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Abstract—Power system optimization problems which include
the nonlinear AC power flow equations require powerful and
robust numerical solution algorithms. Within this sub-field of
nonlinear optimization, interior point methods have come to
dominate the solver landscape. Over the last decade, however,
a number of efficient numerical optimizers have emerged from
the field of Machine Learning (ML). One algorithm in partic-
ular, Adam, has become the optimizer-of-choice for a massive
percentage of ML training problems (including, e.g., the training
of GPT-3), solving some of the largest unconstrained optimization
problems ever conceived of. Inspired by such progress, this paper
designs a parallelized Adam-based numerical solver to overcome
one of the most challenging power system optimization problems:
security and reserve constrained AC Unit Commitment. The
resulting solver, termed QuasiGrad, recently competed in the
third ARPA-E Grid Optimization (GO3) competition. In the day-
ahead market clearing category (with systems ranging from 3
to 23,643 buses over 48 time periods), QuasiGrad’s aggregated
market surplus scores were within 5% of the winningest market
surplus scores. The QuasiGrad solver is now released as an
open-source Julia package: QuasiGrad.jl. The internal gradient-
based solver (Adam) can easily be substituted for other ML-
inspired solvers (e.g., AdaGrad, AdaDelta, RMSProp, etc.). Test
results from large experiments are provided.

Index Terms—AC unit commitment, Adam, optimal power
flow, market surplus, mixed-integer, security constraints

I. INTRODUCTION

The first two Advanced Research Projects Agency–Energy
(ARPA-E) Grid Optimization competitions (GO1, GO2) fo-
cused on various flavors of the Security Constrained Optimal
Power Flow (SCOPF) problems [1]–[3]. Within these com-
petitions, the most successful numerical solution techniques
leveraged interior point solvers [1]. The winningest approach
in GO2, for example, used Ipopt via the Gravity model-
ing framework [4]. The third Grid Optimization competition
(GO3), which recently concluded, focused on multi-period
dynamic markets. More specifically, the GO3 market clearing
problem incorporated security and reserve constrained AC unit
commitment (ACUC) with topology optimization, and it asked
competitors to maximize a social surplus function within the
context of real-time, day-ahead, and week-look-ahead markets.

As designed, the GO3 test-cases are generally intractable:
the largest case, containing 23,643, buses, has 26,870 sepa-
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Fig. 1: Illustrated is an Adam solve on a 617-bus, 18 time period, real-time
market clearing test case (integers relaxed); this system is initialized with a
copper pate economic dispatch solution (LP), whose upper bound is given as
the orange dashed line. Within several thousand iterations, Adam finds an AC
network solution to within 1% of this global bound. A single back-propagation
(i.e., gradient calculation) through this entire system, include all 18 × 562
contingencies, takes ∼24ms when parallelized on 6 CPU threads.

rate contingencies and 33,739 switchable lines/transformers
at each time step. Reliably solving DC unit commitment
(DCUC) on such a system is challenging in itself, much
less ACUC. In order to overcome such levels of compu-
tational intractability, this paper, and the QuasiGrad solver
which it proposes, leverages techniques designed to solve
large scale optimization problems from another community:
machine learning (ML). The popularized GPT-3 model, for
example, contains 175 billion tunable model parameters (i.e.,
optimizable decision variables) [5]. A plethora of gradient-
based optimization tools have come from the ML community
for solving such problems [6], but Adam has emerged as the
clear dominant solver. GPT-3 was trained with Adam [5], as
were other large commercial models.

While Adam has been a successful tool for solving
large-scale nonlinear programming (NLP) problems, it has
also recently been used to solve sub-problems in mas-
sive Mixed-Integer Linear Programming (MILP) Branch-and-
Bound (BaB) problems. The α, β-CROWN solver [7], which
has won the most recent International Verification of Neural
Networks Competitions (VNN-COMPs) [8], uses a GPU-
accelerated Adam solver to verify the performance of ex-

Submitted to the 23rd Power Systems Computation Conference (PSCC 2024).
This work was supported by the HORIZON-MSCA-2021 Postdoc Fellowship
Program, Project #101066991 – TRUST-ML.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



tremely large neural networks (whose verification problems
often reformulate directly into MILPs). Notably, α, β-CROWN
was able to win these highly competitive competitions by
carefully leveraging the computational might of modern GPUs
along with the inherent parallelizability of Adam. Like other
gradient-based solvers, Adam requires a massive number of
derivative computations – each of these “backpropagations”
can be efficiently computed in parallel, greatly accelerating
the iterations.

Building on these successes, this paper introduces the
QuasiGrad solver for solving large scale power system opti-
mization problems (specifically, the one formulated for GO3).
The core numerical workhorse under QuasiGrad’s hood is
Adam. Despite its prowess, Adam needs help: to get this
help, QuasiGrad leverages a number of other innovations to
aid in solving the large-scale reserve and security constrained
ACUC market clearing problem. Four of these contributions
are summarized before:

1) We reformulate, and explicitly backpropagate through,
the GO3 reserve + security constrained ACUC problem.

2) Using a preconditioned conjugate gradient (Kyrlov sub-
space) method, we stochastically select, numerically
solve, and backpropagate through, parallelized security
constraints. The computed gradients are passed to Adam.

3) We design a series of parallelized projection methodolo-
gies, including a guaranteed feasible ramp-constrained
power flow solver, in order to exploit parallel computa-
tional resources and accelerate the convergence of Adam.

4) We release QuasiGrad.jl, an open-source package
available in the Julia ecosystem [9].

In Sec. II, we introduce the Mixed-Integer NLP (MINLP)
proposed in GO3, and we transform the problem to make it
amenable for gradient-based solvers. In Sec III, we propose the
full QuasiGrad solver, and in Sec. IV, we provide simulated
test results. Conclusions are presented in Sec. V.

II. PROBLEM FORMULATION

This section introduces the MINLP designed by the GO3
planning team. This MINLP is then transformed into a for-
mulation which is amenable for gradient based solvers (i.e.,
Adam) to directly interact with. Regarding notation, lower
case variables are scalars (e.g., x), bold lower case variables
are vectors (e.g., x), and upper case variables are generally
matrices (e.g., X). In all cases, we closely follow the notation
prescribed in the official GO3 problem formulation [10].

A. Motivation for Reformulation

Training problems in ML are often formulated as

min
x
L(x), (1)

where L(x) is the canonical “loss” function relating in-
put/output data mappings, and x is an unconstrained vector of
model parameters. The QuasiGrad solver is designed around
the idea of transforming the GO3 MINLP problem into a form
which approximates (1). As formulated in [10], however, The
GO3 MINLP contains three challenging complications:

1) equality constraints,
2) inequality constraints,
3) integer variables.

