propose a linear approximation of (11) that can be read-
ily added to (LP) under Assumption 1. Note that by taking the
conjugate transpose of each side of (10) and multiplying both
sides with V i from the left, we have

∑
ϕ∈P Sb

lϕ =
∑

ϕ∈P Sd
lϕ.

In addition, by Assumption 1 (b), it follows that

Sd
la = (Via − γVia)(I

d
la)

H =⇒ Via(I
d
la)

H =
1

1− γ
Sd
la, (13)

where γ = e−i(2π/3) = − 1
2−i

√
3
2 . Using (13) and Assumption

1 (b), we can express Sd
lb and Sd

lc as follows:

Sd
lb = (γVia − γ2Via)(I

d
lb)

H = (1− γ)γVia(I
b
lb + Idla)

H

= (1− γ)γ

[
1

γ
Sb
lb +

1

1− γ
Sd
la

]
,

Sd
lc = (γ2Via − Via)(I

d
lc)

H = (γ2 − 1)Via(I
b
lb + Iblc + Idla)

H

= (γ2 − 1)

[
1

γ
Sb
lb +

1

γ2
Sb
lc +

1

1− γ
Sd
la

]
.

By expressing the equations in real and imaginary parts, we
derive the following linear system of equations that connect
Sd

l and Sb
l for each delta load l ∈ D:

pbl1 + pbl2 + pbl3 = pdl1 + pdl2 + pdl3, (14a)

qbl1 + qbl2 + qbl3 = qdl1 + qdl2 + qdl3, (14b)

3

2
pbl2 −

√
3

2
qbl2 = pdl2 +

1

2
pdl1 −

√
3

2
qdl1, (14c)

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – June 7, 2024



√
3

2
pbl2 +

3

2
qbl2 =

√
3

2
pdl1 +

1

2
qdl1 + qdl2, (14d)

√
3qbl2 +

3

2
pbl3 −

√
3

2
qbl3 =

1

2
pdl1 +

√
3

2
qdl1 + pdl3, (14e)

−
√
3pbl2 +

√
3

2
pbl3 +

3

2
qbl3 = −

√
3

2
pdl1 +

1

2
qdl1 + qdl3. (14f)

Remark 1. Note that (14) is a system of 6 linear equations
with 6 unknowns, say, Ax = b. Since the corresponding
square matrix A ∈ R6×6 is invertible, pb

l and qb
l are uniquely

defined once pd
l and qd

l are determined. This implies that
under Assumption 1, (14) exactly describes the relationship
between Sb and Sd for delta-connected devices.

To summarize, the linear approximation of (AC-D) can be
expressed as follows:

(LP-D) : min
∑
k∈G

Ck(S
g
k)

s.t. (7), (12b), (15a)
(14),∀l ∈ D, (15b)
(8),∀l ∈ Y. (15c)

Remark 2. Note that the linear approximation of the delta
connection (i.e., (14)) can also be applied to any delta-
connected network components (e.g., generators in delta con-
nections). It approximates the bus injection/withdrawal Sb

of a delta-connected device based on its power produc-
tion/consumption Sd.

C. Exponential load model

In the preceding sections we assumed that the power con-
sumption of load l ∈ L at phase ϕ (i.e., Sd

lϕ) is constant at
its nominal power S0

lϕ = p0lϕ + iq0lϕ. In practice, however,
Sd

l changes depending on the applied voltage. A widely
used model for voltage-dependent load is an exponential load
model that assumes that the power consumption of a load
is proportional to the applied voltage magnitude raised to
some power [13]. For each multiphase load l ∈ L, its power
consumption at phase ϕ ∈ P , namely., Sd

lϕ = pdlϕ + iqdlϕ, is
computed by

pdlϕ = p0lϕ

(
|Vlϕ|
|V 0

lϕ|

)αlϕ

, qdlϕ = q0lϕ

(
|Vlϕ|
|V 0

lϕ|

)βlϕ

, (16)

