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Abstract—We propose a nodal stochastic generation and trans-
mission expansion planning model that incorporates the output
from high-resolution global climate models through load and
generation availability scenarios. We implement our model in
Pyomo and perform computational studies on a realistically-sized
test case of the California electric grid in a high performance
computing environment. We propose model reformulations and
algorithm tuning to efficiently solve this large problem using a
variant of the Progressive Hedging Algorithm. We utilize the
parallelization capabilities and overall versatility of mpi-sppy,
exploiting its hub-and-spoke architecture to concurrently obtain
inner and outer bounds on an optimal expansion plan. Initial
results show that instances with 360 representative days on a
system with over 8,000 buses can be solved to within 5% of
optimality in under 4 hours of wall clock time, a first step towards
solving a large-scale power system expansion planning problem
across a wide range of climate-informed operational scenarios.

Index Terms—Stochastic programming, capacity expansion,
parallel computing, climate resiliency

I. INTRODUCTION

Widespread penetration of renewable, intermittent, and de-
centralized generation resources is rapidly transforming the
power grid and increasing its sensitivity to weather. Maintain-
ing a resilient power grid as this transition unfolds will re-
quire strategic infrastructure investments. The recent Net-Zero
America study [1] estimates that achieving carbon neutrality
by 2050 will require quadrupling previous average annual
build rates for renewable generation and increasing the total
installed transmission capacity by a factor between 3 and 5.

Submitted to the 23rd Power Systems Computation Conference (PSCC 2024).
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 and was supported by the LLNL-LDRD Program under
Project 22-SI-008, and by the Advanced Grid Modeling Program of the Office
of Electricity of the U.S. Department of Energy. The authors would like to
thank their LLNL colleagues Minda Monteagudo and Matthew Signorotti for
their invaluable contributions in translating the climate data projections into
relevant power system input parameters. The authors would also like to thank
Gurobi for providing the academic license used to run all tests.

Conventional modeling tools for generation and transmission
expansion planning, based on historical data, are inadequate to
inform investment decisions under this changing environment.
Incorporating climate projections into expansion planning
tools can improve their relevance to decision makers, but the
results are only meaningful if the uncertainty associated with
these projections is also considered. Stochastic optimization is
well-suited for this purpose, but often leads to computationally
challenging optimization problems.

Developing actionable expansion plans for an efficient and
resilient power system requires both sufficiently high geo-
graphical resolution to accurately represent power system com-
ponents and a sufficiently large representative set of scenarios
to encompass all relevant potential weather impacts. The curse
of dimensionality usually forces planners to face a tradeoff
between these two dimensions.

The first computational challenge arises due to the size of
the power system model. It is common to use very coarse geo-
graphic resolution models, representing entire states or nations
as a single node in the power network, for theoretical power
system planning studies. Obtaining actionable decisions from
these unrealistic representations of the power grid requires
iteratively solving increasingly high-resolution optimization
models for each subregion of the grid. Solving power system
planning models in this way not only leads to sub-optimal
solutions but also underestimates the variability of wind and
solar resources and load by aggregating these resources across
a large area. To address the need for a realistic power system
model suitable for research studies, the California Test System
(CATS) was recently developed [2]. This system, which we
adopt and extend for the tests presented in this paper, includes
over 8,000 buses for the state of California. For comparison, a
model often used for expansion plans in the literature has 240
buses for the entire U.S. Western Interconnection [3]. Instances
of capacity expansion models that maintain the full detail of
the transmission network, and thus have comparable sizes,
exist in the literature, but are solved via deterministic scenario
planning [4], or, if considering uncertainty, for a significantly

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



reduced number of scenarios [5].
The second computational challenge is in adequately cap-

turing the uncertainty, which we address using stochastic
optimization. Even without consideration of climate-dependent
uncertainties, stochastic optimization has been shown to have
significant economic benefits for power grid capacity expan-
sion planning when compared to deterministic optimization
and heuristic scenario planning [6], [7]. Climate uncertainty
underscores these benefits. A rapidly changing climate requires
climate model projections, rather than just historical data, to be
fed into capacity expansion models. However, despite recent
advances in global circulation model downscaling algorithms
to obtain multi-decadal, high-resolution weather projections,
the uncertainty associated with these projections is substantial,
and so can be the potentially adverse effect of picking a single
deterministic timeseries to inform investment plans.

