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Abstract—One of the most challenging aspects of unit com-
mitment (UC) is dealing with the grid, which is commonly
represented by thousands of nodes and branches, leading to
large optimization models. Because the computational difficulty
generally increases with the model size, managing the network
representation size can lead to significant savings in running
times. Thus, we explore the widely used Ward reduction to reduce
the network’s size through a process that iteratively removes
nodes from the network. We present how, under mild conditions,
the resulting reduced network model is equivalent to the original
one. We evaluate our approach on 20 UC instances, with up
to 13,659 nodes and 18,625 branches. We are able to produce
reduced models with as few as 6.8% of the original nodes.
Moreover, we show that the network reduction provides average
speed-ups from 10% to 36%.

Index Terms—Network reduction; Unit commitment; Ward.

I. INTRODUCTION

Unit commitment (UC) is an optimization model used by In-
dependent System Operators to schedule the generation assets
under their supervision to meet the demand while satisfying
system-wide constraints. Among such constraints, the most
notable, and perhaps most critical, are the transmission con-
straints. In UC, the network is generally represented through a
DC model, in which reactive power and transmission losses are
neglected, branch’s endpoint nodes’ voltage angles difference
is assumed close to zero, and node voltage magnitudes are
assumed to be unity across all grid [13]. The constraints that
define the feasible operating points under this representation
dictate that power balances must be satisfied at all network
nodes, and branches’ capacities must not be violated. Intu-
itively, as the number of nodes and branches in the network
representation increases, so does the difficulty in solving the
resulting UC, as more variables and constraints are included
in the optimization model. Acknowledging the importance of
network representation, researchers have proposed numerous
methods to reduce its burden on the UC.

There are two works that are closest to ours: [8] and [10]. In
[8], the authors show how nodes connected to the grid through
a single branch can be removed from the network without
affecting the network representation. The authors show that
this unassuming move can lead to significant computational
savings in a transmission-constrained UC. On the other hand,
[10] is a somewhat more aggressive approach, in which the
authors are able to severely reduce the size of networks in
the context of transmission-expansion planning problems. As
in our work, they also base their node-elimination procedure
on the Ward reduction [15] but, different from ours, they
rely on (1) a pre-process step to identify candidate nodes to

be deleted, and (2) assigning limits to artificial lines added
through the Ward reduction based on [6]. The pre-process
step (1) consists of solving a so-called multicut problem
to distribute nodes among clusters. Originally, the multicut
problem is a mixed-integer linear programming problem, but
the integrality is dropped and a rounding phase is applied after
solving the continuous relaxation in order to obtain integer
solutions. In contrast, our strategy does not require solving any
additional problem to identify candidate nodes to be deleted.
In our strategy, the candidate nodes are by-products of the
identification of redundant branch flow bounds. In addition,
in [10], authors resort to the procedures of [6] to compute
line flow limits to the artificial lines added through the Ward
reduction. Again, in our strategy, computing these limits is
either entirely unnecessary, or they are obvious by-products
of the Ward reduction.

Furthermore, the most common approach to reducing the
computational burden of the network in UC is to identify
branches’ flow limits that are either redundant or are not
possibly binding (i.e., they are inactive) in economically
meaningful schedules of the generation assets. Once identified,
the constraints representing these limits in the optimization
model can be removed. As usually only a small fraction of
transmission constraints, if any, are binding, identifying the
inactive constraints results in significant savings. This is the
general reasoning behind many works on reducing network
computational burden [9], [11], [5], [1], [16], [18]. However,
none of these works leverages the identification of redundant
and inactive transmission constraints to apply Ward reduction
and further reduce the computational burden of the network
representation in UC models.

Another popular strategy to reduce the network burden is
node aggregation or clustering. Nonetheless, these strategies
are more commonly found in either power flow studies, or
longer term studies. For instance, in [2], a node clustering
strategy based on electrical distance. Similarly, in [14], [3],
[7], node clustering is based on the sensitivities of line
flows to nodes’ injections. The authors of [12], on the other
hand, base their node clustering strategy on node prices. A
common feature of node aggregation and clustering is that,
in general, the reduced network is not necessarily equivalent
to the original, full network. Since we are interested in UC,
network equivalence is paramount to obtain from the reduced
network schedules and dispatches that are feasible in the full
network. Hence, node aggregation and clustering are not in
general considered suitable strategies in this context.

In this work, we expand the network reduction proposed
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NOMENCLATURE
Sets and indices
Gb units connected to node b
L−, L+ Branches whose from and to node is b, respectively
g ∈ G Generating units
l ∈ L, b ∈ B Branches, and network nodes, respectively
t ∈ T Periods
Parameters and constants
B Susceptance matrix
Cs Unitary load shedding cost in $/p.u.
Cg , Cg Unitary generation cost in $/p.u., and start-up cost in $, respec-

tively
Db,t Net node load in p.u.
PTDFl,b Sensitivity of branch flow l w.r.t. positive power injections at

node b, nondimensional
Rg Maximum ramp in p.u./hour, assumed equal to increases and

decreases in generation.
T

up
g , Tdown

g Minimum up and down times of unit g in hours
Yl Admittance in p.u./rad
Fl, Fl Maximum branch flow in p.u. in the positive and negative

directions, respectively
Pg , Pg Maximum and minimum generation in p.u.
from(l), to(l) Arbitrarily defined from and to nodes of branch l, respec-

tively. Flows in branch l from node from(l) to node to(l) are
defined to be positive

Variables
f , θ Branch flow in p.u., and node voltage angle in rad, respectively
p, pdisp Total generation and generation above the unit’s minimum,

respectively, both in p.u.
s Load shedding in p.u.
y, x, d Start-up, shut-down and status binary variables

in [8] and combine it with techniques to identify redundant
flow limits to produce a reduced network model. Our objective
is to generate equivalent network models with fewer nodes
and fewer branches in hope that fewer elements will cause a
reduction in computational burden. Our work is a significant
extension of [8], where we remove from the original network
not only end-of-line nodes but also nodes with more than one
branch connection. However, to safely remove those elements
without altering the feasible region of the optimization model,
i.e., keeping an equivalent network model, we rely on iden-
tifying branches whose limits cannot be reached by [1]. This
is yet another crucial difference between our work and [8],
where such identification is not necessary because only nodes
connected to a single branch are removed.

This paper is organized as follows: we introduce the unit-
commitment model in Sec. II; we discuss the Ward reduction
and introduce our proposal in Sec. III; in Sec. IV, we present
our test cases and results. Finally, our concluding remarks are
given in Sec. V.