where pdlϕ (resp., qdlϕ) denotes the active (resp., reactive) power
consumption of l at phase ϕ when the magnitude of voltage
applied to the load is |Vlϕ| and where p0lϕ, q0lϕ, and |V 0

lϕ|
respectively denote reference values for active power load,
reactive power load, and voltage magnitude applied to the
load, which are given as data. The exponents αlϕ and βlϕ

are also given as data, which are nonnegative numbers that
characterize the voltage dependency of load l. For instance,
some special choice of the exponents yields classical load
models; With the exponents αlϕ and βlϕ equal to 0, 1, and 2,

(16) represents constant power, constant current, and constant
impedance load, respectively. Exponent values other than 0, 1,
or 2 can be employed to model more general load types; see,
for example, [13].

We denote the coefficients of (16) by alϕ and blϕ (i.e., alϕ =
p0
lϕ

|V 0
lϕ|

αlϕ and blϕ =
q0lϕ

|V 0
lϕ|

βlϕ
). Without loss of generality, we

assume that alϕ and blϕ are nonzeros, since otherwise we can
fix the corresponding values of pdlϕ and qdlϕ at zeros. Now we
may express (16) in terms of the squared magnitude of voltage
applied to load l at phase ϕ, denoted by vlϕ = |Vlϕ|2:

1

alϕ
pdlϕ = v

αlϕ
2

lϕ ,
1

blϕ
qdlϕ = v

βlϕ
2

lϕ , (17)

where

vl = diag(V iV
H
i ) = diag(W i), ∀l ∈ Y(i), (18a)

vl = diag(ΛV i(ΛV i)
H) = diag(ΛW iΛ

⊤), ∀l ∈ D(i).
(18b)

To summarize, AC OPF with delta-connected exponential
loads can be posed as follows:

(AC-D-E) : min
∑
k∈G

Ck(S
g
k)

s.t. (12a), (12c) − (12g), (17), (18).

D. Linear approximation of (AC-D-E)

We utilize the linear approximation of (17) at vlϕ = 1,
implemented in [5]:

pdlϕ =
alϕαlϕ

2
(vlϕ − 1) + alϕ, (19a)

qdlϕ =
blϕβlϕ

2
(vlϕ − 1) + blϕ. (19b)

Note that when the exponents are 0 or 2, the linearized
equation correctly represents the constant power and constant
impedance load models, respectively.

For delta-connected loads, the voltage applied to the load
is Viϕ − Viϕ+ for each ϕ ∈ P , and thus vlϕ = |Viϕ − Viϕ+ |2.
Using the assumption that voltages are almost balanced (i.e.,
Assumption 1 (b)), we approximate Viϕ+ with γViϕ, and thus

vlϕ = |1− γ|2Wiϕϕ = 3Wiϕϕ. (20)

In summary, the linear approximation of (AC-D-E) can be
expressed as follows:

(LP-D-E) : min
∑
k∈G

Ck(S
g
k)

s.t. (7), (15b), (15c), (19), (18a), (20).

IV. NUMERICAL RESULTS

In this section we analyze the performance of the pro-
posed linear approximation of (AC-D-E), namely (LP-D-E),
on the IEEE 13, 37, and 123 bus systems. The generation
cost function Ck(S

g
k) for each k ∈ G is defined to be

the sum of its real power generation
∑

ϕ∈Pk
pkϕ. In these

test systems, only the voltage source serves as a generator,
and thus the problem minimizes the total import from the
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Fig. 4: Graphical illustration of (17) for αlϕ ̸= 0, 2 (thick-
ened curves), its convex relaxation proposed in [12] (shaded
regions), and its linear approximation given in (19) (dotted
lines)

transmission grid. The voltage bounds are set to be [0.8 p.u.,
1.2 p.u.]. Substation transformers and regulators are removed,
and the load transformers are modeled as lines with equivalent
impedance. We eliminate switches or regard them as lines
according to their default status. All capacitors are assumed
active and generate reactive power according to their ratings
and the associated bus voltages. Substations voltages are set
as V ref

0 = V̄ [1, e−j2π/3, ej2π/3]T , where V̄ is given as the
substation voltage in the test systems. This experiment setup
is commonly used in the literature [8], [9].