While directly penalizing these constraints/integrality require-
ments and pushing them into the loss function may seem to
be an obvious solution, care must be taken to ensure the
penalization procedure does not introduce unnecessary, and
potentially intractable (in the case of contingency violations),
loss error. For example, consider the following NLP:

min
x,y

f(x,y) (2a)

s.t. Ax = y. (2b)

The best reformulation substitutes the equality y ← Ax di-
rectly, such that f(x, Ax) is minimized independently. Naive
constraint penalization on the other hand, via L =f(x,y) +
λ ∥Ax− y∥, is problematic for three reasons:

1) the “y” variable is unnecessarily retained;
2) the optimizer must expend implicit computational re-

source in approximating Ax ≈ y;
3) finally, and most subtly, assume a given numerical solu-

tion x∗ to (2) is evaluated by computing f(x∗, Ax∗). In
this case, any effort spent by the optimizer to minimize
the penalty term λ ∥Ax− y∥ was a “numerical distrac-
tion”, since it had no explicit effect on solution quality.
In summary, a successful reformulation will “find x and
compute y” rather than “find x and find y”.

In light of these observations, the following subsections rewrite
the GO3 MINLP into a form which is similar to (1) and, thus,
amenable for gradient based solvers (i.e., Adam). In doing so,
we eliminate all unnecessary intermediate variables (i.e., “y”
terms, which we call “auxiliary” variables), and we ensure the
gradient solver expends its computational resource computing
numerical variable values which actually influence solution
quality (i.e., “x” terms, which we call “basis” variables).

B. MINLP Reformulation

We begin by stating the following MINLP, which represents
an exact transformation1 of the GO3 security and reserve con-
strained ACUC problem [10]. This transformation writes all
auxiliary variables y as an explicit function of basis variables
x. Notably, we have left the contingency constraint function,
hctg(·), in place, since it will receive special consideration:

min
xd,xc

zms(xc,xd,y) + zctg (3a)

s.t. y = f(xc,xd) (3b)
0 = hctg(xc,xd,θk) (3c)
Acxc +Adxd ≥ 0 (3d)
xc ≤ xc ≤ xc (3e)
xd ≤ xd ≤ xd (3f)

1The only GO3 constraint which is not explicitly captured via (3) is the
synchronous network connectivity constraint. This constraint specifies that a
given line switch cannot induce an electrical island within the AC network.
The QuasiGrad solver deals with this constraint heuristically.
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xd ∈ Znd (3g)
xc ∈ Rnc , (3h)

where xc and xd are vectors of continuous and discrete basis
variables (we denote x as the more general concatenation of
xc and xd), while y is a vector of auxiliary variables. We
use the term “basis” to denote the minimum set of variables
needed to uniquely reconstruct a full GO3 solution (e.g., v, θ,
etc.); these are the same variables which are reported in the
solution.json file sent to the GO3 solution parser (referred to
as “Output data” in [10]). The basis variable sets Ωc and Ωd,
associated with xc and xd, are given as

Ωc = {v ∪ θ ∪ ϕ ∪ τ ∪ pfr,dc ∪ qfr,dc ∪ qto,dc ∪ pon∪
q ∪ prgu ∪ prgd ∪ pscr ∪ pnsc ∪ prru,on∪
prru,off ∪ prrd,on ∪ prrd,off ∪ qrqu ∪ qrqd} (4)

Ωd = {ush ∪ uon}. (5)

See [10] for definitions. The auxiliaries in y, on the other hand,
represent the large set of variables which can be directly elim-
inated from the problem formulation. In the reformulation (3),
we have carefully eliminated all such auxiliary variables. Our
elimination uses the max(·, 0), or ReLU, operator extensively;
the ReLU is one of the foundational nonlinear activation
functions used in modern ML, and gradient-based solvers have
demonstrated a remarkable ability to optimize over functions
which use it (to the apparent surprise of mathematicians [11]).

Next, we present a series of four representative auxiliary
variable reformulation examples; i.e., where we reformulate
optimization constraints into to explicit functions à la (3b).
• Example 1 (slack variable elimination): The apparent

power flow on a given line sjt is penalized if its magnitude
is larger than flow limit smax

j . In [10], this penalty zsjt is
formulated using slack variable s+jt (“fr” and “to” sides are
neglected for notational clarity):

0 ≤s+jt (6a)

zsjt =dtc
ss+jt (6b)√

p2jt + q2jt ≤s
max
j + s+jt. (6c)

Since line flows may be written as direct nonlinear functions of
the basis variables, and since the slack value may be captured
using a max operator, the penalty may be computed as an
explicit function of basis variables x:

zsjt = dtc
s max((p2jt(x) + q2jt(x))

1/2 − smax
j , 0). (7)

All slack variables are transformed in this way.
• Example 2 (startup and shutdown variable elimination):

Startup, shutdown, and on-off variables are linked via evolu-
tion equations [10]:

usu
jt + usd

jt ≤ 1 (8a)

uon
jt − uon

j,t−1 = usu
jt − usd

jt . (8b)

The startup and shutdown variables, however, are uniquely
defined for a given on-off variable uon

jt sequence. Therefore,

(8) may be captured via the following explicit definitions for
auxiliary startup and shutdown variables:

usu
jt ≜ +max

(
uon
jt − uon

j,t−1, 0
)

(9)

usd
jt ≜ −min

(
uon
jt − uon

j,t−1, 0
)
. (10)

These auxiliary variables are then plugged in for a variety of
uses (e.g., startup state calculations, shutdown costs, etc).
• Example 3 (device cost curves): Time-dependent device

costs zenjt are modeled in [10] via piecewise linear convex (or
concave) cost (or value) functions:

0 ≤ pjtm ≤ pmax
jtm , ∀t ∈ T, j ∈ Jpr,cs,m ∈Mjt (11a)

pjt =
∑

m∈Mjt

pjtm, ∀t ∈ T, j ∈ Jpr,cs (11b)

zenjt = dt
∑

m∈Mjt

cenjtmpjtm, ∀t ∈ T, j ∈ Jpr,cs. (11c)

By instead defining a cumulative block size pcum,max
jtmL

as

pcum,max
jtmL

=

L∑
l=1

pmax
jtml

, (12)

energy cost may be explicitly computed as

zenjt = dt

|Mjt|∑
l=1

cenjtml
max

(
min

(
pjt − pcum,max

jtmL=l−1
, pjtml

)
, 0
)
, (13)

where pcum,max
jtmL=0

= 0. The max(min(·)) formulation sums the
length of a bid block, times its marginal cost, until a bid block
component exceeds the power production value pjt (at which
point, 0 is added thereafter).
• Example 4 (power balance): Active and reactive power

imbalance expressions are computed in [10] as

pit =
∑

j∈Jcs
i

pjt+
∑

j∈Jsh
i

pjt+
∑
j∈Jfr

i

pfrjt+
∑

j∈Jto
i

ptojt−
∑

j∈J
pr
i

pjt (14)

qit =
∑

j∈Jcs
i

qjt+
∑

j∈Jsh
i

qjt+
∑
j∈Jfr

i

qfrjt+
∑

j∈Jto
i

qtojt−
∑

j∈J
pr
i

qjt. (15)

Mismatch penalties, ∀t ∈ T, i ∈ I , are then computed via
zpit = dtc

pp+it and zqit = dtc
qq+it , where slack inequalities p+it ≥

pit, p+it ≥ −pit, q+it ≥ qit, and q+it ≥ qit are additionally
enforced. To transform this expression, we take absolute value:

zpit = dtc
p|pit| (16)

zqit = dtc
q|qit|, (17)

where pit and qit come directly from the mismatch equations
defined above. Since cp and cq are very large penalization
constants, a tightening “soft-abs” function will be used in the
final QuasiGrad formulation, rather than an abs function.