II. UNIT COMMITMENT

We adopt the position of an ISO who must minimize operation
costs while meeting the demand and satisfying the generators’
and network’s constraints. In the following, we detail each
component of the unit-commitment model.
A. Generation model
The statuses of generating units are defined by the logical
constraints (1), minimum up (2) and down (3) times.

yg,t − xg,t − dg,t + dg,t−1 = 0 ∀g ∈ G,∀t ∈ T . (1)∑
i=t−Tup

g

yg,i ≤ dg,t ∀g ∈ G,∀t ∈ T . (2)

∑
i=t−Tdown

g

xg,i ≤ (1− dg,t) ∀g ∈ G,∀t ∈ T . (3)

To ensure that an unit can only inject power into the network
if its status is 1, we use constraints (4) and (5). While the first
limits the maximum power of the unit above its minimum, the
second set of constraints defines that, when operating (dg,t =

1), the total power injected into the grid, p, will be at least
equal to the unit’s minimum power.

0 ≤ pdisp
g,t ≤

(
Pg −Pg

)
· dg,t ∀g ∈ G,∀t ∈ T . (4)

pg,t −Pg · dg,t − pdisp
g,t = 0 ∀g ∈ G,∀t ∈ T . (5)

When either turned on or off, the generation of an unit
in the subsequent and prior period, respectively, is set to be
equal to its minimum generation. Following the two-variable
formulation used here, this requirement translates to setting
variable pdisp

g,t to zero whenever yg,t = 1 and xg,t+1 = 1.
Additionally, when operating, the changes in generation be-
tween consecutive periods, both increases and decreases, are
constrained by ramp limits. We represent both requirements,
start-up and shut-down limits, and ramp up and down limits,
through constraints (6).

−Rg · dg,t− ≤ pdisp
g,t − pdisp

g,t−1 ≤ Rg · dg,t−1 ∀g ∈ G,∀t ∈ T .
(6)

B. Network model
As in this paper we are primarily concerned with the network
model size, we implement two of the most widely used DC
models in the literature: (1) the B-theta model, and (2) the
power transfer distribution factor (PTDF) model [13]. In the B-
theta model, the nodes‘ voltage angles are explicitly included
in the model. On the other hand, in the PTDF model, the flows
in the branches are directly represented as functions of the
power injections at the network’s nodes through a |L| by |B|
sensitivity matrix, without explicitly representing the voltage
angles. It is important to emphasize that, apart from numerical
tolerances, the B-theta and PTDF are equivalent.

Regardless of the model, branch flows are subjected to their
lower (Fl,t) and upper bounds (Fl,t) (7).

Fl,t ≤ fl,t ≤ Fl,t ∀l ∈ L,∀t ∈ T . (7)

1) B-theta model
In the B-theta model, flows are described as functions of

the angular difference between its endpoints, as shown in (8).

fl,t −Yl ·
(
θfrom(l),t − θto(l),t

)
= 0 ∀l ∈ L,∀t ∈ T . (8)
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In this model, we enforce the power balance at each node
through constraints (9). Note that we include slack variables
s to account for small load shedding — they are heavily
penalized in the objective function.∑
g∈Gb

pg,t−
∑
l∈L−

fl,t+
∑
l∈L+

fl,t+sb,t = Db,t ∀b ∈ B,∀t ∈ T .

(9)
2) PTDF model
Different from the B-theta model, in the PTDF model, it

is necessary to include constraints that guarantee that the
system’s total generation and demand match for each time,
as in (10). ∑

g∈G
pg,t +

∑
b∈B

sb,t =
∑
b∈B

Db,t ∀t ∈ T . (10)

In this model, the flows in the branches are then expressed
as linear functions of the nodes‘ net injections. For an arbitrary
node b and time t, its net injection is

∑
g∈Gb

pg,t+sb,t−Db,t.
With the PTDF model, the flows are thus given as (11).

fl,t =
∑
b∈B

PTDFl,b·

∑
g∈Gb

pg,t + sb,t −Db,t

 ∀l ∈ L,∀t ∈ T .

(11)
C. Unit-commitment model
The elements described above are the building blocks of our
unit-commitment model stated in (12).

min
∑
t∈T

∑
g∈G

Cg · pg,t +
∑
g∈G

Cg · yg,t +Cs ·
∑
b∈B

sb,t


s.t. (1), (2), (3), (4), (5), (6),

(7), and either (8), (9) or (11), (10),

(dg,t, yg,t, xg,t) ∈ {0, 1}3 ∀g ∈ G,∀t ∈ T ,

sb,t ≥ 0 ∀b ∈ B,∀t ∈ T .
(12)

In this model, the unitary cost of generation is Cg , for
an arbitrary generator g, and Cg is the start-up cost of g.
Additionally, load shedding is penalized with Cs. All power
units in this model are p.u..

The model (12) is mixed-integer linear, and its solution
depends heavily on the ability of the solver to solve its linear
relaxation (the model resulting from dropping the integrality
requirements), both in the root node and also later in the nodes
of the branch-and-cut tree, where the relaxation is usually
solved with a simplex method.

III. NETWORK REDUCTION

In most works related to network reduction, three sets of nodes
are defined: internal nodes, boundary nodes, and external
nodes. Internal nodes are those to be retained that have no
direct connection to external nodes, i.e., there is no branch
directly connecting any of them to any of the external nodes.
Boundary nodes are also retained but, different from the first
set, they do have direct connections to the external nodes. The
last set comprises the group of nodes to be removed from the
network model. In a Ward reduction, the impact of the external

nodes on the retained network is accounted for by distributing
the external nodes’ power injections among the boundary
nodes in addition to adding new branches among them. We
briefly reproduce below the steps of the Ward reduction [15].