In addition to comparing the results of (AC-D) and (LP-
D), as well as the results of (AC-D-E) and (LP-D-E), we also
make comparisons with the following two convex relaxations:

• (SDP-D): a SDP relaxation of (AC-D), proposed in [9].
• (CONE-D-E): a convex relaxation of (AC-D-E) proposed

in [12]. It adds to (SDP-D) a convex conic relaxation of
(17), which is illustrated in Figure 4.

For both (SDP-D) and (CONE-D-E), we set the penalty weight
ρ for minimizing the rank of Ld

l to be 100. Once they
are solved, the resultant penalty term is subtracted from the
objective value to calculate the true objective value.

All experiments were executed on a machine with 32 GB of
memory on an Intel Core i7 at 2.3 GHz. (AC-D) and (AC-D-E)
were solved by using Ipopt 3.14.4, running with linear solver
MUMPS 5.4.1, (SDP-D) and (CONE-D-E) were by Mosek
9.3, and the linear models were via CPLEX 20.1.

A. Performance of (SDP-D) and (LP-D) solutions

To see the performance of the linearized model for the delta
connection, we first compare (AC-D), (SDP-D), and (LP-D) by
fixing all loads at their nominal power (i.e., the constant power
model). As noted in [9], we observe that (SDP-D) produces
almost rank-1 solutions for all the test systems, implying the
global optimality of the (SDP-D) solutions. We also observe
that (AC-D) produces globally optimal solutions that comply
with (SDP-D), providing the same objective values, w, and
Sb as (SDP-D) for all the test instances.

Table III compares the solutions of (LP-D) with those of
(SDP-D) to see the performance of the linearization, where
∆x represents the average relative difference in variable x in
percentage; that is, ∆x = 100×

∑n
i=1

|xLP
i −xSDP

i |
|xSDP

i | /n, where
n denotes the dimension of x. The result suggests that the

TABLE III: Performance of (LP-D) with respect to (SDP-D)

Instance LP-D

∆w(%) ∆pb(%) ∆qb(%)

IEEE 13 0.93 0.55 3.32
IEEE 37 0.12 0.5 2.1
IEEE 123 0.41 0.07 0.59

TABLE IV: Solution time in seconds

Instance AC-D SDP-D LP-D

IEEE 13 2.31 0.92 0.003
IEEE 37 3.51 2.50 0.006
IEEE 123 4.74 6.55 0.059

TABLE V: Objective value comparison

Instance AC-D-E CONE-D-E LP-D-E

IEEE 13 3520.35 3461.98 3421.81
IEEE 37 2478.05 2325.19 2480.39
IEEE 123 3496.30 3412.49 3430.68

TABLE VI: Relative difference in percentage from solutions
of (AC-D-E)

Instance CONE-D-E LP-D-E

∆w ∆pb ∆qb ∆w ∆pb ∆qb

IEEE 13 0.15 2.01 1.82 0.74 0.78 3.8
IEEE 37 0.33 5.81 15.99 0.06 2.98 8.35

IEEE 123 0.15 0.93 1.46 0.3 0.38 0.7

TABLE VII: Solution time in seconds

Instance AC-D-E CONE-D-E LP-D-E

IEEE 13 2.38 1.60 0.004
IEEE 37 2.93 2.98 0.007

IEEE 123 5.61 5.98 0.078

error does not exceed 1% for the voltage magnitudes and the
real power withdrawals for all the instances.

