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Abstract—This work proposes a methodology for
modeling and simulating stochastic processes of Vari-
able Renewable Energy (VRE) sources production. The
main objective is to capture, in the scenarios, both the
influence of climate phenomena and the complementar-
ity between different sources based on the definition
of joint states of VREs. Case studies were developed
based on data from three renewable energies covering
the Brazilian territory. Regarding the evaluation cri-
teria, the results were satisfactory, and the proposed
methodology performed better than the benchmark
model applied in the Brazilian market.

Index Terms—Renewable Energy; Simulation; Com-
plementarity; Climatic Phenomena; ENSO.

I. Introduction
Increasing the share of renewable energy sources in

countries’ electrical matrices is essential for energy de-
centralization, decarbonization and achieving several Sus-
tainable Development Goals (SDGs) established by the
United Nations [1]. However, according to Morales et al.
[2], it brings crucial challenges to the power systems’
planning and operation, mainly due to the intermittency
of renewable production and the fact that they are not
usually dispatchable. Pinson [3] highlights that one of
the main challenges involves capturing the intermittent
productions stochasticity, aiming to model and simulate
possible scenarios of the stochastic processes of generation
by renewable sources, constituting a powerful tool to sup-
port the decision-making process, both in the public and
private sectors. In recent years, much research has been di-
rected toward modeling, predicting or simulating Variable
Renewable Energy sources (VREs). In this environment, it
is highlighted that exploring the complementary effects of
different renewable resources is a significant growing topic
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in the sector, given the possibility of obtaining a combined
power with less variability and intermittency [4].

Also noteworthy is the relevance of studies that as-
sess the influence of climate phenomena, such as the
El Niño–Southern Oscillation (ENSO) and its different
phases (El Niño, La Niña, and Neutral), on the behavior
of primary resources and generation in different locations
(see [5], [6]). The impacts of the ENSO phases on the
VREs are not homogeneous across all countries and re-
gions. In Brazil, for example, during El Niño, the South-
Southeast regions experience an increase in precipitation
and the North-Northeast regions become dry, while the
opposite occurs in La Niña [7]. During dry periods, clear
sky conditions prevail, resulting in increased availability
of solar radiation for photovoltaic (PV) production, and
vice versa. The phenomenon’s influence on wind behavior
varies significantly within the same region. However, in
the Brazilian Northeast, for example, higher average wind
speeds are generally expected during El Niño compared to
other phases [8]. Furthermore, regarding the ENSO, since
the 1960s, the Pacific temperature indices used to detect
the occurrence of extreme phases (El Niño and La Niña)
of the phenomenon have shown more extreme oscillations
[5], mainly due to climate change, intensifying the impacts
of ENSO on natural resources during the same period.
This underscores the need to consider them in the VREs
modeling.

Thus, capturing and representing both the complemen-
tary properties between different renewable resources and
the influence of climatic phenomena, such as ENSO, in
generating probabilistic scenarios are imperative. In this
context, one of the possible classifications for the differ-
ent existing methods to simulate or predict renewable
resources is to divide them into parametric and non-
parametric methods [9]. Most time series models, for ex-
ample, are classified as parametric because they make sta-
tistical assumptions, such as the normality of the residuals
[10]. However, one of the possible disadvantages is that,
in most real cases concerning renewable resources, noise
cannot be treated in this way, as it presents intrinsically
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asymmetric tail behaviors [10].
Consequently, it is possible to perceive a high volume

of recent publications in this area of research involving
non-parametric methods in addition to hybrid or combined
techniques. Machine learning models stand out among the
non-parametric methods, especially variations of neural
network techniques (see [11]–[13]). However, it is essential
to underline that although they present advantages in
representing the randomness of VREs concerning other
methods, machine learning models tend to require great
computational effort and are usually difficult to interpret
and control.

Under these circumstances, many works model the
stochastic processes of renewable resources using Markov
Chains (see [10], [14]–[17]), which are easier to interpret
than machine learning methods. Based on Markov state
modeling, we identify several opportunities for scientific
contribution and propose a novel stochastic simulation
model of renewable sources in this work.