Despite this necessity, the usage of stochastic optimization
in actual planning processes is still modest, with computa-
tional limitations being an often-cited reason for preferring
deterministic models. Muñoz et al. [6], [8] and Go et al. [7]
lay the ground-work for using stochastic programming for
capacity expansion planning, addressing the aforementioned
tradeoff through model simplifications. In [8], a scalable
stochastic expansion model is proposed, using decomposition
by scenarios, with tests conducted on a universe of 8,760
one-hour scenarios that is reduced to 100-500 scenarios after
clustering, on the geographically simplified 240-bus WECC
test case. However, interconnection between time periods are
neglected, which does not allow storage or other inter-temporal
resources to be represented. Inter-temporal storage decisions
are included in [7], but only a small, 24-bus, test-case with 5
scenarios is solved.

In the examples above, the scenarios of the stochastic op-
timization problem are obtained by constructing a probability
space from historical data, then reducing that probability space
to a sample space of representative days or hours through
statistical clustering techniques. A similar approach can be
taken by substituting future weather projections for historical
data, which is what we do in this work. We propose thus
a climate-dependent stochastic generation, transmission, and
storage capacity expansion model adapted from the model pro-
posed in [7] and solve this model for a realistically-sized test
case of California, leveraging mpi-sppy and high performance
computing (HPC) resources at Lawrence Livermore National
Laboratory.

mpi-sppy [9] is a recently developed extension of the
Pyomo [10], [11] optimization package in Python, specifically
designed to solve stochastic optimization problems in HPC
environments using the Message Passing Interface (MPI).
Besides providing a simple, parallel, way of implementing
decomposition algorithms to solve stochastic programs using
the Python programming language, the hub-and-spoke archi-
tecture of mpi-sppy addresses two known shortcomings of the
Progressive Hedging Algorithm in the mixed-integer context:
the lack of optimality bounds during the execution of the
algorithm and the related lack of a good termination criterion.

We solve our model of the aforementioned high spatial-
resolution, realistic test system of the California electricity
grid [2], with a large number of scenarios derived from
the California regional refinement model (CARRM) of the
Energy Exascale Earth System Model (E3SM) using a 3km-
resolution grid [12]. In Section II, we summarize the capacity
expansion model proposed. In Section III, the key features
of the solution approach implemented are described. Finally,
results are presented and discussed in Section IV.

II. MODEL DESCRIPTION

Our capacity expansion model is an adaptation of the model
proposed in [7]. Due to space limitations, we provide a brief
general description of the model with details given only for
features that differ from the reference model. We refer the
interested reader to [7] for the full model description.

A. General description

Our capacity expansion model is a two-stage stochastic pro-
gram that co-optimizes generation, transmission and storage
investments in the first stage and solves a multi-period optimal
power flow (OPF) problem in the second stage. Second-stage
suproblems, i.e. representative days, differ from each other in
the hourly system demand and generation availability.

Renewable generation and storage investments are modeled
as continuous (installed capacity), thermal generation invest-
ments as integer (number of installed units), and transmission
investments as binary (build or no-build for candidate lines)
variables. All investment costs are assumed to be linear.
Storage investments consist of two decisions: energy storage
capacity (in MWh, which can be interpreted as storage dura-
tion) and instantaneous power charging/discharging capacity
(in MW). These two decisions are made independently.

At this stage of this work, the second-stage OPF is modeled
with a transportation relaxation of power flow incorporating
transmission losses. Forthcoming extensions shall use the more
common linearized DC-OPF. Ramping and start-up constraints
are disregarded. Storage levels are assumed to be cyclic (level
at the end of the last period must equal the initial storage
level). The constraint to impede simultaneous charging and
discharging of storage units is omitted because this was
found in [7] to have minimal solution impact while increasing
computational complexity.