Firstly, the nodes’ power injection are ordered, for conve-
nience, according to the set that the node belongs to (internal,
boundary, or external). Then, the net power injections are
written in matrix form as functions of the nodes’ voltage
angles as in (13).pi

pb
pe

 =

Bi
i Bb

i Be
i

Bi
b Bb

b Be
b

Bi
e Bb

e Be
e

 ·

θi
θb
θe

 , (13)

where matrices B are partitions of the nodal susceptance
matrix. For instance, matrix Bb

i is the sensitivity of the power
injections at internal nodes w.r.t. to the voltage angles at the
boundary nodes. By construction, Be

i = 0 and Bi
e = 0, and

Bx
y = By

x
⊤, for (x, y) ∈ {e, i, b}2. By applying successive

row operations to (13), we can eliminate θe. We show in (14)
the boundary nodes’ power injections after eliminating θe.

pb = Bi
b · θi +

(
Bb

b −Be
b · (Be

e·)−1 ·Bb
e

)
· θb +Be

b(B
e
e)

−1 · pe
(14)

In (14), the power injections at the boundary nodes have been
changed by two terms: (1) new branches among them (−Be

b ·
(Be

e·)−1 ·Bb
e), and (2) reassignment of the power injections at

external nodes to boundary nodes Be
b(B

e
e)

−1 · pe.
We discuss in the following the pros and cons of the Ward

reduction in the context of UC.
A. Potential benefits of Ward reduction
For the B-theta model, if properly applied, the benefits of
Ward reduction are evident: (1) decrease in the number of
nodes; and (2) decrease in the number of branches. These
decreases are naturally dependent upon applying the Ward
reduction only when its beneficial in terms of model size, as
we discuss shortly. Nonetheless, the decrease in nodes and
branches reflects in a decrease in the number of variables
and constraints in the optimization model. On the other hand,
applying the Ward reduction when the PTDF model is used
may not immediately result in visible benefits. That is because,
for the retained lines, the expressions of the branch flows do
not change. However, noting that the Ward reduction enables
the elimination of nodes, the associated slack variables of the
eliminated nodes can also be removed from the model since
no more than one slack per node is needed. Thus, if the slacks
are also eliminated, the number of nonzero terms in the PTDF
flow expressions can also be reduced.
B. Potential shortcomings of Ward reduction
In a UC model, applying the Ward reduction must take into
account certain of its shortcomings. These shortcomings are
exclusive to the B-theta DC model since in the PTDF model, as
flows are explicitly written as functions of the node injections,
removing nodes through an exact method and reallocating
injections has no impact in the flow expression.

Firstly, although all external nodes are eliminated from
the model, depending on the number of boundary nodes, an
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overwhelmingly large number of new branches can be added
to the model. In fact, the possible number of new branches
is N ·(N−1)

2 , where N is the number of boundary nodes. In
addition to the number of new branches, their associated
susceptances might be very low (i.e., branches with high
reactance), which can lead to numerical problems. Thus, given
the large number of new branches and their possibly high
reactances, after applying Ward reduction, one might be faced
with the problem of selecting (discarding) the branches to be
added (removed) to (from) the model. Naturally, discarding
some of these new branches invariably leads to a network
representation that is no longer an equivalent.

Secondly, the new branches ’created’ after removing the
external nodes have no obvious bounds. If any of the branches
connected to one of the external nodes has its capacity
violated, it is not clear how this information can be conveyed
to the reduced network.

Finally, as the injections formerly connected to external
nodes are distributed among the boundary nodes, their coeffi-
cients in their new nodes, defined by Be

b(B
e
e)

−1, can be rather
small, again introducing numerical problems to the model.
C. Proposed strategy
In face of the pros and cons of the Ward reduction discussed
above, in the following, we summarize the main steps of
our network-reduction strategy, where we try to maximize
the benefits of the network reduction while not unintendedly
increasing the computational burden. Evidently, the steps can
be repeated for as long as there are nodes to be removed.

1) Identify redundant branches’ limits;
2) Remove degree-1 and degree-2 nodes with no injections;
3) Remove degree-1 nodes with injections;
4) Remove degree-2 load nodes with at most one possibly

active branch;
5) Remove degree-n nodes with no active branches.
We take the definition of degree-1 nodes from [8]. Degree-1

nodes are those connected to the rest of the network through a
single branch. Naturally, degree-2 nodes are those connected
by two branches, and, degree-n nodes by n branches.

1) Identify redundant branches’ limits
This steps consists in determining which branches’ lower

and upper bounds cannot be possibly reached by a feasible
schedule of the generating units. For branches whose lower
and upper bounds cannot be reached in any of the periods of
the UC, the branch’s limits are deemed redundant. Otherwise,
if in at least one of the periods one of the limits cannot be
unequivocally classified as redundant, then the branches’ limits
are deemed ’possibly active’. Note that even though a branch
might be deemed possibly active, its bounds are only enforced
in periods when they are not redundant. Moreover, this is a
flexible step; any algorithm able to identify redundant and
inactive flow bounds can be applied. In our implementation,
we mostly follow [1] and we only identify redundant flow
bounds.

2) Remove degree-1 and degree-2 nodes with no injections
Although no-injection degree-1 nodes make no contribution

in a DC model, some of them might still be presented in the

network data. More importantly, no-injection degree-2 nodes,
i.e., nodes that have no demand and no generation and are
connected to exactly two branches can be promptly removed
from the network by combining the series reactance of its
branches and properly computing the lower and upper bounds
of the resulting branch’s flow.

3) Remove degree-1 nodes with injections
Akin to [8].
4) Remove degree-2 load nodes with at most one possibly

active branch
By defining the degree-2 load node as the external node

and its two adjacent nodes as boundary nodes, we can apply
Ward reduction to remove it, reallocate any injection to the
boundary nodes and obtain the reactance of the new branch.
To account for the possibly active bound, we express it as a
function of the old bound and the injection of the removed
node. Further details are given in sub Sec. III-D.

5) Remove degree-n nodes with no active branches
Again, we define the degree-n node as the external node and

all its n adjacent nodes as boundary nodes. In this step, it is
crucial to be sure that all branches connected to the target node
are redundant. Naturally, if the degree is too high, it might not
be beneficial to remove the node, as too many new branches
would be added to the model. Thus, we limit the screening
of candidate nodes to be removed to at most degree-20 nodes
and only remove a node if the net number of new branches
added is at most 1. For instance, suppose we have a candidate
node to be removed with degree 10. Removing it would add 45
new branches to the model. Normally, however, some of these
branches might be paralleled to already existing branches. If
the number of new branches paralleled to existing branches is
44, the net result would be that only one new branch is in fact
added. In this case, we remove the node.

All steps in the proposed strategy required only one change
from the well-known model stated in (12): generators are no
longer connected to a single node. Instead, their power outputs
are now split according to the coefficients resulting from
the Ward reduction applied to the node they were formerly
connected to. Thus, (9) and (8) are rewritten, respectively, as
(15) and (16) for any t ∈ T .

∑
g∈Gb

Kg,b · pg,t −
∑
l∈L−

fl,t +
∑
l∈L+

fl,t + sb,t = D∗
b,t ∀b ∈ B,

(15)

fl,t =
∑
b∈Br

PTDFl,b·

∑
g∈Gb

Kg,b · pg,t + sb,t −D∗
b,t

 ∀l ∈ Lr.