Through these transformations, along with a series of other
similar ones (see SI material for this paper: [12]), we are able
to write a market surplus function which is an explicit function
of the 21 basis variables identified in (4)-(5). This process
was implemented manually, and to the author’s knowledge,
no generalized code base or software libraries exist which
can automatically perform said transformation. Recent tools,
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e.g., in [13], have used ReLU operators to penalize constraint
violations, but the direct application of ReLU-based penaliza-
tions will not, e.g., eliminate unnecessary slack variables, or
efficiently capture block-bid transformations as in (13).

C. Further refinements: constraint penalization, variable clip-
ping, and integer relaxation

With the isolation of auxiliary variables, the MINLP of
(3) can have its (i) auxiliary variables eliminated, (ii) linear
constraints penalized with a soft-ReLU2, (iii) integers relaxed,
and (iv) basis variables “clipped” into a rectangular bounding
box B defined from constraints (3g)-(3h). The updated NLP
formulation is given as:

min
xd,xc∈B

zms(xc,xd,f(xc,xd)) + zctg

+ ρ · σs (Acxc +Adxd) (18a)
s.t. 0 = hctg(xc,xd,θk). (18b)

Integer variables: The general strategy of the QuasiGrad
solver for dealing with integers goes as follows: (i) solve
NLP (18) to some degree of accuracy, (ii) project the relaxed
integers into the feasible space (see next subsection), (iii)
permanently fix a subset of the integers whose projected values
were closest to their relaxed values, adding them to set F , and
(iv) repeat until all integers are fixed to feasible values. This
sort of batch rounding procedure is a highly useful heuristic,
but it can easily be replaced with a more systematic integer
search (as with α, β-CROWN, which performs a complete
BaB search routine with Adam as the subproblem solver).
This procedure is generally inspired by the Iterative Batch
Rounding (IBR) routine used by the GravityX team in GO1
and GO2 [2]. Our general strategy is outlined in Alg. 1,
where nb is the total number of binaries. As the Adam solver
iterates and the wall clock time increases, the soft-ReLU
function in (18a) increasingly penalizes constraint violations
more strongly, similar to the soft-abs tightening in Fig. 4.

Algorithm 1 QuasiGrad Process for Fixing Integers

1: F ← ∅ (no fixed binaries)
2: while |F| < nb (some binaries are not fixed) do
3: Solve continuous NLP (18) with binaries in F fixed
4: Project device binaries via Proj. 1 using parallelized solves
5: Add a fraction of the projected binaries to F

end

D. Integer projection

Adam does not enforce integrality constraints itself. Rather,
in our approach, we rely on the successive, highly-parallelized
projection of all integer variables. The associated projection
is given in Proj. 1. This MILP projection enforces all ramp,
reserve, headroom, and limit constraints for a given device
– producer (generator) or consumer (load). Notably, these
projections are executed in parallel via multi-threading (i.e.,

2The soft-abs function applied to scalar x is defined via |x|s ≜
√
x2 + ϵ2.

The soft-ReLU function applied to scalar x is σs(x) ≜
√

max(x, 0)2 + ϵ2.

parallel 
device links

parallel 
power flow 

planes

Fig. 2: The parallel nature of devices constraints and power flow constraints
are portrayed. Devices can be projected feasible in parallel (via Proj. 1), and
power flow solves can be performed in parallel (via Proj. 3).

on each CPU thread, Gurobi is explicitly given a MILP to
solve, each associated with a single device). The objective
function tries to keep the decision variables xc, xd as close to
the continuous NLP solution x0

c , x0
d as possible via penalizing

deviations. The matrices Dgi
c , Dgi

d are diagonal matrices which
simply select the decision variables associated with device i.
Finally, integer variables in F are fixed to their previously
projected values and eliminated from a given projection. The
parallel nature of device projections is illustrated by the
parallel vertical red lines in Fig. 2. Notably, a single device
projection over, e.g., 18 time periods typically solves to ∼ 0
optimality gap via Branch-and-Bound search routine in less
than 50 ms (often, even faster).

Projection 1: Optimal Device Binary Projection [MILP]
⋆ parallelizable across each device

min
xc∈R,xd∈Z

∥∥Dgi
c

(
xc − x0

c

)∥∥
1
+

∥∥Dgi
d

(
xd − x0

d

)∥∥
1

s.t. xd,i = x0
d,i, i ∈ F (fixed binaries)

[10, eqs. (48)-(58)] (binary constraints)
[10, eqs. (68)-(74)] (ramp limits)
[10, eq. (98)-(108)] (reserve constraints)
[10, eq. (109)-(118)] (producer limits)
[10, eq. (119)-(128)] (consumer limits)

E. Contingency gradients

In subsection II-B, we solved for and eliminated all auxil-
iary variables, but we left the contingency expression (18b).
Contingencies in GO3 are modeled via DC power flow so-
lutions (in conjunction with nonlinear apparent power flow
calculations). In order to eliminate a DC power flow expression
pinj
t = Ykθtk, we would need to (i) solve it directly via

θtk = Y −1
k pinj

t , (ii) use the phase angle solution to compute
flow violations, and then (iii) push those violations up into
the objective function (18a). This approach is non-scalable,
however, for two reasons:

• Y −1
k is generally a dense matrix, and it would consume

very large amounts of memory to compute and store such
matrices for each contingency/time;
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• every Adam iteration would require nt × nctg dense
matrix-vector products, which would be untenable.

Instead, the approach we take can be summarized in three
steps: at each Adam iteration, we (i) solve a subset of
contingencies, (ii) backpropagate through the ones with the
worst violations, and then (iii) pass these computed gradients
to Adam. Thus, Adam does not solve contingencies, but it does
feel the pressure from their efficiently computed gradients.
In the following, we propose efficient methods for solving
a subset of contingencies at each Adam iteration and then
backpropagating through them.