In the following subsections, we describe in more detail
the set of investment candidates, our model for transmission
losses, and the renewable portfolio standard (RPS) constraints,
all of which deviate from the model in [7].

B. Investment candidates

In the model description of [7], the set of generation and
storage investment candidates consists of all combinations of
candidate technologies and power system buses. This set is
later reduced to an explicit list of candidate units when the
problem data is specified. We make this methodology precise
by considering all combinations of technologies and buses
subject to three maximum potential capacity constraints. The
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three constraints limit the total installed capacity for each
storage/generation type at each bus, for each type across all
buses, and for each bus across all types. In actual instances of
the model, the maximum potential capacity is zero for many
generator type, location combinations, allowing the number of
variables included in the instantiation of the model to remain
tractable.

C. Transmission losses

As is common when performing planning studies, the model
in [7] disregards transmission losses. However, ignoring these
losses can significantly affect the solution obtained from the
model, especially for systems with renewable generation, in
which power may need to be transported over very large
distances [13], [14]. Accurately capturing the quadratic nature
of transmission losses without losing the model’s linearity
requires adding several linear segments for each transmission
line, which greatly increases the number of variables in the
model. To avoid this increase, we consider a single-segment
linear approximation. Specifically, we consider each transmis-
sion branch ` to have a constant efficiency ηL` given by

ηL` = 1− PL` r`
(

1 +
r2
`

x2
`

)
, (1)

where x` is the reactance, r` is the resistance, and PL` is the
long-term branch rating of branch `, all in p.u. This linear
approximation, based on Fitiwi et al. [14], will overestimate
losses in transmission branches that are loaded below their
capacity, leading to somewhat conservative solutions. In con-
trast, assuming lossless transmission across long distances will
significantly underestimate transmission capacity needs.

In order to correctly assign losses to buses, we also deviate
from [7] by using two non-negative variables pL+

` , pL−` to
represent branch flows, as illustrated in Fig. 1. Note that
formulation (b) only represents formulation (a) accurately if
pL+
` · pL−` = 0. Otherwise, model (b) will have higher losses

than the corresponding model (a) with same net outgoing
branch flow.

𝑝ℓ

1 − 𝜂ℓ |𝑝ℓ|
if 𝑝ℓ < 0 if 𝑝ℓ > 0

(a)

𝑝ℓ"

𝑝ℓ#

(1 − 𝜂ℓ)𝑝ℓ# (1 − 𝜂ℓ)𝑝ℓ"

(b)
Fig. 1. Proposed representation of flow in transmission branches. In model
(a), depending on the direction of flow, the switch determines the end of
the branch to which losses are assigned. In model (b), the same is achieved
by breaking the sign-unconstrained flow p` into positive and negative parts,
representing flow in each direction, so that pL` = pL+

`
− pL−

`
. Model (b)

only represents model (a) accurately if pL+
`

· pL−
`

= 0.

In other words, making pL+
` and pL−` simultaneously

nonzero artificially increases the losses in a transmission
element, which we call spurious losses. This phenomenon can
be prevented, at high computational cost, by introducing a

binary variable for each branch and time period to enforce
pL+
` · pL−` = 0. This is normally considered unnecessary, be-

cause spurious losses usually increase costs and would hence
be naturally avoided by the optimization model. However,
during certain periods, if the locational marginal prices (LMP)
at the ends of a transmission element are negative, creating
spurious losses will be optimal.

In the absence of policy incentives, negative LMPs are
related with congestion during unusual loading conditions
and are rare [14]. In [13], they have been found to occur
in less than 0.2% of operating hours. The introduction of
RPS constraints can create incentive for artificial load loss
(through transmission and storage loops) if not implemented
properly. A way of addressing this issue without increasing the
computational burden is discussed in the following section.