In short, the proposal can be summarized in two main
stages: (i) renewable modeling and (ii) scenario simulation.
In (i) renewable modeling, resource states are calculated to
represent the renewable sources. From the defined states,
transition probability matrices are calculated based on
historical data, making it possible to obtain different
generation scenarios through simulation techniques (ii).
The main innovations of this work can be summarized
as follows, and more details are provided in Section II:
(i) in the modeling stage, the calculation of states is
proposed to consider three aspects at the same time: (a)
the different complementary effects (spatial and tempo-
ral) between resources, with states representing multiple
renewable sources simultaneously; (b) the influence of the
phases of the ENSO on primary energy sources. For this,
the states of renewables are specifically calculated for each
phase of the climatic phenomenon; (c) the seasonality
of the data, so the states are specifically calculated for
each period of the data; (ii) in the simulation stage, the
scenarios are obtained from three main steps: (a) the first
one draws the ENSO phase; (b) the second one draws
the cluster of renewable resources based on the previously
defined ENSO phase; (c) the third one draws primary
resource values belonging to the cluster defined in the
second stage.

To validate the proposed methodology, scenarios were
generated for Brazilian data on hydro, wind, and solar
resources. The synthetic series obtained were evaluated
using statistical techniques to verify the generated sce-
narios’ adherence to the historical series characteristics.
Furthermore, the results of the proposed methodology
were compared to the scenarios obtained by benchmark
models applied in the context of the electricity sector.

The paper is structured as follows. Section II presents
the proposed framework to simulate renewable scenarios
and briefly explains the benchmark models. Then, in Sec-
tion III, an application is performed to simulate scenarios

for different regions of Brazil. The results are evaluated
and compared to synthetic series obtained by benchmark
models in the same section. Finally, Section IV brings
conclusions and final remarks.

II. Renewable scenarios simulation framework
Fig. 1 summarizes the methodology and its two main

stages, Renewable Modeling and Scenario Simulation, each
composed of three steps, detailed in II-A and II-B.

A. Renewable Modeling
The first step of the renewable modeling stage consists

of obtaining, analyzing and preprocessing data. Depending
on the interest and data availability, its time series can
comprise primary resource data (e.g., wind speed and solar
radiation) or power generation. After defining the region
of interest and the renewable sources to be modeled, it is
necessary to identify and treat missing data and outliers,
besides evaluating the application of data transformation
methods, such as standardization or normalization. This
step also involves data descriptive analysis and applying
statistical tests, like the ADF [18] and Fisher tests [19], to
assess, respectively, data stationarity and seasonality. It is
also important to assess how ENSO influences VREs by
applying statistical tests that compare data distributions
in the different climatic phenomenon phases, such as the
Kolmogorov-Smirnov test [20].

Furthermore, during the preprocessing step, the data
must be divided into classes, named cl,e,t. Each cl,e,t

comprises the set, from a location l, of renewable resource
data in ENSO phase e at time t. Considering a monthly
database, each class is represented by cl,e,t, where t is, in
this case, a monthly index. To compose all the classes,
divide the original data among all possible combinations
of “ENSO phase - month”. So, as a more specific example,
cl,neutral,January from a local l are the observations of re-
newable resources (as many as considered) in the January
months when ENSO is neutral.

The second step is discretizing the data and group-
ing them into finite states. In this context, each state
represents the coincident availability of different types
of resources at a particular time. Thus, a sequence of
states comprises the discrete time series. In this step,
clustering algorithms, such as the k-means [21], can be
used due to their simplicity and accuracy [15]. Clustering
algorithms aim to classify objects into several clusters
so that objects within the same cluster are as similar
as possible (high intraclass similarity) [21]. In contrast,
objects from different clusters are as diverse as possible
(low interclass similarity) [21].

So, the multivariate data (where each energy source con-
stitutes a variable) within each class (cl,e,t) is discretized
into different clusters (states). Since each cl,e,t consists
of different resources, the obtained states aim to capture
the complementarity effects between the VREs. Then,
each calculated cluster will have a number of dimensions
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Fig. 1. Renewable scenarios simulation framework.

or attributes corresponding to the number of renewable
sources. Additionally, clustering is carried out indepen-
dently for each class, maintaining the characteristics of
each location l of interest at time t for ENSO phase e. At
the end of the discretization process, each vector of VREs
at time t must belong to a particular cluster.