(16)
In (15) and (16), coefficients Kg,b are given by the Ward re-
duction, as described in (14). In these equations, the demands,
now represented by D∗, are the aggregations of demands
at each node retained in the network after nodes have been
eliminated and their respective demands redistributed among
the retained nodes. Different from the generators, the slacks s
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are not redistributed among boundary nodes once its former
node is eliminated because at most one of them is necessary
for each node. Naturally, we have that new set of nodes, Br,
with Br ⊂ B. The same cannot be said about the new set of
branches, Lr, which may or may not be a subset of L.

In the following, we show how degree-2 nodes are removed
from the grid, even if one of its branches is possibly active,
and we illustrate our approach with a 14-node system.
D. Removing degree-2 nodes with one possibly active branch
In Fig. 1, we present a degree-2 node, node 2, with one
possibly active branch, branch f2,3. In this example, the power
injections p account for generation and loads at the respective
nodes as well as the net power flows from/to nodes 1, 2 and
3, except through branches f1,2 and f2,3. Following the usual
parlance of network reduction, in this example, 1 and 3 are
boundary nodes and 2 is the external one. After removing node
2, a new connection between 1 and 3, f1,3, is added. Note that,
because bounds on the flow in f2,3 need to be enforced, the
flows in f1,3 must also be constrained to reflect those bounds.
Before removing 2, the power balances for these three nodes

Fig. 1: Two-degree node with one possibly active branch.

are defined as follows.p1
p3
p2

 =

 Y1,2 0 −Y1,2

0 Y2,3 −Y2,3

−Y1,2 −Y2,3 Y1,2 +Y2,3

 ·

θ1
θ3
θ2

 ,

where Yx
y is the susceptance between nodes x and y, and θx

is the voltage angle at node x, with (x, y) ∈ {1, 2, 3}2. After
removing node 2, we havep1 +

(
Y1,2

Y1,2+Y2,3

)
· p2

p3 +
(

Y2,3

Y1,2+Y2,3

)
· p2

 =

[
Y1,2·Y2,3

Y1,2+Y2,3
− Y1,2·Y2,3

Y1,2+Y2,3

− Y1,2·Y2,3

Y1,2+Y2,3

Y1,2·Y2,3

Y1,2+Y2,3

]
·
[
θ1
θ3

]
.

Thus, the flow in the newly added branch (1, 3) is given by:

f1,3 =
Y1,2 ·Y2,3

Y1,2 +Y2,3
· (θ1 − θ3).

Then, to maintain the balances at nodes 1 and 3 after removing
node 2, the flow in f1,3 plus the reassigned injections of p2
to 1 and 3 must be equal to f1,2 and f2,3:

f1,2 = f1,3 −
Y1,2

Y1,2 +Y2,3
· p2, and f2,3 = f1,3 +

Y1,3

Y1,2 +Y2,3
· p2.

As only the flow through branch (2, 3) is possibly active, we
can use the equations above to enforce the branch’s (2, 3)
bounds on variables f1,3 and p2, as in the following.

F2,3 ≤ f1,3 +
Y1,3

Y1,2 +Y2,3
· p2 ≤ F2,3.

Note that, if the injection at node 2 is fixed, then the bounds
above can be enforced only on variable f1,3 by changing F2,3

and F2,3, as follows.

F2,3 −
Y1,3

Y1,2 +Y2,3
·P2 ≤ f1,3 ≤ F2,3 −

Y1,3

Y1,2 +Y2,3
·P2.

In our implementations, we only eliminate degree-2 nodes
when at most one of its branches is possibly active and there is
no generation connected to it. By doing so, we keep the flow
expressions and its bounds in the familiar form shown above,
where the bounds are constant although now time dependent.
However, note that if a slack variable were associated with a
fixed demand, as in (9), neglecting it in the new expression
of the flow bounds above results in a relaxation of the upper
bound and a tightening of the lower bound (for non-negative
susceptances). Thus, if there were load shedding at the node
being removed, not accounting for it in the bounds of the
new branch can result in an error. Nonetheless, we argue that
the slack variables are usually added to compensate for rather
small power imbalances and, for any realistic UC, the total
value of load shedding should be close to zero.

We further illustrate our reduction strategy with the 14-node
system shown in Fig. 2a. In this example, we show how the
successive removal of degree-1, degree-2 and degree-3 nodes
lead to a significantly smaller network. In Fig. 2a, nodes 14,
13, 12, and 8 are removed as degree-1 nodes. Then, nodes
10, 11, 1, and 3 are removed as degree-2 nodes. Finally, node
5, which is a degree-3 node, is also removed. Furthermore,
parallel branches are combined into single branches. Different
from the full network representation, generators 1, 3 and 4
have their injections now split among different nodes. For
instance, injections from generator 1 are now represented as
simultaneous injections at nodes 2, 4 and 6, with the portion
of the generator’s injection at each of these nodes defined by
the coefficients from the Ward reduction, as shown in III-D.
Generator 5, on the other hand, is simply moved from node
8 to 7. Lastly, the demands formerly distributed among 11
nodes are now concentrated in 4 nodes, with the distribution
determined again by the coefficients from the Ward reduction.

IV. COMPUTATIONAL EXPERIMENTS

We assess our strategy on 20 power systems from [17],
all of which are UCs with 36-hour planning horizons and
hourly temporal resolution. As we are mainly interested in
showcasing the benefits of our network-reduction approach,
we transform the originally security-constrained UCs of [17]
into deterministic UCs by ignoring contingencies. Also, in
addition to scaling the unitary generation and start-up costs
of each of them, we have modified the cases to induce
congestion through tightening branch limits and increasing
demand. By doing so, we aim at simulating cases where
the system is stressed due to a lack of transmission ca-
pacity. Exclusively to the largest power system with 13,659
nodes, we ignore start-up costs to speed up convergence,
as in none of our tests we were able to reach acceptable
gaps with any of the network models if start-up costs were
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(a) Full network. (b) Reduced network.

Fig. 2: Network with 14 nodes, 11 demands, five generators, and 18 branches. The three possibly active branches are shown
in red. Generators are shown as green elements and demands as red arrows.