D. Renewable Portfolio Standards

RPS constraints represent policies in place in certain juris-
dictions, whereby it is mandated that at least some fraction
ρRPS of annual energy produced must be generated with
qualified renewable resources. Scenarios correspond to rep-
resentative days of the target year, not to different realizations
thereof. Therefore, the RPS constraint cannot be enforced for
each scenario. Rather, it is formulated using the expectation
across scenarios as follows:

∑
ω∈Ω

ρω
∑

b∈B,g∈GR

t∈T

pGb,g,t,ω ≥ ρ
RPS
∑
ω∈Ω

ρω
∑

b∈B,g∈G
t∈T

pGb,g,t,ω, (2)

where ω indexes the discrete set of scenarios Ω with probabili-
ties ρω , b the set of buses B, g the set of generator types G, and
its subset of renewable generator types GR and t indexes the
set of time periods T in the second-stage subproblem. pGb,g,t,ω
is the generation output of generator type g at bus b during
period t in scenario ω. Constraint (2) presents a challenge for
both computational tractability and model validity.

First, the expectation constraint couples the second-stage
variables across scenarios sucth that it is no longer truly
a stochastic program. This is not a computational issue in
[7] because the extensive form of the problem is solved.
However, when implementing decomposition algorithms as
proposed here, second-stage decision variables must be inde-
pendent across scenarios. A possible solution is to dualize the
constraint and add the corresponding Lagrangian term with
multiplier λRPS to the objective, to create a reformulation
that is again decomposable by scenario. This approach is
justified by the existence of a Renewable Energy Certificates
(REC) market where utilities may trade surplus and shortfall
of renewable energy production across days to satisfy the
RPS mandate. Nonetheless, it poses the additional problem of
finding the right value for λRPS , the REC price. In [8], where
this approach is taken, three methods are proposed: (a) using
the value from real-world REC markets, (b) using the value of
the dual variable of (2) in the solution to the linear relaxation
of the stochastic program in extensive form (impractical for
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very large instances like ours), and (c) performing a sensitivity
analysis until the achieved proportion of renewable energy in
total production is satisfactory. We implement the third option.

The second challenge, to which we alluded in the previous
section, is inducing spurious losses through negative LMPs.
During days with low demand and high renewable availability,
the REC market can depress LMPs and make them negative
in certain parts of the grid. If this is widespread, the accuracy
of the model is compromised, since there is an incentive to
under-invest in renewable generation facilities, and meet RPS
targets by way of creating artificial loads during such days
instead. Tests in our model showed that if left uncontrolled,
spurious losses could increase to over 50% of total demand
during certain operating hours. Such an unrealistic behavior
would put the validity of the whole model into question.

To address this issue while avoiding the computational
burden of adding binaries to prevent spurious losses, we make
the RPS constraint a soft constraint enforced at each scenario,
as follows:

pNC
ω +

∑
b∈B,g∈GR

t∈T

pGb,g,t,ω ≥ ρ
RPS

∑
b∈B,g∈G

t∈T

pGb,g,t,ω ∀ ω ∈ Ω (3)

pNC
ω ≥ 0 is the scenario’s shortfall when there is one, i.e.

the RPS target non-compliance of each scenario. A term
λRPSpNC

ω is added to each subproblem’s objective. This
model corresponds to a case where there is no REC market; in-
stead, penalties are assessed at the end of each day and charged
to utilities found to be out of compliance. Our model is likely
to over-incentivize renewable investments and over-estimate
expected operational costs, compared to an implementation of
the RPS policy as an expectation constraint, but is a first step
towards a formulation that can allow transmission losses while
tractably handling policy-induced spurious losses.

III. SOLUTION APPROACH

As mentioned previously, we leverage the implementation
of the Progressive Hedging Algorithm (PHA) in mpi-sppy, and
make adaptations as needed to solve the capacity expansion
problem posed. Detailed descriptions of PHA can be found in
[15] and [16], among many other references. In this section, we
highlight the main features of our implementation that differ
from conventional implementations of PHA.

A. Accelerating subproblems

In PHA, the stochastic program is decomposed by scenario.
As for any decomposition algorithm, the key to a successful
implementation is that each subproblem can be solved quickly.
This section highlights measures undertaken to ensure that
individual subproblems are quick to solve.