In the third step of the modeling, there are two types
of state transition matrices: (i) between VREs and (ii)
between ENSO phases.

Starting with the first ones, with the finite number of
states defined in the previous step, the VREs matrices
must be created at the same discretization periodicity for
consistency. The stationary transition probability (pa,b)
from state a to b, for all indices 1 ≤ (a, b) ≤ k, can be
calculated according to: pa,b = (na,b/

∑k
i=1 na,i), where

na,b is the number of transitions from a to b in the
data history, and the denominator is the total transitions
from a to all other possible states. After obtaining the
transition probabilities for each state, it is possible to build
the transition matrix according to (1), which represents
a transition matrix of renewable resources for a specific
location l from time t, considering that at time t the ENSO
phase is ei, to time (t + 1), considering that the ENSO
phase will be ej at (t +1), with (i, j) ∈ {Neutral, El Niño,
La Niña}.

P l
tei

→(t+1)ej
=


p1,1 p1,2 . . . p1,k

p2,1 p2,2 . . . p2,k

...
...

. . .
...

pw,1 pw,2 . . . pw,k

 (1)

In the transition matrix, the rows correspond to the
possible origin states (clusters) of the period t and the
columns to the potential destination states of the period
(t + 1). Detailing (1), w states are calculated for the
period t in ENSO phase ei. For period (t + 1) in ENSO
phase ej , there are a total of k states. Thus, p1,1, for
example, represents the transition probability from state
1 in period t in ENSO phase ei to state 1 in period (t + 1)
in ENSO phase ej , which is another state compared to
period t, given that, as detailed in the clustering step, the
clusters are calculated independently for each combination
of “ENSO phase - period”. Furthermore, each state has one
dimension for each VRE considered. Thus, for example,
if two sources are being modeled (e.g., wind and PV),

p1,1 will be the transition probability from one bivariate
state (wind-PV) to another bivariate state (wind-PV).
By the end, the number of transition matrices for a
location should correspond to the total number of possible
combinations among the different time levels in the three
ENSO phases.

From each matrix obtained by (1), the accumulated
transition matrix is calculated according to (2):

P l,accum
tei

→(t+1)ej

=


p1,1 p1,1 + p1,2 . . . p1,1 + p1,2 + .. + p1,k

p2,1 p2,1 + p2,2 . . . p2,1 + p2,2 + .. + p2,k

...
...

. . .
...

pw,1 pw,1 + pw,2 . . . pw,1 + pw,2 + .. + pw,k


(2)

To compute the accumulated matrix, the probabilities of
each row in (1) are incrementally summed up until the last
column. Consequently, all values in the last column of (2)
must be 1, as each value in this column represents the sum
of all possible transition probabilities starting from the
cluster of the corresponding row. The accumulated matrix
will be important in the simulation stage. The strategy to
compute the transition matrices between ENSO is similar
to the previous case, based on historical transitions. How-
ever, these represent the transition probabilities between
the phenomenon phases for each period t to (t + 1).
Thus, there is no need to apply clustering algorithms to
identify the ENSO states. They should also have their
accumulated version, named P ENSO,accum

t→t+1 . Finally, they
are independent of the VREs matrices and any location.
Besides, these matrices are used in the first step of scenario
simulation, detailed in the following subsection.

B. Scenario Simulation
The first step of the scenario simulation involves draw-

ing the ENSO phase based on the accumulated transition
matrix (P ENSO,accum

t→t+1 ) between the phases of the phe-
nomenon calculated in the modeling. To draw the first
value of the scenario, the last ENSO phase of the history
is considered the state of origin. Then, a random number
from a continuous Uniform distribution [0, 1] is compared
with the elements of the row corresponding to the origin
state in the accumulated matrix. Suppose the random
number is greater than the cumulative probability of the
previous state and less than or equal to the cumulative
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probability of the subsequent state. In that case, this state
is chosen to represent the next ENSO phase and will be
used in the next stage of the simulation. The pseudo-code
in Fig. 2 represents this procedure.