B. Performance of (CONE-D-E) and (LP-D-E) solutions

In this section we analyze the performance of the formula-
tions with exponential load models. We observe that (CONE-
D-E) returns rank-1 solutions for all the instances; however,
it no longer provides globally optimal solutions to (AC-D-
E) and can only serve as a lower bound since the conic
reformulation of the exponential load model may not be exact
unless all loads have α = 0 or 2 and β = 0 or 2. Since all
the test cases include loads with exponents that are not 0 or
2, (CONE-D-E) provides lower bounds, as shown in Table V.
Table VI summarizes the average relative differences between
solutions of (AC-D-E) and those of (CONE-D-E) and (LP-D-
E). The relative difference between the LP solution and the
AC solution does not exceed 1% with regard to the voltage
magnitudes and 3% for the real power withdrawals.

Furthermore, to evaluate the performance of (CONE-D-E)
and (LP-D-E) under varying exponents of the exponential
model, we conduct experiments on the IEEE 37-bus system,
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Fig. 5: Comparison of (AC-D-E), (CONE-D-E), and (LP-D-E)

treating all loads as exponential. The experiment involves uni-
formly varying the exponents of all loads (i.e., αl,ϕ, βl,ϕ ∀l ∈
L, ϕ ∈ Pl) from 0 to 3. Figure 5 plots the objective function
values of (AC-D-E), (CONE-D-E), and (LP-D-E) for different
choices of the exponent. For exponents 0 ≤ α = β < 2,
(LP-D-E) tends to produce objective function values closer to
(AC-D-E), while for α = β ≥ 2, (CONE-D-E) outperforms
(LP-D-E). This behavior is expected from the characteristics
of the convex relaxation and the linear approximation of the
exponential load model, depicted in Figure 4. Note that for
0 ≤ α = β ≤ 2, the linear approximation overestimates the
total power consumption, and otherwise, it is an underesti-
mation. This explains why (LP-D-E) has a lower objective
value for 0 ≤ α = β ≤ 2 and a higher objective value for
α = β > 2 than those of (AC-D-E). When α = β = 0 or 2
(i.e., when the linearized load model is exact), the objective
function value of (LP-D-E) is slightly smaller than that of
(AC-D-E) since it ignores power losses. On the contrary, for
the convex relaxation, since the objective is to minimize the
total power generation, pdlϕ is more likely to occur on the
linear underestimator when 0 ≤ α = β ≤ 2 and on the curve
v
αlϕ/2
lϕ for α = β > 2 (see, e.g., Figure 4). This explains

why (CONE-D-E) performs poorly for 0 ≤ α = β ≤ 2 and
becomes accurate for α = β > 2. Hence, depending on the
exponent of each voltage-dependent load, one might choose
either the linear approximation or the conic relaxation on a
load-by-load basis to enhance accuracy.

C. Solution Time

Tables IV and VII provide a comparison of the time required
to solve each model. The proposed linear approximation yields
solutions faster than the benchmarked conic relaxations by at
least two orders of magnitude.

D. Importance of modeling delta-connected, voltage-
dependent loads

We highlight the significance of integrating delta connec-
tions and voltage-dependent loads into OPF analyses. In this
section, we focus on the IEEE 37-bus distribution feeder as it
has only delta connected loads and half of them are voltage
dependent. Consider two variants of the network: (AC-W-
E) and (AC-D), where in (AC-W-E), delta-connected loads
are treated as if they were connected in wye configurations,

while in (AC-D), all loads are assumed to demand constant
power. A comparison of the voltage magnitudes computed
by these models with those of the base case (AC-D-E) re-
veals significant differences, as illustrated in Figures 6a and
6b, respectively. Specifically, (AC-W-E) underestimates the
voltage magnitude of phase b while overestimating that of
phase a, whereas (AC-D) consistently underestimates voltage
magnitudes across the network. However, when considering
delta connections and voltage-dependent loads, even the linear
approximation of the base case (AC-D-E) represented by
(LP-D-E) yields a much-aligned voltage profile as (AC-D-E),
as depicted in Figure 6c. It underscores the importance of
considering delta connections and the voltage dependency of
loads in OPF analyses.