Simplifying transmission losses The model described in
section II-C adds one variable to the second-stage subproblem
for each transmission branch and time period (approximately
260,000 variables in our test case), which can have a large
impact on subproblem solution time. Furthermore, note that for

branches with negligible losses, i.e. ηL` ≈ 1, replacing pL` with
pL+
` , pL−` increases degeneracy1, which can be problematic.
To mitigate these undesired effects, we propose partition-

ing the set of transmission branches into lossy and lossless
branches. Lossy branches are modeled as described above,
while flow through lossless branches is modeled with a sin-
gle sign-unconstrained variable pL` . Testing across different
loading configurations in our test case, we have found that
approximating all branches with 1− ηL` < 5 · 10−3 as lossless
branches reduces the number of additional variables by over
50% and the subproblem solution time by nearly 50%, while
still accounting for more than 80% of the losses in the system.

Linearize quadratic term Despite recent advances in
commercial solvers, quadratic mixed integer programs remain
harder to solve than mixed integer linear programs (MILPs)
and the quadratic (also called proximal) terms introduced by
PHA can considerably delay the subproblem solution times.
To reduce this effect, we linearize the proximal terms in
the PHA subproblems. For binary variables, the quadratic
term automatically reduces to a linear term, so no special
linearization is necessary. For integer and continuous variables,
an extra variable is added to represent the squared variables,
and the quadratic penalty is under-approximated by successive
linear cuts added as needed during the execution of the
algorithm. This linearization procedure is already included in
the current mpi-sppy distribution.

Accelerating crossover The branch and cut algorithm im-
plemented by commercial MILP solvers like Gurobi requires a
basic feasible solution to the linear relaxation of the problem –
the so-called root relaxation on which the algorithm branches.
By design, the Simplex Algorithm returns such a solution. For
problems of large size, like the one considered here, interior
point algorithms are much faster, but require a crossover
phase to convert their solution into an extreme point optimal
solution. The crossover process can be accelerated by reducing
degeneracy in the problem formulation. In our case, a few
simple model improvements like adding a reference bus and
simplifying the model for branches with negligible losses as
described above were used to improved crossover time.

Cleaning the input data Real (or realistic) power system
data can lead to ill-conditioned matrices and numerically
unstable models. An undesired byproduct of the geographi-
cally accurate test system of [2] is a large number of very
short transmission branches, which have positive, but very
small reactance and resistance values and reinforcement costs.
These do not significantly affect the optimal solution or cost,
but can become a numerical nuisance for the optimization
problem. To reduce this effect, certain buses in the network
were collapsed and their incident branches absorbed into their
neighbors. Although this would seem to go against the stated
goal of increasing geographic resolution to adequately assess
climate impacts, it was only performed when doing so did

1Observe that for given p̂L+
`

, p̂L−
`

, any pL+
`

, pL−
`

such that pL+
`

−pL−
`

=

p̂L+
`

− p̂L−
`

and such that pL+
`

+ pL−
`

remains below the maximum branch
capacity will be a feasible solution with same objective value.
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not affect the resulting power flow. This has already improved
the subproblem solution time for our current model, but is
expected to have a higher impact on the DC-OPF formulation.

B. Progressive Hedging settings

Setting ρ The value chosen for the parameter ρ, the
coefficient associated with the quadratic penalty term and the
weight update step, is known to have a great impact on the
convergence of the PHA. Although the standard description of
the PHA assumes that the same parameter ρ is used for all non-
anticipative variables, it has been found that better results can
be obtained if the parameter is made variable-dependent. In
[8], generator investment variables are assigned different val-
ues of ρ from transmission investment variables, so as to main-
tain an approximately constant ratio of penalty/(investment $).
In [17], it is found that even better results can be obtained if
the value of ρ is determined individually for each variable
after assessing the level of agreement in the optimal solution
across scenarios at the first PHA iteration. The authors call
this method sep-rho. Here, we implement the sep-rho method
as the ρ-setting policy.