Fig. 2. Pseudo-code for the simulation based on state transition
matrices.

The second step involves sampling the clusters from
the accumulated transition matrix of VREs (P l,accum

tei
→(t+1)ej

).
The one is selected considering t as the origin time, state
ei (ENSO phase) at t, and ej to the phase sampled in the
first step for the time (t+1). Thus, a new state is sampled
for the period (t + 1), and the sampling mechanism is the
same as shown in Fig. 2, now using the VREs matrix.

The third and final step involves randomly sampling
an element of VREs belonging to the cluster drawn in
the previous step. The possible elements of VREs were
defined in the time series clustering step, and each has
a number of dimensions corresponding to the number of
renewable sources considered. Thus, we will finally have
the simulated VREs for the period (t + 1).

The three simulation steps are repeated until the length
for each scenario is reached. Finally, the proposed method-
ology must be evaluated to verify its performance and
adherence to the historical features. To this end, we apply
(i) a comparison between historical and simulated metrics,
(ii) hypothesis tests to verify equality between historical
and simulated distributions, and (iii) a comparison with
the performance of benchmark models. Subsection II-C
presents the benchmark models used in the context of the
application developed in this work.

C. Benchmark Models
Observing the temporal granularity of the series and

the simulation horizon is essential to select the bench-
mark models. In this sense, the proposed methodology
was applied to the Brazilian monthly series to generate
medium and long-term scenarios (Section III). From this,
the benchmark models used for planning the Brazilian
Electrical System (BES) for monthly simulations are the
periodic autoregressive, or PAR (p) [22]–[29].

In general, monthly series of VREs are characterized
by the periodic behavior of their probabilistic properties,
such as mean, variance, asymmetry and autocorrelation
structure [22]. Thus, the PAR (p) model fits an AR(p)
model for each period of the series, where p is the order of

the model, that is, the number of autoregressive terms. In
general, p is a vector where each element gives the order
of each period. For example, p = [p1, p2, p3, . . . , p12],
in the case of monthly series. A Z series with S periods
that repeat for N years can be represented by Z =
[z(1,1), z(1,2), . . . , z(1,S), . . . , z(N,S)]. The PAR model of this
series Z in the period m is given by 3:(

z(t,m) − µm

σm

)
=

pm∑
i=1

φ
(m)
i

(
z(t,m−i) − µm−i

σm−i

)
+ ut,m (3)

where µm is the mean over period m, σm is the standard
deviation over period m, pm is the autoregressive order
over period m, φ

(m)
i represents the ith autoregressive coef-

ficient in the period m and ut,m is the series of independent
residuals (mean zero and standard deviation = σu

m).

III. Case Studies
A. Data Base

To validate the proposed methodology, scenarios were
generated for different regions of the Brazilian territory
to obtain robust and generalized results, considering three
renewable resources - hydro, wind, and PV - that account
for more than 80% of Brazil’s electrical matrix [30]. Data
were obtained at the spatial level relative to the country’s
river basins. Seventeen basins cover the entire national
territory. The data correspond to monthly time series of
primary resources, that is, incremental flow, wind speed,
and solar radiation, aiming to carry out medium-term
simulations. It is noteworthy that the purpose of the case
studies was not to transform primary resources into energy
but to evaluate whether the proposed methodology cap-
tures the randomness of VREs and their complementary
characteristics to generate representative scenarios.

The hydro data of the basins were obtained from
NEWAVE [31], a tool used for planning the Brazilian En-
ergy System Operation. The system receives hydrological
flow data primarily through government agencies, such as
the Agência Nacional de Águas (ANA) and the Operador
Nacional do Sistema Elétrico (ONS), that collect inflow
data at various hydrological stations distributed along the
rivers and basins of the country. Two of the 17 basins
are unavailable in NEWAVE, so these regions were not
considered in this application.