TABLE I: General characteristics of the power systems with full network representation.
System Nodes Branches Units Cap. (MW) Peak load (MW) Gen. nodes Load nodes Possibly active branches

1354pegase 1,354 1,710 260 128,867 86,304 621 260 155
1888rte 1,888 2,308 296 89,842 45,672 939 284 194
1951rte 1,951 2,375 390 96,599 57,977 940 377 139
2383wp 2,383 2,886 323 29,135 16,941 1,817 323 167
2736sp 2,736 3,495 289 27,987 20,233 2,011 217 45
2737sop 2,737 3,497 267 26,290 15,952 2,008 205 45
2746wop 2,746 3,505 443 29,186 19,237 1,971 343 61
2746wp 2,747 3,505 457 31,147 22,705 1,991 346 64
2848rte 2,848 3,442 544 95,253 55,711 1,363 443 204
2868rte 2,868 3,471 596 98,307 51,530 1,391 492 166

2869pegase 2,869 3,968 510 239,856 144,454 1,304 510 82
3012polish 3,012 3,566 377 34,963 27,196 2,257 238 384

3120sp 3,120 3,684 483 35,523 22,591 2,266 328 131
3375wp 3,375 4,068 590 69,245 47,019 2,414 435 120
6468rte 6,468 8,065 1,262 189,477 77,933 3,313 930 119
6470rte 6,470 8,066 1,306 183,396 77,798 3,353 968 212
6495rte 6,495 8,084 1,352 184,479 76,467 3,290 1,008 85
6515rte 6,515 8,104 1,368 187,929 77,908 3,321 1,021 112

9241pegase 9,241 14,207 1,445 546,759 212,692 4,384 1,445 745
13659pegase 13,659 18,625 4,092 966,969 391,461 4,990 4,092 747

TABLE II: General characteristics of the optimization models with full network representation.
System Binary vars. B-theta: cont. vars B-theta: constrs. B-theta: non-zeros PTDF: cont. vars. PTDF: constrs. PTDF: non-zeros

1354pegase 28,080 174,061 163,018 527,987 63,757 59,372 9,375,315
1888rte 31,968 240,301 218,044 695,001 89,245 74,486 8,824,391
1951rte 42,120 254,017 243,986 776,392 98,281 94,226 11,759,947
2383wp 34,884 297,433 253,131 795,086 107,749 70,123 17,980,729
2736sp 31,212 342,721 281,936 899,892 118,405 59,671 6,339,071
2737sop 28,836 341,641 278,220 887,154 117,217 55,872 6,361,012
2746wop 47,844 353,881 310,025 977,611 128,845 87,805 9,161,646
2746wp 49,356 354,997 313,814 990,161 129,961 91,859 10,061,944
2848rte 58,752 367,525 349,175 1,113,225 141,085 130,820 15,391,458
2868rte 64,368 373,717 362,385 1,153,295 145,513 141,093 18,531,035

2869pegase 55,080 379,837 334,496 1,090,369 133,705 92,322 13,490,334
3012polish 40,716 371,665 315,053 1,053,407 134,857 93,196 49,431,086

3120sp 52,164 389,701 350,295 1,106,391 144,757 111,176 20,520,044
3375wp 63,720 429,661 396,463 1,253,404 161,749 133,717 20,558,969
6468rte 136,296 839,269 796,725 2,586,530 316,081 279,312 44,778,967
6470rte 141,048 843,085 808,263 2,624,885 319,789 295,201 78,771,575
6495rte 146,016 847,945 819,047 2,659,395 323,101 298,647 35,532,156
6515rte 147,744 850,969 822,870 2,671,216 324,685 302,081 43,447,673

9241pegase 156,060 1,264,069 1,108,119 3,714,942 419,941 300,490 343,864,731
13659pegase 441,936 1,948,105 2,085,364 6,827,703 785,881 961,675 523,955,886

included. Our codes are written in Python and available
at https://github.com/colonetti/wardUCPSCC2024. To tackle
the optimization models, we use Gurobi 10.0.2 [4] through
gurobipy without any decomposition. All of Gurobi’s param-
eters are unchanged, except for the following: Method = 2,

BarConvTol = 10−12, Heuristics = 0.2, and Cuts = 3. We
care to mention that it is likely that better settings can be
found, both considering the average performance of Gurobi on
the 20-case pool but specially considering its performance on
individual cases and network models. Nonetheless, the settings
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TABLE III: Optimization results with full representation of the network with B-theta formulation.
System Root relax. ($) Root relax. (sec.) UB ($) LB ($) Gap (%) Time (sec.) Active bounds Active branches

1354pegase 118,771 21 120,483 120,456 0.02 812 349 18
1888rte 153,534 29 153,614 153,534 0.05 31 1,533 87
1951rte 350,110 34 350,143 350,123 0.01 557 362 23
2383wp 119,752 77 119,958 119,958 0 3,562 121 7
2736sp 310,037 116 310,091 310,038 0.02 1,091 37 2

2737sop 241,365 108 241,679 241,434 0.1 7,200 98 5
2746wop 269,147 79 269,614 269,462 0.06 5,031 67 4
2746wp 333,944 106 334,209 333,957 0.08 1,785 70 5
2848rte 457,265 60 457,595 457,265 0.07 62 1,580 88
2868rte 752,870 82 753,025 752,870 0.02 87 499 36

2869pegase 399,824 104 400,081 399,914 0.04 336 24 2
3012polish 109,040 81 109,155 109,047 0.1 458 88 5

3120sp 196,647 84 196,796 196,647 0.08 94 87 6
3375wp 478,650 234 478,977 478,663 0.07 1,750 80 6
6468rte 69,700 1,109 69,930 69,711 0.31 7,200 502 21
6470rte 162,592 481 163,293 162,631 0.41 7,278 684 28
6495rte 108,131 1,011 108,317 108,206 0.1 7,205 272 14
6515rte 116,484 362 116,722 116,614 0.09 5,059 378 21

9241pegase 70,642 5,040 94,094 70,658 24.91 7,200 747 37
13659pegase 256,265 2,874 260,357 256,266 1.57 7,200 1,456 65

TABLE IV: Optimization results with full representation of the network with PTDF formulation.
System Root relax. ($) Root relax. (sec.) UB ($) LB ($) Gap (%) Time (sec.) Active bounds Active branches

1354pegase 110,535 42 120,484 120,375 0.09 787 345 18
1888rte 151,554 42 153,593 153,540 0.03 89 1,568 86
1951rte 350,092 57 350,347 350,136 0.06 147 367 24
2383wp 118,438 84 119,840 119,779 0.05 206 129 8
2736sp 309,403 33 310,304 310,037 0.09 82 33 2

2737sop 231,640 32 241,590 241,373 0.09 885 83 5
2746wop 258,720 42 269,679 269,418 0.1 213 62 4
2746wp 333,552 52 334,079 333,957 0.04 664 74 5
2848rte 453,105 81 457,525 457,278 0.05 257 1,581 87
2868rte 750,142 94 753,501 752,896 0.08 215 486 36

2869pegase 398,971 59 399,937 399,921 0 338 18 2
3012polish 108,983 276 109,097 109,040 0.05 784 93 7