1) Contingency evaluation: As in [10], GO3 contingency
k line flows are computed via

pjtk = −bsrj uon
jt (θitk − θi′tk − ϕjt) (19a)

= −bsrj uon
jt (θitk − θi′tk)︸ ︷︷ ︸

fjtk

+ bsrj u
on
jt ϕjt︸ ︷︷ ︸
bjt

. (19b)

We vectorize fjtk, bjt across all lines and transformers into
ftk, bt. We then use a signed incidence matrix E to compute
nodal injections (which are know by device injections):

pinj
t = ET (ftk + bt) (20a)

= ETYxEθtk + ET bt (20b)

= Ybθtk + ET bt, (20c)

where Yx is a diagonal matrix of inverse line reactances.
Deleting the reference bus (hat notation), reduced nodal angles
θ̂tk and contingency branch flows ptk may be computed:

θ̂tk = Ŷ −1
b

(
p̂inj
t − ÊT bt

)
(21)

ptk = YxÊθ̂tk. (22)

Once computed, ptk is used in conjunction with reactive power
line flows to compute apparent power branch overloads. The
main computational task in this process is solving the linear
system in (21). Here, we exploit a preconditioned conjugate
gradient (pcg) solver [14]. This solver is a Krylov subspace
method which iteratively (rather than recursively, in the case of
Gaussian elimination) approximates a linear system solution.
Since the base-case DC admittance matrix Ŷb is static for a
given set of line switches, we use a constant Limited memory
LDL (LLDL) factorization as a preconditioner P̂ . This greatly
accelerates pcg convergence:

P̂ ← LLDL
(
ÊTYxÊ

)
(23)

θ̂tb ≈ pcg(p̂inj
t − ÊT bt, Ŷb, P̂ , ϵpcg), (24)

where the pcg function approximates the solution of (21)
with preconditioner P̂ ; it terminates when the provided error
metric ϵpcg is satisfied. Notably, we only solve (24) for the
base-case at time t (i.e., no contingency branches removed
from the network yet). Using a low-rank update procedure
recently pioneered in [15], we then rank-1 correct to solve for
each contingency solution. This is motivated by the fact that
the admittance matrix of a given contingency is only “rank-1

away” from the base-case admittance matrix. To show this, let
Yk be an almost-empty matrix with a single, nonzero entry;
this entry is placed on the diagonal element associated with
the single line that is removed in a contingency, and its value
is the negative admittance of that line. Then, the relationship
between the base-case admittance Ŷb and a given contingency
admittance matrix Ŷb,k is

base-case admittance: Ŷb = ÊTYxÊ

contingency admittance: Ŷb,k = ÊTYxÊ + ÊTYkÊ︸ ︷︷ ︸
vkvT

k (rank-1)

.

Thus, using the Sherman-Morrison-Woodbury (SMW) for-
mula [15], [16], we may rank-1 correct a base-case nodal phase
angle solution. Setting ct ≜ p̂inj

t − ÊT bt, we have

(Ŷb + vkv
T
k )θ̂tk = ct (25a)

θ̂tk =

(
Ŷ −1
b −

Ŷ −1
b vkv

T
k Ŷ

−1
b

1 + vT
k Ŷ

−1
b vk

)
ct (25b)

= θ̂tb − Ŷ −1
b vk︸ ︷︷ ︸
uk

vT
k Ŷ

−1
b

1 + vT
k Ŷ

−1
b vk︸ ︷︷ ︸

wk

ct (25c)

= θ̂tb − uk(w
T
k ct), (25d)

since θ̂tb ≈ Ŷ −1
b ct via (24). Thus, the DC power flow

solution to a given contingency can be computed as the rank-
1 correction to a single pcg solve. This rank-1 correction is
quickly computed with one vector-vector inner product, once
vector-scalar product, and one vector-vector subtraction. After
calculating θ̂tk, contingency active power flows are computed
via (22), and then directional line penalties are computed via

sfr,+tk = max{(p2
tk + (qfr

tk)
2)

1
2 − smax,ctg, 0} (26)

sto,+tk = max{(p2
tk + (qto

tk)
2)

1
2 − smax,ctg, 0} (27)

zctgtk = 1T
(
dtc

s max
(
sfr,+tk , sto,+tk , 0

))
. (28)

2) Contingency backpropagation: Impactful contingencies
with nonzero penalties are backpropagated through, i.e., we
take the gradient of aggregated penalty scalar zctgtk with respect
to all relevant basis variables. Taking the gradients with respect
to reactive power flows, which are direct functions of nodal
voltage variables, is fairly straightforward and explained in the
SI [12]. Active power injection gradients are less trivial and
involve three steps: differentiate zctgtk with respect to active
power flows ptk, differentiate ptk with respect to injections,
and then differentiate injections with respect to basis variables.

We begin this process with an example: assume some scalar
z = f(y) has gradient ∇yz = d. If y = Ax, then

∇yz = d
∇x[y1, y2, ..., yn] = AT

}
⇒ ∇xz = ATd (29)

is a well known result. We exploit this in the following way:
we write the contingency penalty as a function of branch flows:
zctgtk = f(ptk) whose gradient is ∇ptk

zctgtk = dk (this gradient
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can be written by inspection of (26)-(28)). Next, we write the
linear mapping between flows, injections, and phase shifters:

ptk = Yx,kÊŶ −1
k p̂inj

t − Yx,kÊŶ −1
k ÊT bt. (30)

Fully analogous to (29), the gradient mappings between con-
tingency penalties, nodal injections, and phase shifters are

∇p̂inj
t
zctgtk =

(
Yx,kÊŶ −1

k

)T
dk (31a)

= Ŷ −1
k ÊTYx,kdk (31b)

∇bt
zctgtk = −

(
Yx,kÊŶ −1

k ÊT
)T

dk (31c)

= −Ê
(
∇p̂inj

t
zctgtk

)
. (31d)

Thus, in (31b), we are required to solve yet another linear
system. This is to be expected, since the contingency eval-
uation (24) linear system solve incorporated no nonlinearity
(it is simply a DC power flow solve), while the second linear
system solve backpropagates through (i.e., takes sensitivity to)
a number of nonlinear functions in (26)-(28)). To solve (31b),
we again use low-rank corrections to a pcg base-case solve.