The other variables, wind speed, extracted to a height
of 100m, and surface solar radiation, were extracted from
the Merra-2 reanalysis base [32], a widely used alternative
by academia and practitioners when there is a lack of or
limited measured data for renewable resources [4], [33].
Each basin covers a region with several points on the
Merra-2 grid, so a monthly average of each wind and PV
resource was obtained to obtain a single series per basin.

Although the incremental flow series are available from
1931 in NEWAVE, the others are only from January
1980 in Merra-2. As they all must have the same time
window, they were obtained from 1980 onwards. The last
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Fig. 3. Time series and ACFs - ‘Grande’ Case.

observation corresponds to December 2022, totaling 42
years, or 504 monthly observations.

Fig. 3 shows an example of the three resources of
the ‘Grande’ basin and their respective autocorrelation
functions (ACFs). The graphics of the other basins
can be accessed in a GitHub repository through this
link (https://github.com/gustavmelo/Paper-PSCC-2024),
as well as the full results of the case studies developed
in this work. Time series, in general, present a well-
defined seasonal behavior. The ACF measures the degree
of correlation of a variable at a given instant with itself at
a later time instant. The ACF is, therefore, an essential
tool for finding patterns of repetition/seasonality in time
series. A relevant finding is related to the lags in which
the autocorrelation values stand out compared to the
others. In all cases, lags multiple of 12 stand out with
positive autocorrelations, as the VREs tend to behave
similarly at the same months due to the seasons. On
the other hand, a lag multiple of 6 stands out with
negative autocorrelations since the behaviors tend to be
opposite in the inverted seasons. Furthermore, the VREs
time series must be stationary so that modeling can be
carried out using state transition matrices. To this end,
the Augmented Dickey-Fuller (ADF) test [18] was applied,
and, for a significance level of 5%, the null hypothesis of
non-stationarity was rejected for all cases. Finally, the ONI
index was used month by month to identify the ENSO
phases, whose data were extracted from the National
Oceanic and Atmospheric Administration (NOAA) [34].

B. Renewable Modeling
All stages of the methodology and analysis of the results

were carried out in the R programming language [35]. Due
to space limitations, we presented one example of each
step. The other results are available in the same link to
the GitHub repository presented in the previous section.
Additionally, the data from the last two years of the
dataset (2021 and 2022) were not utilized in the modeling
process as an out-of-sample period for comparison with
both, the benchmark and proposed scenarios.

Starting with the state transition matrices of the climate
phenomenon calculated from the history of the ONI index,
Table I shows the transition probabilities between the
ENSO phases from February to March, as an example.

There are 12 matrices of this type, corresponding to the
total number of possible transitions between the months.
Note that there are no transition probabilities between
the El Niño and La Niña phases by definition of the
phenomenon’s index, which must always go through a
neutral period between the two extreme phases.

TABLE I
ENSO Phase Transition Matrix from February to March -

P ENSO
F ebruary→March.

State Neutral El Niño La Niña
Neutral 0.941 0.059 0.000
El Niño 0.333 0.667 0.000
La Niña 0.083 0.000 0.917

To model the VREs, the clusters, and transition matri-
ces were also calculated by month. All series were normal-
ized before the clustering step to eliminate the influence
of data dimensionality. For each basin, we apply the k-
means algorithm 36 times, covering all combinations of 12
months of the year with the three phases of ENSO, and
the cluster number for each of the 36 classes ranged from
two to five. This number of clusters has enabled, in all
cases, the estimation of the transition matrices from the
available historical data. The centroid of each identified
cluster represents a state for calculating the transition
matrices. As for the monthly transition matrices per basin,
we have 84 in total, 12 for each possible phase transition,
i.e.: (i) between the months of the same ENSO phase:
Neutral-Neutral, El Niño-El Niño, and La Niña-La Niña,
totaling 36 matrices; (ii) between the months of different
ENSO phases: Neutral-El Niño, Neutral-La Niña, El Niño-
Neutral, and La Niña-Neutral, totaling 48 matrices. Ta-
ble II shows the transition matrix between VREs from
“January/Neutral Phase” to “February/Neutral Phase”
for the ‘Grande’ basin case.