3120sp 196,411 91 196,698 196,670 0.01 509 82 5
3375wp 468,801 96 478,982 478,661 0.07 1,638 72 8
6468rte 13,560 213 69,781 69,714 0.1 1,011 496 21
6470rte 19,877 319 162,771 162,625 0.09 2,388 701 28
6495rte 36,565 180 108,307 108,201 0.1 1,299 274 14
6515rte 33,242 226 116,709 116,593 0.1 3,875 379 21

9241pegase 55,677 2,004 73,349 70,849 3.41 7,200 648 33
13659pegase 243,744 2,525 - 256,190 - 7,200 - -

chose perform relatively well on average for all cases. The
time limit is set to 2 h for all experiments and the relative
gap tolerance ( Upper bound−Lower bound

Upper bound ) is set to 0.1%. Finally,
when the PTDF model is used, the flow bounds are added
to the optimization model as lazy constraints with the lazy
attribute set to 3. (We clarify here that when the PTDF model
is used, no flow variable is added to the model and the flow
expression (11) is directly plugged into (7) for the possibly
active branches.) Lastly, for the PTDF model, we ignore all
coefficients in the PTDF matrices whose absolute values are
less than 10−4. All experiments are conducted on a single
computer with 128 GB of RAM and two Intel Xeon E5-2660
v3 2.60 GHz processors.
A. Results with full network representation
We start by presenting in Tab. I the general structural char-
acteristics of the 20 power systems. This table shows the
widely different characteristics of these power systems, in
terms of system size, number of generating units, distribution
of generation and load over the system, system loading (ratio
of peak load and installed capacity), and apparent possible
branch congestions. We emphasize two of these character-
istics: system loading, and the number of possibly active
branches. The first is usually a good indicator that branch

capacities might be reached as more power is expected to flow
as the demand increases. (Incidentally, with the growing partic-
ipation of renewable energy, a new phenomenon can be seen:
congestions due to increasing amounts of non-dispatchable
renewable generation.) Nevertheless, the possibility of con-
gestion is more directly seen by the number of possibly active
branches. These are branches whose redundancy could not be
unequivocally guaranteed by our implementation of the branch
bound redundancy algorithm of [1]. Following this metric,
the possibly most congested system is 3012polish with nearly
11% of its branches possibly reaching its limits. Evidently, in
practice, considerably less than 11% of the systems’ branches
will reach its capacity, if any. The characteristics in Tab. I
are then reflected on the problem sizes reported in Tab. II.
Comparing both tables clearly shows the sharp increase in
the number of variables, constraints and non-zeros as the
network and the number of units increase. From Tab. II, we
underline the model sizes for the six systems with more than
6,000 nodes. As we show in the following, these numbers
are reflections of a model whose size and complexity requires
running times that are prohibitive for UC.

Finally, in Tab. III and IV, we show the results of solving
the UC for the 20 power systems with Gurobi, respectively
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with formulation B-theta and formulation PTDF. In these
tables columns “Root relaxation ($)“ and “Root relaxation
(sec.)“ refer to, respectively, the optimal value and the total
Gurobi running time of the root relaxation of the branch-and-
cut algorithm. Columns UB and LB are respectively the final
upper bound and lower bound found by Gurobi. Lastly, column
“Active bounds“ refer to the total number of occurrences of
active flow bounds over the 36 periods. Similarly, column
“Active branches“ presents how many of the system’s branches
have one of its bounds active in at least one of the periods.
Both columns are used as indicators of the level of congestion
of the network. Before diving in the analysis of the results,
we urge the reader not to use Tab. III and IV to compare
the B-theta and PTDF formulations; any comparison between
them could be biased by our implementation and the solver
and settings used. A fair comparison would require specialized
models and algorithms for these formulations, and it is beyond
the scope of this work. Tab. III and IV are, instead, used to
show how the size of the network representation may impact
on the running time of the solver.

From Tab. III and IV, we see a clear increase in the running
times of the root relaxation for both formulations. Naturally,
this increase is not only due to the network, as the number of
generating units also normally increases with the number of
nodes. On the other hand, inspecting the optimization times,
we cannot see a clear pattern of increase or decreases in
running times because this metric includes the branch-and-
cut phase of Gurobi’s algorithm and it is heavily dependent
on the combinatorial aspects of the problem. For both formu-
lations, we see that the relative number of active branches is
low across all cases, as expected: ranging from 0.05%, for
system 2869pegase, to 3.77%, for system 1888rte. Specially
for systems 1888rte and 2869pegase itself, many of the active
branches are branches that are the only connection of a node to
the rest of the network. With the B-theta formulation, Gurobi
is able to reach the 0.1% relative gap for 14 of the 20 cases,
while it is successful for 18 cases with the PTDF formulation.
These tables show a considerable increase in the running times
for both formulations when the 6,000-node threshold is passed.
For both formulations, Gurobi is not able to reach convergence
for systems 9241pegase and 13659pegase.
B. Results with the degree-1 node methodology of [8]
We summarize the results obtained by applying the method-
ology of [8] in Tab. V. As we can see, the reduction in the
number of nodes and branches is significant. The number of
retained nodes varies from 45% to 87%, while the retained
branches go from 55% to 90%. In the methodology of V, there
is a one-to-one reduction in nodes and branches: one branch
removed for each node removed. However, the significant
reductions in network size are not reflected on Gurobi’s
running times: for most cases, there is in fact an increase in
running time, with a average increase of 34% for the B-theta
formulation and 8.5% for the PTDF formulation. We care to
note that these increases in running time are likely due to
different algorithmic choices made by Gurobi when solving
the reduced model. While a fairer comparison would require