There is one final, non-obvious step in the backpropagation.
To take this step, we note that ∇p̂inj

t
ptk = (Yx,kEŶ −1

k )T is in
fact an approximation – not because of nonlinearity, but be-
cause of GO3 slack distribution rules. When taking a gradient,
a power perturbation, say, on bus 1 must be uniformly redis-
tributed at all other buses according to [10, eq. (162)-(163)].
Thus, a power perturbation ∆p1 at bus 1 shows up like the
following smaller perturbations at all other buses:

∆p1 →


p1 − ∆p1

n +∆p1
p2 − ∆p1

n
...

pn − ∆p1

n

 . (32)

Thus, in the backpropagation, we need to correct for this effect.
To do so, denote A = Yx,kÊŶ −1

k , where ptk = Ap̂inj
t . By

(32), each perturbation in power ∆p “spreads out” across all
powers, giving us the following scalar relation:

∆ptk,i = Ai,j∆p̂injt,j −
1

n

∑
k

Ai,k∆p̂injt,j , ∀i, j (33a)

=

(
Ai,j −

1

n
Ai1

)
∆p̂injt,j , ∀i, j. (33b)

Since these expressions hold ∀i, j, the matrix A′ which relates
perturbations in injections and flows is given generally as

A′ = A− A11T

n
= A

(
I − 11T

n

)
. (34)

Directly updating the gradient in (31b), we have

∇p̂inj
t
zctgtk =

[
Yx,kÊŶ −1

k

(
I − 11T

n

)]T
dk (35a)

=

(
I − 11T

n

)T

Ŷ −1
k ÊTYx,kdk︸ ︷︷ ︸

η

(35b)

= η − 1
n

∑
η. (35c)

Thus, once we compute (31b), which yields η, we correct its
value via the surprisingly elegant (35c). Copious numerical test
results confirmed the validity of this unexpected expression.
Similar rank-1 flow corrections (e.g., more explicitly, to the
PTDF matrix) have been observed in [17, eq. 9]).

3) Contingency backpropagation summary: As Adam iter-
ates, we maintain a running list of the most severe contin-
gencies. At each Adam iteration, we evaluate contingencies
in the top X% percentage of this list, along with a stochastic
selection from the bottom percentage. All contingencies that
have a zctgtk score (28) higher than a certain numerical threshold
get backpropagated through; their gradients then get included
in (36) and sent to Adam. Alg. 2 summarizes this procedure.

Algorithm 2 Contingency solver
Require: Set of worst contingencies Kt, set of stochastically selected
contingencies St, pcg tolerance ϵpcg, backprop threshold ζ

1: for t ∈ T do ▷ parallel loop over ACUC time periods
2: pcg solve all base-case DC power flows via (24)

end
3: for t ∈ T do
4: for k ∈ Kt ∪ St do ▷ parallel loop over contingencies
5: Rank-1 correct base-case solutions via SMW: (25d)
6: Score ctg via (28)
7: if zctgtk > ζ threshold then
8: Solve backpropagation (31b)-(31d) via pcg + SMW

end
end

end
9: Update contingency sets Kt and St

10: return Approximated contingency gradients ∇xhctg

F. Implementation of the Adam solver

We may now sum the contingency gradients ∇xhctg with
the NLP objective function (18a) gradients:

g = ∇x (zms(x) + ρ · σs (Ax)) +∇xhctg, (36)

where the shorthand x has been used to represent all basis
variables. Eq. (36) is the result of a backpropagation. Notably,
all gradient in (36) are manually computed in the QuasiGrad
solver source code, which required a fairly substantial effort.
Backpropagation generates a cascade of derivatives which,
via chain rule, connect the sensitivity of a loss function (or
market surplus function) to a basis variable. For instance,
backpropagation from basis variables which influence line
flows “xlf” to the market surplus function is given by

∇xz
ms =∇zbasezms · ∇zt

t
zbase · ∇zs

jt
ztt · ∇s+jt

zsjt

· ∇
s
fr/to,+
jt

s+jt · ∇p/q
fr/to,+
jt

s
fr/to,+
jt · ∇xlf

p/q
fr/to,+
jt ,

xlf ∈ {vit, vi′t, θit, θi′t, τjt, ϕjt, u
on
jt }.

Further details on gradient reformulation and backpropagation
are provided in the SI [12]. Importantly, computation of
this gradient can exploit multi-threaded parallelism, which is
the general key to Adam’s success. Depending on the type
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of gradient needed, the QuasiGrad solver parallelizes over
ACUC time instance, network devices, or contingencies. One
of the main tools for achieving such parallelism is Julia’s
Threads.@threads macro, which assigns the computa-
tional workload associated with a loop onto different available
CPU threads. As a specific example, consider the gradient of
a “fr” line active power flow with respect to the “to” side
voltage (where δ = θfr

t − θto
t − ϕt):

for t ∈ T

∇vto
t
pfr
t = (−gsr cos (δ)− bsr sin (δ))vfr

t /τt

end

Generally, a CPU will execute these gradient solves in series
(one for each ACUC time instance). However, we may instruct
the compiler to compute these gradients in parallel via

Threads.@threads for t ∈ T

∇vto
t
pfr
t = (−gsr cos (δ)− bsr sin (δ))vfr

t /τt

end

Each doubling of CPU threads generally halves computational
time. We note that there is no single “right way” to multi-
thread: an infinite variety of effective options exist.

After efficiently computing the gradients in (36), we pass
these gradients to a modified Adam solver [18]. Adam has
been written about ad nauseam in the ML literature, so we pro-
vide little discussion of the Adam solver itself. At a high level,
however, Adam uses first and second order moment estimates
to implicitly track the curvature of a loss function landscape.
Adam step sizes adaptively react to observed changes in the
curvature, thus accelerating convergence towards some local
minimum. Since Adam only needs gradient information to
make decisions about step size and direction, variables can
be updated in parallel. Furthermore, gradient calculations can
computed concurrently, making the approach highly amenable
to parallel computation.

We feed the gradients from (36) into the modified Adam
solver of Alg. 3, which loops over basis variables and ACUC
time instances (in parallel). After updating the Adam and basis
variables states, basis variables are “clipped” (i.e., projected)
back into their feasible domain, as stated in Line 6. For
example, a binary state u is clipped into the range between 0
and 1 via u ← min(max(u, 0), 1). A voltage state v may be
similarly clipped via v ← min(max(v, v), v).

Adam step size: Practically speaking, one of the most
important aspects of Alg. 3 is setting the gradient descent
step size α. Since the GO3 clearing problems are time-limited
(10, 120, and 240 minute limits for the real time, day-ahead,
and week-ahead problems, respectively), we use wall-clock
time to set the Adam step size: αω(� = tw), which is a
function of basis variable ω. Initially, Adam takes relatively
large steps, but as time depletes, the steps sizes decay to very
small values (in order to “clean up” the solution). We use a

Fig. 3: Adam step size decay (α, left) and soft-abs/soft-ReLU tightening (ϵ,
right). Step size decay “leads” soft-abs/soft-ReLU tightening.

reflected sigmoid function to set step size magnitude:

normalize time: t̂w = 2
tw − t0
tf − t0

− 1 (37)

magnitude scale: β =
e4t̂w

0.6 + e4t̂w
(38)

actual step size: α = α010
β·log10(

αf
α0

). (39)

A representative step size decay curve, which exactly plots
(37)-(39), is given by the black curve in Fig. 3.