E. Ramifications and Limitations of Assumption 1

The proposed linear model relies on Assumption 1, which
may not accurately represent unbalanced systems with line
losses. In this section, we examine the implications of As-
sumption 1. To evaluate the impact of angle imbalance, we
introduce perturbations to the phase angles of the substation
reference voltage V ref

0 . We adhere to a formal definition of
phase imbalance of a three-phase voltage V = [Va;Vb;Vc],
referred to as V UF [14], defined as:

V UF (%) =
|Vn|
|Vp|

× 100, (21)

where Vp = Va+γ2Vb+γVc

3 and Vn = Va+γVb+γ2Vc

3 , with
γ = e−i(2π/3). For each V UF value ranging from 1% to
10%, incremented by one, we randomly select a feasible
angle perturbation on phase c and compute the corresponding
perturbation on the angle of phase b so that the resultant V ref

0

has the chosen V UF value. This process is repeated 100 times
for each V UF value.

Figure 7 illustrates the average relative difference in the
squared voltage magnitude between (LP-D-E) and (AC-D-
E) with respect to the varying levels of V UF ; the shaded
region represents the minimum, 10th, 90th percentiles, and
maximum values, while the solid line with markers depicts
the median values. The figure demonstrates a trend where the
error increases as the level of imbalance grows. Nevertheless,
it is noteworthy that for V UF within 2%, the error remains
below 1% for all test systems, and occurrences of larger V UF
values may be infrequent per several standards establishing
permissible limits on V UF . For example, IEEE Standard
1159 [15] proposes a maximum limit of 2% for both low-
and medium-voltage networks, while similarly, IEC Standard
61000-3-13 advocates for a 2% limit for low- and medium-
voltage systems.

Subsequently, we investigate the effects of reducing the
magnitude of V ref

0 to assess the implications of ignoring line
losses. We decrease the magnitude of the reference voltage by
a factor m, ranging from 1 to 0.9 with decrements of 0.25.
Figure 8 displays the average relative difference in the squared
voltage magnitude. As the magnitude decreases, line losses
increase, leading to larger errors. Notably, IEEE 37 is less
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(a) (AC-W-E) (b) (AC-D) (c) (LP-D-E)

Fig. 6: Comparison of voltage magnitudes in p.u. for IEEE 37, with dotted lines representing (AC-D-E).

Fig. 7: Impact of voltage imbalance.

Fig. 8: Impact of voltage magnitude reduction.

affected within the tested range, whereas IEEE 13 is more
vulnerable to magnitude reduction, with the maximum error
reaching around 1.2 for a reduction by a factor of 0.925. For
the IEEE 13 system, a reduction ratio of 0.9 renders both
(AC-D-E) and (LP-D-E) infeasible.

V. CONCLUSIONS

We proposed a linear approximation of OPF for multiphase
radial networks with mixed wye and delta connections as
well as exponential load models. We proposed a system
of linear equations that exactly illustrates the bus power
withdrawal/injection based on the power flow from delta-
connected devices under the assumptions made for the lin-
ear unbalanced OPF model proposed by [7]. The proposed
system of linear equations can be used for various delta-
connected devices, such as generators, loads, and capacitors.
Numerical studies on IEEE 13-, 37-, and 123-bus systems
showed that the linear approximation produces solutions with

good empirical error bounds in a short amount of time,
suggesting its potential applicability to various planning and
operations problems with advanced features (e.g., line switch-
ing, capacitor switching, transformer controls, and reactive
power controls). Furthermore, an experiment involving varied
degrees of voltage angle imbalance and magnitude reduction
underscored the effectiveness of our proposed model in main-
taining acceptable error bounds, even within systems subject
to practical deviations from the assumptions of small loss
and balanced voltage. Future research endeavors will focus
on improving performance under high voltage imbalances,
possibly through the integration of data-driven line-specific
Γ matrices, alongside the inclusion of accurate modeling of
three-phase transformers [16], and comparison with successive
approximation approaches [17], [18].
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