making sure that the same algorithmic choices are made for
the reduced and full model, this is extremely hard in practice
and beyond the scope of this work.
C. Results with the proposed reduction methodology
We present in Tab. VI the main characteristics of the reduced
system. With our methodology, the reduction in the number
of nodes and branches is even more pronounced: the reduced
system with the largest percentage of retained nodes is 9241pe-
gase with only 16.2% of the original nodes and 36.1% of
the original number of branches. The system with the largest
reduction in the number of nodes is 2848rte for which only
6.8% are needed. On average over the 20 systems, our method-
ology yields reduced systems with only 10.3% of the original
nodes and 26.7% of the original number of branches. It is
also interesting to see from this table that the number of nodes
with generation and load is also significantly reduced, showing
that, although generators now have their outputs split among
more nodes, the total number of nodes with injections is still
reduced. Similarly, the number of possibly active nodes also
decreases due to both branch limits being converted directly
to bounds on generation and also to appropriately combining
series and parallel branches. Although, as shown in this table,
the time taken to reduce the network is considerable, specially
for the two largest systems, the benefits from the reduction
far out weights these times. Next, we present in Tab. VII the
impact of the network reduction on the size of the optimization
models. Except from the number of constraints in the PTDF
formulation, all other metrics show considerable advantages.
For instance, the number of continuous variables in the B-theta
formulation decreases, on average, by 76% with the proposed
network reduction technique. The number of constraints for
this formulation sees a reduction of 56% on average, and the
number of non-zeros in the coefficient matrix decreases on
average by 49%. The model size reductions are also notable for
the PTDF formulation, for which there is an average decrease
of 68% in the number of continuous variables, and 74% in the
number of non-zeros. In the B-theta formulation, when a node
is removed, its associated voltage angle and slack variable
are removed. Similarly, when a branch is removed, its flow
variable is no longer necessary. The number of non-zeros, on
the other hand, is not as easily anticipated because, if a node
with generation is removed, its generation is split among all its
boundary nodes, thus increasing the number of non-zero terms
associated with the generation variable. On the other hand,
for the PTDF formulation, removing a node from the network
eliminates its slack from the optimization model, and all terms
in the flow expressions and power balances where such slack
appears are removed. For both formulations, the more compact
representation of the network results in remarkable speed-ups
in Gurobi’s running time. Tables VIII and IX present the main
optimization results for the B-theta and PTDF formulation,
respectively. The first benefit we see in Tab. VIII is that, with
the reduced network, Gurobi is now able to solve 19 out of
the 20 cases with the B-theta formulation. The only case left
unsolved is 9241pegase, for which, with our technique, Gurobi
is now able to reach a relative gap of 4.46% — against the
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TABLE V: Results with the network reduction proposed by [8].
System Nodes Branches B-theta: LB ($) B-theta: gap (%) B-theta: (sec.) PTDF: LB ($) PTDF: gap (%) PTDF: (sec.)

1354pegase 730 1,086 120,398 0.08 1,973 120,389 0.08 578
1888rte 886 1,306 153,535 0.06 30 153,538 0.03 82
1951rte 895 1,319 350,110 0.02 36 350,135 0.02 116
2383wp 1,733 2,236 119,953 0.00 4,431 119,792 0.09 194
2736sp 2,395 3,154 310,038 0.03 880 310,040 0.02 60

2737sop 2,396 3,156 241,420 0.10 4,603 241,372 0.09 1,796
2746wop 2,392 3,151 269,444 0.09 4,038 269,497 0.04 947
2746wp 2,393 3,152 333,959 0.07 2,881 333,954 0.08 388
2848rte 1,382 1,976 457,265 0.07 53 457,278 0.01 173
2868rte 1,389 1,992 752,870 0.02 191 752,900 0.06 169

2869pegase 1,989 3,088 399,912 0.01 671 399,919 0.02 261
3012polish 2,301 2,855 109,049 0.10 445 109,040 0.06 555

3120sp 2,385 2,949 196,647 0.08 81 196,669 0.01 198
3375wp 2,511 3,205 478,658 0.10 5,627 478,661 0.07 662
6468rte 3,796 5,393 69,711 0.12 7,200 69,715 0.07 1,498
6470rte 3,783 5,379 162,631 0.17 7,200 162,621 0.09 2,243
6495rte 3,771 5,360 108,217 0.09 7,200 108,198 0.10 970
6515rte 3,773 5,362 116,565 0.19 7,200 116,589 0.10 5,607

9241pegase 7,374 12,340 70,660 19.75 7,200 70,835 1.11 7,200
13659pegase 7,374 12,340 - - 7,200 256,200 - 7,200

TABLE VI: General characteristics of the power systems with
reduced network representation. In this table, ”PAB” stands
for ”possibly active branches”, and column ”R (sec.)” is the
time in seconds taken to reduce the network, not including the
time necessary to identify redundant bounds.

System Nodes Branches PAB G. nodes Load nodes R (sec.)
1354pegase 152 428 139 112 129 1

1888rte 167 467 140 105 154 1
1951rte 186 492 131 121 178 1
2383wp 295 822 167 230 266 3
2736sp 320 1,247 45 233 299 13

2737sop 317 1,254 44 232 293 14
2746wop 324 1,235 61 271 299 13
2746wp 321 1,224 63 270 297 12
2848rte 194 639 120 148 181 5
2868rte 212 644 139 161 194 4

2869pegase 319 1,162 85 269 298 13
3012polish 464 1,064 384 258 410 4

3120sp 300 976 131 239 281 7
3375wp 345 1,123 119 290 322 12
6468rte 484 1,710 119 416 450 30
6470rte 544 1,770 210 444 481 27
6495rte 457 1,654 85 402 419 28
6515rte 472 1,664 111 414 437 27

9241pegase 1,497 5,133 712 1,023 1,241 162
13659pegase 1,471 5,139 708 1,059 1,337 141

24.91% gap with the full representation of the network and
B-theta formulation (Tab. III). For the PTDF formulation, the
cases successfully solved remains the same but, again, with the
reduced network, Gurobi is again able to reach significantly
better gaps for the unsolved cases: instead of the 3.41% gap for
the 9241pegase with the full network, Gurobi reaches 0.38%
with the reduced model; with the full network, Gurobi is not
able to find a feasible solution for 13659pegase, on the other
hand, with the reduced model, Gurobi finds a solution within
a gap of 0.6%. In part, the better convergence rates achieved
with the reduced network are results of a linear relaxation that
is, according to the evidences shown here, more amenable
to the solver. The more compact formulation given by the
reduced network, as we have shown in VII, render linear
relaxations that are solved, on average, nearly 60% faster for
both formulations. Despite the gains in running times, the
lower bounds given by the linear relaxation of the reduced
model remain practically the same as those obtained with the

full representation, which is expected since the reduced model
is equivalent to the full representation as long as there is no
significant load shedding.

In addition to being able to reach convergence for more
cases, the reduced network also result in considerable speed-
ups. Comparing Tab. VIII against Tab. III, and Tab. IX against
Tab. IV, we see that, with the B-theta formulation, Gurobi
reaches the gap tolerance faster with the reduced network
for 18 of the cases. The only case for which convergence is
reached faster with the full network is 1888rte, which takes
31 seconds with the full network and 151 seconds with the
reduced network. The average speed-up for this formulation is
36% if we consider the individual speed-ups for each case; the
speed-up computed considering the total time to solve all cases
(64,000 seconds for the full network, and 21,225 seconds for
the reduced network) is 66%. The same metrics for the PTDF
formulation are 10% and 20%, respectively.