Fixing variables A common heuristic in the PHA literature
is to fix variables when there has been agreement across
scenarios for a number of iterations. This can significantly
reduce the time to convergence, especially in the presence of
binary or integer variables. The caveat associated with this
heuristic is that it may lead to suboptimal solutions. In our
case, this is attenuated by the availability of optimality gaps
during algorithm execution. This heuristic is already included
in mpi-sppy, so its implementation, as well as experimentation
with different values for the number of iterations that triggers
the fixing, is greatly simplified. In our problem, the largest
impact was observed when fixing investment variables, in
particular transmission lines, after agreement around the lower
bound, i.e. eliminating candidates that are not built in any of
the scenarios considered.

C. mpi-sppy spokes

Another important feature of mpi-sppy, in addition to its
parallel implementation of PHA and related features and
heuristics, is the hub-and-spokes architecture. In the mpi-sppy
architecture, processes2 are sorted into different functional
groups, called cylinders. The main cylinder is the hub, which
solves the conventional PHA, with subproblem solutions being
parallelized across the processes that belong to it. A known
shortcoming of the PHA is that before convergence, there is no
guarantee regarding the quality of the solution. Furthermore,
for nonconvex problems (like MILPs) or if heuristics like
variable fixing are used, even convergence brings no such
guarantees. In mpi-sppy, optimality bounds are obtained by
the other groups of processes, called spokes. Each spoke runs
an algorithm that can be decomposed by scenario subproblems
and parallelized across the spoke’s processes. They can get
information from the hub to form these subproblems, and

2Note that each process may, and in our case, does, have access to several
CPU cores.

return an outer or inner bound of the stochastic optimization
problem back to the hub. Outer and inner bounds3 are used
by the hub to obtain optimality gaps and decide on an early
termination of the overall algorithm.

An example of an inner bound spoke is successively
evaluating the first-stage solution of each subproblem on all
other subproblems to obtain a fully implementable (feasible)
solution. An example of an outer bound spoke is running a
variant of PHA without quadratic terms, which under certain
conditions provides valid bounds of the stochastic problem
[18]. Several spokes of each type may be run concurrently, so
that the best bound obtained so far can be used by the hub.

The mpi-sppy package includes various types of inner and
outer bound spokes. Several combinations were tested, with
satisfactory results being obtained when using the Lagrangian
outer bound spoke and looper inner bound spoke. Our tests
have not been exhaustive, so other spoke combinations may
behave better as more scenarios or other power systems are
considered in the continuation of this work.

IV. COMPUTATIONAL STUDY

At the current stage of our research, we are interested in
verifying that we can solve a large instance of our model by
the method described in the previous section in a reasonable
time. To do that, we implement the stochastic optimization
model on a large, realistic power system and vary the number
of scenarios included.

A. Test case and scenarios

CATS system We test our model on an extension of the
CAlifornia Test System (CATS) developed in [2], adapted
for capacity expansion planning. The CATS is a geographi-
cally realistic representation of the California generation and
transmission system, which includes over 8,000 buses and
10,000 transmission branches, with locations based on publicly
available data and simulated, but realistic values for electrical
parameters that are not publicly available.

RPS target Current California legislation states an RPS
target of 60% by 2035, with a goal of 100% renewable energy
by 2045 [19]. With current technology, such a target, if not
interpreted as a net target, can only be obtained at prohibitively
expensive costs. For the tests conducted here, an intermediate
but still ambitious RPS target of 70% by 2045 was chosen.

Climate-informed scenarios Load and generation profiles
used are generated based on projected weather and climate
data from a regional refinement for California of the E3SM
global circulation model for the year 2045, using a 3km-
resolution grid [12]. A probability space can be constructed
from the projected data, where each element corresponds to
one day of hourly data for the target year. The space is reduced
to a sample space via clustering using the k-means algorithm
on a normalized feature vector of load and generation profiles
using the default implementation of k-means available in scikit
[20]. This process is similar to that of [8], but using projected

3For minimization problems, outer bounds are lower bounds and inner
bounds are upper bounds.
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weather data rather than historical data. The size of the sample
space is varied in different tests cases. Each sample in the
sample space corresponds to a scenario of the stochastic
optimization problem.