TABLE II
Example of VREs Transition Matrix

(P Grande
January(Neutral)→F ebruary(Neutral)

) - ‘Grande’ Case.

January -
Neutral

February - Neutral
1F eb,Neut 2F eb,Neut 3F eb,Neut 4F eb,Neut

1Jan,Neut 0.20 0.00 0.60 0.20
2Jan,Neut 0.25 0.00 0.25 0.50
3Jan,Neut 0.00 0.50 0.50 0.00
4Jan,Neut 0.00 0.00 0.00 1.00

Note that although both “January-Neutral” and
“February-Neutral” presented four VREs states each, it
is noteworthy that they are not the same states since the
clustering of each “month-phase” data set was carried out
individually. Furthermore, each state is represented by the
cluster’s centroid to which it refers. So, each state simulta-
neously represents the three renewable sources since each
centroid is a vector with three dimensions or attributes,
one for each VRE, exploring the complementary effects
between the renewable sources. As an example, state
1 of “January-Neutral” is represented by the following
centroid: [6827 m3/s, 5.01 m/s, 0.11 Wh/m2], with the first
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attribute referring to the incremental flow, the second, to
the speed of wind and the third, to the solar radiation.
State 1 of “February-Neutral” has the following centroid:
[4723 m3/s, 5.29 m/s, 0.22 Wh/m2]. All transition matri-
ces, whether between ENSO phases or between VREs, also
have their version of accumulated probabilities, effectively
used in the simulation steps, the results of which are
detailed in the following subsection.

C. Scenario Simulation
For each basin, 2000 scenarios of 60 months, equivalent

to five full years, were generated based on the simulation
horizon of NEWAVE. To simulate the first state of each
scenario, the last historical observation was used as the
predecessor state. According to Fig. 1, an ENSO phase
must be drawn in the first step. The last month in in-
sample data was December 2020, whose ENSO phase was
La Niña. Therefore, the scenarios start in January, and
first, an ENSO phase is drawn from the accumulated
matrix from December to January (P ENSO,accum

Dec→Jan ). To
do this, a uniform random number [0,1] is generated via
Monte Carlo. With the random number, the next phase of
the phenomenon is identified from the line corresponding
to the predecessor state (La Niña), according to Fig. 2.

The second step is the VREs cluster draw. With the pre-
vious ENSO phase drawn, the VREs cluster for January
is drawn using the correct VREs transition matrix. For
each basin, this matrix must correspond to the transition
of resources from “December-La Niña” to “January-Phase
drawn firstly”. The process in the matrix is similar to
the first step, with the predecessor state corresponding to
the last state of VREs identified by the clustering. In the
third and final step, with the cluster of VREs for January
defined, one of the resource vectors belonging to the cluster
is randomly drawn. One could use the cluster’s centroid to
represent the final values of VREs, but to introduce higher
variability to the scenarios, this third step was added,
increasing the possibilities of VREs in the synthetic series.
The three steps were repeated until the predefined number
of scenarios was completed.

Following are two relevant observations: (i) the ENSO
phases drawn in the first step are the same for all basins in
all scenarios, keeping the correlation between the different
regions concerning the phenomenon - the differences occur
from the second step onwards with the VREs transition
matrices and (ii) for the extreme phases of ENSO to occur,
there must be at least five consecutive months of warming
(El Niño) or cooling (La Niña) of the waters of the Pacific
Ocean in the measurement region of the ONI index. There-
fore, to represent this specificity of the phenomenon in
the scenarios, the same phase is maintained when entering
one of the two phases, interrupting the first stage of the
simulation until completing five months. Then, after five
months in the same phase, we return with the draw for
the first step, enabling the continuation or not from the
current ENSO state. If an exit and a subsequent return

to one of the two phases (El Niño or La Niña) occurs, the
five months must be fulfilled again.

D. Scenario Analysis
Comparing the ENSO phases’ frequencies between the

in-sample historical and the scenarios month by month,
we see, in Fig. 4, that the phenomenon phases present
seasonality, well reproduced by the simulations.

Fig. 4. ENSO phases histograms.