Algorithm 3 Modified Adam Solver (Original Adam: [18])
Require: Adam decay parameters β1, β2, adam iteration index i,
basis variable gradients gt,ω , step size function αω(�)

1: for ω ∈ Ω do ▷ loop over basis variables
2: for t ∈ T do ▷ parallel loop over ACUC time periods
3: mt,ω ← β1 ·mt,ω + (1− β1) · gt,ω

4: vt,ω ← β2 · vt,ω + (1− β2) · g2
t,ω

5: xt,ω ← xt,ω − αω(�) ·
(

mt,ω

1−βi
1
+ ϵ

)/(√
vt,ω

1−βi
2
+ ϵ

)
6: xt,ω ← min(max(xt,ω,xt,ω),xt,ω) ▷ clip all states!

end
end

Homotopic constraint penalization: Certain gradients in (36)
dominate other gradients by up to several orders of magnitude,
essentially drowning out their contributions. In order to over-
come this challenge, we first loosen these constraint penalties,
and then we use a homotopy procedure to monotonically
increase the penalization of these constraints as wall clock time
increases. For example, we use a scaled, soft-abs function to
penalize power balance error: |x|s = β ·

√
x2 + ϵ2. The ϵ2 term

decays in the same fashion as Adam step size (37)-(39), but
over more orders of magnitude – see the red curve in Fig. 3,
while β increases linearly from 0.1 to 1.0. The effect of this
homotopic penalization is demonstrated in Fig. 4. Note that
Adam is a first order method, so the upward shifting of these
curves away from the origin is immaterial: only the gradient
of these curves is relevant. Homotopic constraint penalization
is applied to power balance, branch flow, contingency, and
“penalized constraint” (see (18a)) penalties. Advanced homo-
topy methods have been highly successful in previous GO
competitions [19].

III. QuasiGrad

The previous section reformulated the GO3 MINLP in to
form which Adam can interact with. While Adam is a powerful
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Fig. 4: Illustrated is the successive tightening of the soft-abs function
β
√
x2 + ϵ2 as wall clock time increases. The value of epsilon is decreased

in concordance with the red curve illustrated in Fig. 3.

optimization tool, copious testing has found that Adam’s
effectiveness can be greatly enhanced if it is combined with
other well-established, hyper-efficient numerical techniques
(e.g., parallelized LP solvers). In this section, we review each
of these tools, and we then we put them all together into a
single, coherent solver (QuasiGrad) with Adam at its center.

A. Copper plate economic dispatch with LP relaxed binaries

Since Adam is a local, gradient-based solver, it is highly
influenced by its initialization. To initialize the QuasiGrad
solver, we first pose and solve a copper plate economic
dispatch problem, where all integers are LP relaxed, and all
contingency penalties and network variables are neglected.
This LP3, which we classify as a projection, is given in Model
2. Notably, the solution provides an excellent initialization for
Adam, but the market surplus value also acts as a global upper
bound on the MINLP – this is useful for testing and bench-
marking, as seen by the dashed orange line in Fig. 1.

Projection 2: Copper Plate Economic Dispatch [LP]
⋆ optionally parallelizable across time instances

max
xc,xd

zms

s.t. [10, eqs. (1)-(163)] (nominal GO3 formulation)
neglect:
• shunts, contingencies, integers (LP relax)
• all network variables (v,θ, τ ,ϕ) and flow limits

impose:

•
∑

j∈Jpr

pjt =
∑

j∈Jcs

pjt +
∑

j∈Jdc

p
fr/to
jt , ∀t (p balance)

•
∑

j∈Jpr

qjt =
∑

j∈Jcs

qjt +
∑

j∈Jdc

q
fr/to
jt , ∀t (q balance)

B. Successively Linearized Power Flow Approximations

Finding an AC power flow solution after solving the copper
plate economic dispatch can be very challenging – this is due
to the fact that the economic dispatch often dispatches far

3In some cases, the full LP is too large to be solved all at once (even on
the GO3 evaluation platform, with 64 CPU cores and 256 GB of octa-channel
DDR4-3200 memory). In these cases, we break the economic dispatch into
parallelized sub-problems across shorter time periods; we then LP project
device binaries to be feasible across all time (not shown here).

more power than the network can physically accommodate
(i.e., exceeding the maximum P-δ power transfer point of some
lines). Adam can solve the resulting power flow, but schlepping
large amounts of power across a network with gradient descent
can be slower than “hot starting” Adam with several linearized
parallel power flow solves. We pose this linearized power flow
problem in Proj. 3, where

• J⋆
pv , J⋆

pθ, J⋆
qv , J⋆

qθ are power balance sub-Jacobians;
• J⋆

sv , J⋆
sθ are apparent power flow sub-Jacobians;

• α ≥ 1 is an iteratively tightening flow constraint term;
• the objective function keeps all device injections as close

to their initializations as possible via ℓ2 norm penalty.
This projection also penalizes voltage perturbations (in order

to regularize for convergence towards a consistent solution),
and it regularizes for costs via γ5 (i.e., pushing the solver
towards cheaper power flow solutions). Notably, we use a
quadratic objective function – in testing, this was found to
be much faster than a linear, ℓ1 norm penalizing function.
The convex QPs of Proj. 3 are solved with Gurobi in parallel,
as motivated by the parallel power flow planes in Fig. 2.
These linearized projections are solved, and then iteratively
re-solved, at the newly found solutions, which are used as new
linearization points. These successively linearized projections
are not run until convergence (i.e., ∆v ≈ ∆θ ≈ 0 is neither
achieved nor desired), and a single QP can solve in less than
1 second for a network with several thousand buses.

Projection 3: Regularized Power Balance Projection [QP]
⋆ parallelizable across each time instance

min
xc

γ1
∥∥pg − p0

g

∥∥
2
+ γ2

∥∥qg − q0
g

∥∥
2
+ γ3∆vT∆v

+ γ4∆θT∆θ + γ5
cTpg

cTp0
g

+ γ6 · {other regularizers}

s.t. p = p0 + J⋆
pv∆v + J⋆

pθ∆θ (p balance)
q = q0 + J⋆

qv∆v + J⋆
qθ∆θ (q balance)

s0J
⋆
sv∆v + J⋆

sθ∆θ ≤ α · smax (flow limits)
v ≤ v +∆v ≤ v (voltage limits)
− 72◦ ≤ Eθ − ϕ ≤ 72◦ (angle limits)

pi =
∑

j∈J
pr
i

pj −
∑

j∈Jcs
i

pj −
∑

j∈Jdc
i

p
fr/to
j (p injection)

qi =
∑

j∈J
pr
i

qj −
∑

j∈Jcs
i

qj −
∑

j∈Jdc
i

q
fr/to
j (q injection)