Finally, inspecting the bounds obtained with the reduced
formulations in Tab. VIII and IX reveals that both upper
and lower bounds, for both formulations, are nearly the same
as those achieved with the full representation. This is again
expected since there is negligible load shedding in all cases.
For the convergent cases, the one with the most load shedding
is 1951rte, for which there is a total of 30 MWh load shedding
in the solution obtained with the full network representation
and PTDF formulation, and 10.4 MW for the same formulation
and the reduced network. Furthermore, our choice for the
PTDF coefficient threshold of 10−4 allows for small violations
of the branch flows for case 2383wp, which explains why
the upper bound obtained with the reduced network for this
formulation (Tab. IX) is lower than the lower bound obtained
with the full network representation (Tab. IV), in spite of
no occurrence of load shedding. Lastly, note that the number
of active bounds and branches reported in Tab. VIII and IX
are significantly fewer than those in Tab. III and IV. As we
mentioned earlier, most of the active bounds and branches
in Tab. III and IV are from branches connected to nodes
connected to the system by a single branch. In the reduced
system, these bounds are converted into constraints on the
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TABLE VII: General characteristics of the optimization models with the reduced network representation w.r.t. to the
characteristics of the full representation. For instance, if the number of continuous variables is a for the full representation and
b for the reduced network, then, in this table, the relative number of continuous variables is ( ba ).

System B-theta: cont. vars (%) B-theta: constrs. (%) B-theta: non-zeros (%) PTDF: cont. vars. (%) PTDF: constrs. (%) PTDF: non-zeros (%)
1354pegase 24 45 51 32 99 28

1888rte 21 41 46 30 98 33
1951rte 23 46 51 35 100 30
2383wp 24 41 46 30 100 24
2736sp 26 40 47 27 100 22

2737sop 25 40 46 26 100 22
2746wop 28 46 52 32 100 26
2746wp 28 46 53 33 100 26
2848rte 21 44 50 32 98 27
2868rte 22 46 51 34 99 28

2869pegase 25 42 49 31 100 27
3012polish 26 42 50 32 100 26

3120sp 23 43 50 30 100 24
3375wp 25 46 52 33 100 24
6468rte 21 44 52 32 100 25
6470rte 23 46 53 33 100 25
6495rte 21 45 53 33 100 26
6515rte 22 45 53 33 100 25

9241pegase 30 45 51 34 99 27
13659pegase 30 56 61 44 100 31

injections of the node removed.
V. CONCLUSIONS

In this work, we present a novel application of the Ward
reduction to UC models. Our motivation is based on the com-
putational burden introduced by the network representation
in UC models. This burden is due to the large number of
network elements, and also to the spatial coupling introduced
by it. Our main premise, widely used and also supported by
evidence, is that a large number of redundant branch flows’
bounds can be effectively identified. Based on this premise, we
leverage the redundancy of the branch flows’ bounds to remove
nodes and branches from the network using the well-known
Ward reduction. We show that appropriately applying the Ward
reduction enables us to obtain a more compact representation
of the network that is equivalent under mild conditions. Then,
we assess our methodology on a pool of 20 power systems
ranging from 1,354 to 13,659 nodes. We show that, with
our network reduction, we can represent theses systems with
as few as 6.8% of the original nodes. In turn, the network
reductions provides speed-ups from 10% to 36% for two of
the most widely used formulations for the DC network model.
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TABLE VIII: Optimization results with reduced representation of the network with B-theta formulation.
System Root relax. ($) Root relax. (sec.) UB ($) LB ($) Gap (%) Time (sec.) Active bounds Active branches

1354pegase 118,771 10 120,489 120,442 0.04 305 125 7
1888rte 153,535 18 153,562 153,536 0.02 151 27 7
1951rte 350,110 14 350,146 350,116 0.01 101 14 2
2383wp 119,741 23 119,902 119,800 0.09 1,468 130 8
2736sp 310,037 55 310,079 310,038 0.01 541 34 2

2737sop 241,365 32 241,616 241,380 0.1 491 95 4
2746wop 269,147 36 269,564 269,417 0.05 2,816 66 4
2746wp 333,944 45 334,146 333,946 0.06 502 43 4
2848rte 457,265 44 457,594 457,265 0.07 46 72 4
2868rte 752,870 63 753,092 752,870 0.03 65 66 2

2869pegase 399,824 42 399,949 399,908 0.01 318 18 2
3012polish 109,041 43 109,150 109,043 0.1 188 81 5

3120sp 196,647 32 196,797 196,647 0.08 35 17 4
3375wp 478,650 56 478,947 478,658 0.06 505 66 4
6468rte 69,700 128 69,778 69,715 0.09 984 495 21
6470rte 162,592 156 162,786 162,643 0.09 1,215 660 27
6495rte 108,134 149 108,303 108,203 0.09 1,265 273 14
6515rte 116,488 132 116,701 116,613 0.08 1,888 341 19

9241pegase 70,642 429 74,134 70,828 4.46 7,200 701 32
13659pegase 256,265 917 256,406 256,266 0.05 1,141 921 40

TABLE IX: Optimization results with reduced representation of the network with PTDF formulation.
System Root relax. ($) Root relax. (sec.) UB ($) LB ($) Gap (%) Time (sec.) Active bounds Active branches

1354pegase 112,442 22 120,504 120,399 0.09 294 127 7
1888rte 153,372 17 153,566 153,542 0.02 62 27 7
1951rte 350,092 22 350,238 350,135 0.03 60 16 2
2383wp 118,438 25 119,831 119,796 0.03 57 129 8
2736sp 309,403 11 310,067 310,044 0.01 104 33 2

2737sop 231,640 10 241,576 241,387 0.08 160 92 4
2746wop 258,720 14 269,718 269,496 0.08 534 58 4
2746wp 333,552 20 334,085 333,957 0.04 525 41 4
2848rte 456,918 45 457,384 457,284 0.02 539 70 4
2868rte 750,142 40 753,086 752,890 0.03 136 59 2

2869pegase 398,971 35 400,024 399,922 0.03 467 22 2
3012polish 108,984 64 109,091 109,054 0.03 717 88 7

3120sp 196,617 33 196,825 196,671 0.08 952 16 3
3375wp 468,801 41 478,856 478,665 0.04 783 68 6
6468rte 13,560 79 69,767 69,713 0.08 969 495 21
6470rte 19,877 116 162,776 162,634 0.09 1,213 666 27
6495rte 36,565 72 108,305 108,198 0.1 823 274 14
6515rte 33,242 77 116,696 116,602 0.08 924 345 20

9241pegase 55,677 586 71,253 70,984 0.38 7,200 720 32
13659pegase 243,768 916 257,810 256,261 0.6 7,200 715 38
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