Proceeding to the VREs evaluation, analyzing them
by ENSO phase, the Kolmogorov-Smirnov test [20] was
applied to compare, with statistical robustness, whether
the distributions of the simulated data follow the his-
torical distributions by phase of the phenomenon. At a
significance level of 10%, the results indicate that, for
the three VREs, in the three phases of the phenomenon,
considering all basins, the simulated scenarios present the
same historical distribution in 98% of cases, as the null
hypothesis of equality of distributions was not rejected.

Validating the results based on comparisons with the
Brazilian market benchmark is essential. Thus, considering
all 15 basins and 12 months of the year, 180 PAR(p)
models were estimated. Each model had its order se-
lected based on the partial autocorrelation function of
the historical series, ranging from 1 to 6. The estimated
models generated the same number of scenarios as the
methodology proposed for each basin.

Using the ‘Grande’ basin as an example, Table III
presents several metrics of the historical in-sample data
(Hist) and for the scenarios obtained from both the pro-
posed methodology (Prop) and the benchmark (Bench).
For the simulated metrics, it also presents the 1st and
99th percentiles of the scenarios, within parentheses. Fi-
nally, the table shows the discrepancies (disc) between
the simulations and historical data. The discrepancy is
defined as the absolute percentage difference between the
value of the historical metric and the simulated mean
for this metric. So, disc is calculated by (|(Historical −
Simulated)/Historical|) × 100. Analyzing all basins, in
80% of measurements, the proposed methodology’s results
are more accurate, i.e., they showed lower discrepancies
(Prop Disc) compared to the benchmark (Bench Disc).

Analyzing Table III, we observe that the percentiles of
the benchmark present more extreme values than the ones

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



TABLE III
Metrics comparison – ‘Grande’ Case.

VREs Data Mean Median SD Asymmetry Kurtosis

Hydro

Hist 2098 1702 1298 1.36 4.79
Bench 1971 (1407, 2606) 1607 (1134, 2193) 1232 (825, 1659) 1.46 (0.70, 2.41) 5.60 (2.39, 11.3)
Prop 2105 (1824, 2482) 1698 (1416, 1981) 1300 (939, 1749) 1.36 (0.66, 2.04) 4.76 (2.30, 8.08)

Bench Disc 6.1% 5.6% 5.1% 7.4% 16.9%
Prop Disc 0.3% 0.3% 0.2% 0.4% 0.7%

Wind

Hist 5.22 5.18 0.64 0.21 3.01
Bench 5.23 (5.01, 5.47) 5.22 (4.94, 5.49) 0.63 (0.51, 0.76) 0.12 (-0.50, 0.83) 2.76 (1.91, 4.29)
Prop 5.21 (5.06, 5.36) 5.17 (4.96, 5.41) 0.64 (0.52, 0.79) 0.23 (-0.36, 1.11) 3.02 (1.96, 5.81)

Bench Disc 0.3% 0.8% 0.5% 41.6% 8.0%
Prop Disc 0.2% 0.1% 0.4% 13.8% 0.4%

PV

Hist 0.35 0.36 0.11 -0.23 1.91
Bench 0.35 (0.32, 0.38) 0.36 (0.32, 0.40) 0.11 (0.10, 0.12) -0.17 (-0.51, 0.16) 1.99 (1.60, 2.61)
Prop 0.35 (0.33, 0.37) 0.36 (0.32, 0.39) 0.11 (0.10, 0.13) -0.23 (-0.52, 0.05) 1.88 (1.56, 2.34)

Bench Disc 0.5% 1.6% 0.7% 24.2% 4.2%
Prop Disc 0.3% 0.1% 1.7% 0.7% 1.4%

of the proposed model in most cases. PAR(p) model is
criticized for poorly representing the VREs asymmetry,
while the proposal achieved better performance. When
poorly estimated, it harms the representation of the tail
of the distributions, thus potentially overestimating or
underestimating extreme cases of VREs. This causes a
misrepresentation of the risk of renewable energy assets.