[10, eq. (109)-(118)] (producer limits)
[10, eq. (119)-(128)] (consumer limits)
[10, eq. (152)-(156)] (dc line limits)

C. Reserve variable cleanup

The GO3 clearing problem is filled with reserve variables.
In order to further help Adam, we often run a “reserve vari-
able cleanup” LP; this procedure very quickly tunes reserve
variables via Proj. 4 in order to minimize very costly reserve
shortfalls in the cheapest way possible. These (parallelizable)
LPs solve on the order of seconds on very large systems, but
they save Adam a significant amount of computational effort.
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Projection 4: Reserve Product “Cleanup” Projection [LP]
⋆ parallelizable across each time instance

max
{reserve variables}

−
∑

j∈Jpr,cs

(
zrgujt + zrgdjt + zscrjt + znscjt + zrrujt

)
−

∑
j∈Jpr,cs

(
zrrdjt + zqrujt + zqrdjt

)
−

∑
n∈Np

(
zrgunt + zrgdnt + zscrnt + znscnt + zrrunt + zrrdnt

)
−

∑
n∈Nq

(
zqrunt + zqrdnt

)
s.t. [10, eq. (20)-(47)] (zonal reserve penalties)

[10, eq. (80)-(108)] (device reserve costs & limits)
[10, eq. (109)-(128)] (device limits)

D. Ramp-constrained power flow

Adam is an excellent power flow solver, but its convergence
towards an “ϵ accurate” solution can be very slow, leading
to unnecessary penalization in the final solution. In order to
overcome this, the final step of the QuasiGrad solver performs
a “ramp constrained” power flow projection. This projection is
necessarily delicate, because it must respect the device limits
– if it does not, the device variables (i.e., pq injections) have
to be re-projected feasible via Proj. 1, necessitating another
power flow solve; this cycle continues ad infinitum, with no
reason for convergence. Serial power flow solves which respect
all future ramp constraints are extremely slow, both because
they must be solved serially, and because they necessarily
include linking constraints with all future power flow planes4.

In order to overcome this challenge, we first consider n
parallel power flow problems

t1 : f1(p1, q1,v1,θ1) (40a)
t2 : f2(p1, q1,v1,θ1) (40b)

...
tn : fn(pn, qn,vn,θn) (40c)

linked via ramp constraints

t1 : p0 + drd
1 ≤ p1 ≤ p0 + dru

1 (41a)

t2 : p1 + drd
2 ≤ p2 ≤ p1 + dru

2 (41b)
...

tn : pn−1 + drd
n ≤ pn ≤ pn−1 + dru

n , (41c)

where p0, dru
i , and drd

i are constants, and (41) represent an
exact transformation of the ramp limits [10, eqs. (68)-(74)]
(once all binaries are frozen).

In order to tractably solve (40)-(41), we separate all network
devices into two groups: the first group, termed group a, has
its power injections frozen at t2, t4, t6, etc., and second group,

4For example, if the active power set-point of a device is to be altered at
t1, then we must ensure there exists a ramp-feasible power injection at t2,
but if the power at t2 is being changed, then we must ensure there exists a
ramp-feasible power injection at t3, etc., until tf .

termed group b, has its power injections frozen at t1, t3, t5,
etc. Fig 5 demonstrates these alternatively frozen groupings. If
a device d power is frozen at time t, we say it belongs to set
F t

d. Using these groupings, we pose the following associated
constraints, where bracketed constraints are only enforced for
the associated grouping (a or b):

t1 :
[
p0 + drd

1 ≤ p1 ≤ p0 + dru
1

]
a
,
[
p1 = p0

1

]
b
,[

p1 + drd
2 ≤ p2 ≤ p1 + dru

2

]
a
, (42a)

t2 :
[
p1 + drd

2 ≤ p2 ≤ p1 + dru
2

]
b
,
[
p2 = p0

2

]
a
,[

p2 + drd
3 ≤ p3 ≤ p2 + dru

3

]
b
, (42b)

t3 :
[
p2 + drd

3 ≤ p3 ≤ p2 + dru
3

]
a
,
[
p3 = p0

3

]
b
,[

p3 + drd
4 ≤ p4 ≤ p3 + dru

4

]
a
, (42c)

...

where devices are alternatively frozen and ramp constrained.
Using this structure, the following result holds.

Theorem 1. Assume (41) initially holds. By enforcing (42),
the power balance problems (40) can be solved in parallel
while maintaining ramp feasibility (41) across all devices.

Proof. Going sequentially, (42a) directly implies (41a), since
the initialized injections are ramp rate feasible. At t2, (42b)
implies (41b). This is because [p2]a was chosen in t1 such that
the t2 ramp constraint for devices in group a would be satisfied
(these devices are frozen at t2). The logic of choosing a device
injection such that its ramp rate constraints are feasible at both
the given and the following time step, and then freezing the
device at the following time step, holds through to tn.

The parallelized ramp-constrained power flow projection
is given in Proj. 5. As with Proj. 3, this projection is iter-
atively re-solved as new linearization points are identified,
thus driving the AC power balance constraints to satisfaction
(the “p balance” and “q balance” constraints are linearized
power mismatch expressions). Multi-period energy constraints
are not enforced in this routine, since they inherently “break”
the parallelizability of the routine. In practice, however, this
routine makes very small operational adjustments and rarely
had any effect on the multi-period energy score. This projec-
tion strikes a balance between speed (it is parallelizable) and
solution quality, since at every time, one half of the devices can
have their set-points updated in service of finding a minimally
invasive power flow solution. This projection offers a useful
solution to one of the most challenging problems faced by the
author in solving GO3.

E. The QuasiGrad solver

We now algorithmically introduce the full QuasiGrad
solver. At a high level, the solver initializes a solution with
an economic dispatch, and then it solves a series of NLPs
while sequentially rounding and fixing binaries into feasible
positions. The full algorithm is presented in Alg. 4.
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parallel 
device links

parallel 
power flow 
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power frozen
(every-other)

power free
(every-other)

Fig. 5: Ramp-constrained power flow planes.