Algorithm and computational parameters All tests were
done on the quartz HPC cluster at Lawrence Livermore Na-
tional Laboratory. Each node of the cluster has 36 2.1GHz Intel
Xeon cores and 128GB RAM. Within each cylinder, 3 CPU
cores are dedicated to each optimization subproblem, with
each subproblem corresponding to a scenario of the stochastic
optimization problem. Three cylinders were used for each test:
one hub, one lower-bounder and one upper-bounder, so that
each test instance uses 9 CPU cores per scenario. Our model
was implemented using mpi-sppy 0.11.1.2 and Pyomo 6.2.
Gurobi 10.0.2 was used to solve the MILPs. To simultaneously
avoid spending too much time on one individual subproblem
and avoid sacrificing MILP quality at later PHA iterations, a
time-dependent MILP gap scheme was implemented, where
the MIP gap was increased from 1% to 2% after 100s of
subproblem solver execution, 5% after 200s, and 10% after
300s. For all instances, the PHA iteration limit was set at 60.

The different techniques described here that have been used
to solve this problem introduce numerous parameters, and
hence degrees of freedom, into our algorithm. For the purpose
of this study, parameters have only been varied from their
default values to the extent necessary to obtain a solution
within the time limit imposed. Although there is room for
further exploration of the interaction between solution time
and solution quality across test instances, fixed parameter
settings across test instances were found to be sufficient to
achieve the desired MIP gap within the time limit imposed.

B. Results and Discussion

Table I summarizes computational results for all instances
tested. As expected for problems of this size, all instances
hit the iteration limit before PHA convergence. In all cases, a
solution with an optimality gap below 5% is obtained in under
4h. This gap is in the vicinity of 2% for the cases with over 100
scenarios, which may be of more interest to decision makers.
These results suggest that when maintaining a constant ratio of
cores per scenario subproblem, the growth in total computation
time as more scenarios are included remains tractable.

We expect that accounting for the uncertainty in climate
projections will require including many more scenarios in our
pool. Nevertheless, we find these results encouraging for two
reasons. First, they suggest that reasonably low computation
times can be obtained by keeping the ratio of cores per
scenario subproblem constant. It is worth pointing out that
our largest scenario instance only used about 3% of the
computational capacity of the HPC cluster, so a more than
tenfold increase in the number of scenarios seems well within
reach. Second, scenario reduction techniques are considered
outside of the scope of this paper, but it is clear that as
many more scenarios are included, some scenario reduction
methodology will be necessary. In [8], with computational
limitations in mind, the initial space of samples is reduced to

the order of 50 scenarios. We expect that being able to handle
a much larger number of scenarios than that, together with
improved scenario reduction techniques, will allow working
with a larger climate uncertainty set.

As mentioned before, one important feature of mpi-sppy is
providing optimality bounds during the excution of the PHA.
The evolution of the bounds for each case is shown in Fig. 2.
All tests were run for 60 iterations, but the progression of op-
timality bounds shows that, if desired, termination could have
been triggered earlier by reaching a slightly looser optimality
target. Moreover, these results suggest that, as is common for
this type of problems, good-quality feasible solutions can be
obtained relatively quickly, within 10 or 20 iterations. After
that, most of the gap reduction is provided by tightening lower
bounds. In our tests, computational resources were allocated
symmetrically to all cylinders. Some improvement could likely
be obtained by dedicating more computational power to the
more demanding, but more impactful, outer-bounding cylinder,
especially after the initial iterations are finished.

TABLE I
OPTIMALITY GAPS ACHIEVED, TOTAL COMPUTATION TIME AND NUMBER

OF NODES DEDICATED, FOR VARIOUS NUMBERS OF SCENARIOS.

Number of
scenarios

CPU
Cores

Wall-clock
time (min)

PHA
Iterations

Optimality gap
achieved (%)

10 90 85 60 4.8
20 180 102 60 4.1
50 450 132 60 3.8

100 900 170 60 2.1
200 1,800 200 60 2.8
360 3,240 206 60 2.4
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Fig. 2. Optimality bounds provided by mpi-sppy for different number of
scenarios during the execution of the algorithm.