According to the predefined criteria, the last two years
of the database were set aside as an out-of-sample period.
Fig. 5 presents, for each VRE of the ‘Grande’ basin, the
first two years of simulations, both from the benchmark
and the proposal, along with the observed data in 2021 and
2022. Notably, although both methodologies reproduce
the observed seasonal pattern, the PAR(p) presents more
extreme scenarios, corroborating the in-sample analysis,
where PAR(p) elongates the tails in the scenarios, often
simulating unrealistic values. Our proposal generally keeps
the scenarios within a narrower and more realistic range to
cover the observed and feasible future. A similar pattern
can be noted for all other basins. (GitHub link).

Fig. 5. Scenarios and observed data (2021-2022) - ‘Grande’ Case.

Regarding the out-of-sample period, there was an ob-
served prevalence of La Niña according to the ONI index -
83% of the months, while 17% were in the neutral phase. In
the ‘Grande’ basin region, La Niña tends to reduce rainfall
volumes, increase solar incidence, and can bring wind
patterns to lower levels. Thus, it is observed that compared
to in-sample averages, 2021 and 2022 presented generally

lower levels for incremental flow and wind speed, besides
the opposite for solar radiation. At the same time, the two
initial years of the scenarios of the proposed methodology
presented 42% of the months in La Niña, 41% in the
Neutral phase, and 17% in El Niño. Despite a significant
portion of the months being in La Niña, its frequency
was lower than observed, justifying the higher simulated
average levels for the hydro and wind resources compared
to the observed data, besides the opposite pattern for PV.
Finally, we accurately simulated the frequency of ENSO
phases compared to in-sample data (Fig. 4), but aiming
to increase accuracy in out-of-sample periods in future
work, we may use ENSO forecasts from NOAA institution
[34]. However, we highlight the limitation of its forecast
horizon, which is no longer than eight months.

IV. Conclusion
This work proposes a framework for simulating VREs

stochastic processes, capturing the complementarity be-
tween different sources, besides the influence of climatic
phenomena. To evaluate the proposal, monthly data from
three sources covering the entire Brazilian territory were
used. We emphasize that, for monthly series, relatively
long historical records enable estimating states that better
capture the characteristics of the resources in different
ENSO phases. Using at least 20 years of monthly data
is recommended, according to tests previously conducted.

It is worth noting that the monthly indices of Pacific
temperature used to identify the ENSO phase have been at
a more extreme level of oscillations in the last six decades.
Therefore, as we have used data from this period, we
consider this new behavior in the scenarios. Such patterns
are unlikely to change for medium-term scenarios, as in
the case of the study. However, if the interest lies in sce-
narios for many decades ahead, considering changes over
time or simulations that encompass short-term changes,
adaptations to the methodology would be necessary.

Finally, the proposal outperformed the official Brazilian
benchmark model. As suggestions for future works: (i)
applying the scenarios in energy planning models; (ii)
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considering other climatic phenomena (e.g., sunspots);
(iii) validating the methodology with sub-monthly data,
such as hourly, assessing whether the scenarios repro-
duce the hour-to-hour ramping patterns; (iv) adapting the
methodology to represent long-term climate trends or even
very short-term oscillations in VREs states; (v) employing
ENSO official forecasts in the simulation beginning.
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“Validation of the representativeness of wind speed time series
obtained from reanalysis data for brazilian territory,” Energy,
vol. 258, p. 124746, 2022.

[34] NOAA, Available: https://www.ncei.noaa.gov/access/
monitoring/enso/sst, 2023.

[35] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2021. [Online]. Available: https://www.R-project.org/

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

https://origin.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
https://origin.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml
https://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais
https://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais
https://www.ccee.org.br/acervo-ccee?especie=44884&periodo=365
https://www.ccee.org.br/acervo-ccee?especie=44884&periodo=365
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://www.ncei.noaa.gov/access/monitoring/enso/sst
https://www.ncei.noaa.gov/access/monitoring/enso/sst
https://www.R-project.org/

	Introduction
	Renewable scenarios simulation framework
	Renewable Modeling
	Scenario Simulation
	Benchmark Models

	Case Studies
	Data Base
	Renewable Modeling
	Scenario Simulation
	Scenario Analysis

	Conclusion
	References