Projection 5: Ramp-Constrained Power Flow at Time t [QP]
⋆ parallelizable across each time instance

min
xc

γ1
∥∥pg − p0

g

∥∥
2
+ γ2

∥∥qg − q0
g

∥∥
2
+ γ3/4∆v/θT∆v/θ

s.t. p = p0 + J⋆
pv∆v + J⋆

pθ∆θ (p balance)
q = q0 + J⋆

qv∆v + J⋆
qθ∆θ (q balance)

v ≤ v +∆v ≤ v (voltage limits)

pi =
∑

j∈J
pr
i

pj −
∑

j∈Jcs
i

pj −
∑

j∈Jdc
i

p
fr/to
j (p injection)

qi =
∑

j∈J
pr
i

qj −
∑

j∈Jcs
i

qj −
∑

j∈Jdc
i

q
fr/to
j (q injection)

[10, eqs. (68)-(74)] (ramp limits)
[10, eq. (109)-(118)] (producer limits)
[10, eq. (119)-(128)] (consumer limits)
[10, eq. (152)-(156)] (dc line limits)

pj = p0j , j∈{{Jpr∪Jcs} ∩ F t
d} (frozen subset via (42))

IV. TEST RESULTS

In this section, we present simulated test results collected
from division 1 (real time market) of the C3E3.1 GO3 test-
case library. We the provide brief comments about the official
GO3 test results, which are partially available (in a very
aggregated form) at the following footnote5.

The C3E3.1 dataset6 contains six division 1 (i.e., real time
market with 18 time periods) test cases: the 617-, 1576-, 4224-,
6049-, 6717-, 8316-, and 23643-bus systems. We provide local
(i.e., laptop simulated) test results for a single QuasiGrad
solve of each of these cases, excluding the 23643-bus system,
which cannot be solved locally due to memory constraints.
For benchmarking, we compare the QuasiGrad solution to
the economic dispatch solution of Proj. 2, which is a global
upper bound. All tests are run in Julia v1.10.0-beta1 on a Dell
XPS with 16.0 GB of RAM. Julia is launched with access
to 6 physical CPU threads for parallelization. Each solver
terminates in under 10 minutes (600 seconds), as stipulated
in GO3. All test results are confirmed feasible by the GO3

5https://gocompetition.energy.gov/challenges/challenge-3/Leaderboards/
Event-4

6https://gocompetition.energy.gov/challenges/600650/datasets

Algorithm 4 QuasiGrad
Require: Total wall clock time �, total number of binaries nb,
number of binaries n+

b to freeze after every NLP (Adam) solve
1: F ← ∅ (no fixed binaries)
2: Initialize with economic dispatch via Proj. 2
3: while |F| < nb (some binaries are not fixed) do
4: Solve linearized power flow projection via Proj. 3
5: Cleanup reserve variables via Proj. 4
6: for tw ∈ �s do ▷ run adam for subset of wall clock time
7: Evaluate and backpropagate objective (18b)
8: Solve and backpropagate contingencies via Alg. 2
9: Feed gradients (36) to Adam via Alg. 3

10: Clip all states (Alg. 3, line 6)
end

11: Project device binaries and variables feasible via Proj. 1
12: Add n+

b binaries to frozen binary set F based on projection
end

13: Snap shunts
14: Solve linearized power flow projection via Proj. 3
15: Cleanup reserve variables via Proj. 4
16: Run final Adam solve
17: Project device variables feasible via Proj. 1 (all binaries fixed)
18: Solve ramp-constrained power flow via Proj. 5
19: Cleanup reserve variables via Proj. 4
20: return feasible continuous xc and discrete xd solution vectors

TABLE I: C3E3.1 Division 1 Test Results

testcase 617 1576 4224 6049 6717 8316

zms 4.52e7 9.96e7 8.95e7 8.45e7 1.34e8 1.01e9
zed 4.54e7 1.02e8 9.20e7 1.08e8 1.37e8 1.16e9
gap 99.8% 98.1% 97.3% 78.3% 97.7% 87.0%

zbase 4.53e7 1.00e8 8.96e7 8.45e7 1.34e8 1.01e9
zt 4.53e7 1.00e8 8.96e7 8.45e7 1.34e8 1.01e9

Relevant Penalty Breakdowns (%):
zen 98.6 62.9 90.8 51.7 66.0 89.8

zon/p/d 0.02 13.7 6.94 46.9 0.11 8.90
zac 0.08 0.0 0.06 0.20 0.23 0.43
zxfm 0.0 0.0 0.49 0.17 0.0 0.04
zpq 0.0 0.0 0.0 0.0 0.0 0.0
zzonal 0.06 0.0 0.0 0.0 32.6 0.0
zctg-min 1.18 23.1 1.21 0.56 1.08 0.55
zctg-avg 0.05 0.32 0.52 0.38 0.01 0.28

C3DataUtilities Python library7, and all reported scores are
crosschecked against the C3DataUtilities solution scores.

Test results are reported in Table I, which reports the gap
of the QuasiGrad solution relative to the economic dispatch
(i.e., 100.0 × zms/zed). The gaps are generally quite high,
indicating that the QuasiGrad solver was able to find high
quality ACUC solutions within the 10 minute time allowance.

As of the submission of this manuscript, the full GO3 results
have not yet been released. Overall, the QuasiGrad solver
performed well, but it was not a top performing algorithm.
Across the 667 tests, QuasiGrad found aggregated market
surplus scores that were within 31%, 5%, and 44%, respec-
tively, of the top performing team in the three market divisions,
with 65 scores that were within the top 5 best. While there
is significant room for improvement, the results demonstrate

7https://github.com/GOCompetition/C3DataUtilities
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both the validity of this new approach, and the potential for it
to be competitive with conventional approaches in the future.

V. CONCLUSION

This paper introduced an Adam-based solver, called
QuasiGrad (summarized in Alg. 4), capable of solving large-
scale, reserve and security ACUC problems. The solver, which
is released publicly as the Julia package QuasiGrad.jl [9],
efficiently parallelizes backpropagation and variable projection
processes, making efficient use of parallel computing hard-
ware. The solver is able to find high quality solutions to large-
scale problems in short periods of time, and by design, the
approach is hyper-scalable. Due to its ability to efficiently
parallelize, QuasiGrad runs monotonically and predictably
faster when it is given monotonically more computational re-
sources. Future work will seek to test the QuasiGrad solver on
GPU hardware (which was not part of the GO3 competition).
Planned follow-on work will provide deeper testing analysis
and a more thorough investigation into the specific benefits
of the innovations proposed in this paper. Furthermore, future
directions should investigate the capacity for QuasiGrad to
help train physics-informed machine learning models, such as
the Lagrange multiplier penalty-based learning models used
in, e.g., [20].
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APPENDIX A
QuasiGrad was developed in Julia v1.10.0. All

functions are type stable, and all memory is pre-
allocated, thus minimizing the amount of garbage collec-
tion. Parallelization is achieved through Threads.@threads
and polyester.@batch. LoopVectorization.jl, and its
macro @tturbo, are used extensively to accelerate compu-
tations. The preconditioned conjugate gradient solver, cg!, is
called from IterativeSolvers.jl. The lldl function from
Preconditioners.jl is used to build the limited memory
LDLT preconditioner for contingency solving. JuMP.jl and
Gurobi.jl are used to formulate and solve all optimizations
(LPs, MILPs, and QPs). Gurobi 11 (and an associated aca-
demic license) was used.
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