In Fig. 3, we compare the optimal capacity expansion
plan across instances tested. It is interesting to note that as
more scenarios are considered, both the optimal cost and the
optimal investment plan continue to vary. This behavior could
perhaps be mitigated by more sophisticated scenario selection
methods, but nonetheless highlights the importance of using a
sufficiently large scenario set in the stochastic program.
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It is also noteworthy that no storage facilities were built
in any of our test cases, although it is imaginable that this
could change if the RPS target were increased. While our
focus in this paper is on the computational aspects of our
method and we leave a thorough analysis of the obtained
results for future work, it seems clear that at least part of the
value of storage may fail to be captured in the current model.
This could be improved by including planned retirements of
the existing generation fleet, as well as model modifications
that highlight the value of flexibility brought by storage units:
for example unit commitment and ramping, representation of
security constraints, and improved power flow representation.
These are all forthcoming extensions to the current model.

RPS penalty and achieved RPS A sensitivity analysis
on the value of the soft constraint penalty λRPS in (3) was
performed using the case with 20 scenarios (Fig. 4). A value
around $80/MWh resulted in produced renewable energy near
the target of 70%, so this was the value used for all the other
test cases. This result appears to be relatively stable as the
number of scenarios vary, as can be seen in Fig. 3, although
the investments required to maintain it do change.

Spurious losses It is worth discussing why spurious trans-
mission losses are a problem but spurious storage losses from
simultaneous charging and discharging do not seem to be. This
difference can be understood by comparing the total potential
spurious losses and the available potential spurious losses of
each type. By total potential spurious losses we refer to the
total losses incurred if all resources were used at full capacity4:
in our test system, this is in the order of 200MW for storage
facilities, and 16GW for transmission assets. So the potential
for impact is orders of magnitude higher with transmission
than storage. To illustrate the second factor, note that the
negative LMPs that drive spurious losses also encourage using
storage facilities to store energy for future use (in a genuine,
non-spurious way). Thus, using storage facilities to create
spurious losses only makes sense if the storage facility is
already full, which reduces the potential for spurious storage
losses. This does not happen for transmission elements. The
combination of these two factors explains why considering
transmission losses has such a high impact on the relevance
of spurious losses on our model.

As stated in section II-D, the change in the RPS constraint
eliminates the induced negative LMPs, other than those po-
tentially caused by congestion. As expected, spurious losses
associated with these were found to be negligible in all tests.

V. CONCLUSIONS

We have extended the stochastic capacity expansion model
of [7], with the goal of representing a power system of suffi-
ciently high-resolution to adequately capture climate variabil-
ity and geographically realistic generation, storage, and trans-
mission expansion decisions. To handle the high-resolution
geographical and temporal data required for this improved

4This is not a feasible operation status, but serves as an upper bound for
the total losses in the system, and hence for spurious ones.

accuracy, we implemented a variant of the model that could be
decomposed by scenario and solved in an HPC environment
using an implementation of PHA specifically tuned for our
problem. mpi-sppy was used to facilitate the parallelization
of the algorithm, as well as for obtaining optimality bounds
during algorithm execution. Tests were conducted on a full-
resolution, synthetic but realistic representation of the Califor-
nia generation and transmission system, with scenarios based
on a high-resolution climate projection for 2045. Instances
with up to 360 representative days were satisfactorily solved
to under 5% optimality gaps within a few hours.

We envision the continuation of this research along two
main directions: validation and improvement of the model and
improvement of the computational solution. On the former, a
sensitivity analysis of the impact of key model parameters
and modeling assumptions (e.g. the chosen representation of
power flow and the presence of resource flexibility constraints)
on the obtained investment plan needs to be better understood.
On the latter, our tests suggest that a significant performance
improvement can be achieved by adopting an asymmetric
management of computational resources across cylinders. In
addition, addressing the difference in computational time
among scenarios by way of an asynchronous decomposition
of the optimization problem through scenarios, could have a
significant impact on both solution time and quality. This is
a functionality that has been recently added to mpi-sppy [16]
and would constitute a natural extension of this work in the
short term.
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