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Abstract—The paper proposes an aggregated model that
represents the flexibility potential of car parks equipped with
multiple electric vehicle (EV) charging stations. The model is used
in a stochastic optimization procedure to estimate in advance
the maximum flexibility margins of the parking lot. The EV
aggregator responsible for the charging stations offers intra-
day ancillary services to the grid by specifying the possible
margins within which the absorbed power can be varied, either
up or down. These adjustments are made at the request of the
distribution system operator, ensuring an appropriate level of
EV charging. The effectiveness of the model is evaluated for
parking lots with different numbers of charging stations and
different daily profile forecasts of the number of EV arrivals
and departures.

Index Terms—Distribution systems, electric vehicles, EV charg-
ing station aggregators, flexibility services, stochastic optimiza-
tion.

NOMENCLATURE

Stochastic parameters
πω: probability value of scenario ω
Nω,t

EV in, Nω,t
EV out, E

ω,t
S+ , Eω,t

S- : number of electric vehicles
(EVs) arriving and departing in period t, and
corresponding cumulative stored energy, respectively

Eω,t
ini j , Eω,t

g,j : Initial energy and energy gain of the EVs arriving
in period j and leaving in period t

Nω,t
EV , Eω, t

Smax, Pω, t
max : Number of parked EVs at the end of pe-

riod t, corresponding total battery size, and cumulative
maximum charge power

µω,t: Utilization fraction of EV energy entering at time t
Deterministic parameters
∆t: single period duration
EEV, PEV: EV battery size and its maximum charging power
ηch, ηV2V: efficiency of grid battery charging and of vehicle-

to-vehicle (V2V) energy transfer
δ: self-discharge rate of EV batteries
ρtTOU, ρtflex, ρµ: time-of-use tariff of energy from the grid, of

power flexibility services, and of initial EV energy use
tflex, n+flex, nrec: first period of the flexibility interval, number

of subsequent flexibility periods, and number of re-
covery periods

Nparch max: maximum number of EV charging points
Sets
Ts: periods in stage s

Sω,t
in , Sω,t

out : sets of EVs entering and leaving the car park in
period t

Variables
∆Pω,t flex

flex up , ∆Pω,t flex
flex down , Rω,t

flex : maximum allowed increase or
decrease in car park power consumption in period t
and corresponding flexibility revenue

Cω,t
S : cost of using the initial EV stored energy

Eω,t
S net, E

ω,t
ch,grid: net energy stored in the batteries and charging

energy from the grid in period t
Eω,t

ch ,j : minimum energy profile to properly charge EVs ar-
riving in period j

Pω,t
ref : reference consumption profile of the parking lot
Pω,t: power absorbed by the parking lot from the grid
lω, t
V2V: V2V energy transfer losses in period t

I. INTRODUCTION

Electric vehicle (EV) batteries are expected to play an
expanded role in the provision of grid services, as described
in [1] and references therein. This paper presents a multistage
stochastic optimization procedure for calculating the flexibility
capabilities of an electric vehicle (EV) parking lot equipped
with many charging stations. The aggregator of the charging
stations offers flexibility services in response to the distribution
system operator’s (DSO) requests. The paper does not address
the possibility of concurrent participation in a wholesale
flexibility market. The maximum deviations of the parking lot
load consumption with respect to a reference profile need to
be calculated in advance by the EV aggregator in order to
support the DSO with the information needed to efficiently
use the service.

Other than different model-based or data-driven approaches
on EV charging power forecasting (e.g., [2] and references
therein), the literature includes several studies that explore the
impact of optimizing the the operation of EV parking lots in
addressing network congestions [3] and mitigating the vari-
ability of renewable energy sources [4]. Additionally, various
models have been proposed to represent the participation of
EV aggregators in energy and ancillary services markets, e.g.
[5], and within the framework of demand response programs,
as in [6].

The flexibility in the load profile of the EV parking lot can
be harnessed by the DSO to address voltage or congestion
issues, as shown in, for example, [7]. Procuring reserve
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flexibility should ensure the energy recovery needed for the
provision of the expected charging services to the EVs [8].
Furthermore, the flexibility offered by EV charging stations
can also play a significant role in optimizing the design and
operation for energy communities and virtual power plants, as
shown in, e.g., [9], [10], [11].

This paper focuses on the calculation of the maximum
flexibility margins, i.e., the maximum up and down feasible
variations with respect to the expected reference consumption
profile. These margins are offered in advance by the EV
parking lot aggregator to the DSO. To improve the dynamic
adaptation of the margin calculation to current parking con-
ditions (i.e., to the number and characteristics of the EVs
actually connected to the charging stations), a multistage
stochastic optimization approach is integrated with an intraday
decision procedure. This approach allows the update of the
calculated margins at the beginning of each stage in which
the daily horizon is divided. In general, this approach pro-
duces results, specifically flexibility margins, that are close
to those estimated assuming perfect information about the
future (deterministic solution) and larger than those obtained
by considering the worst-case scenarios (robust solution).

The paper presents a multistage optimization procedure
based on an aggregated representation of the EV parking
lot, which takes into account several factors, including power
absorbed from the grid, the efficiency of EV battery charging
and vehicle-to-vehicle (V2V) exchanges allowed by the use
of bidirectional charging stations, self-discharge rates, and the
energy levels of EVs upon arrival and departure from the car
park.

The procedure begins by generating scenarios based on the
forecasted number of EVs entering and leaving the parking
lot. These scenarios account for the uncertainty associated
with the daily forecast, considering also the EV rated battery
size and diffusion, as well as the maximum charging power.
Subsequently, a clustering procedure is applied to construct a
multistage scenario tree that represents various possibilities
of EV charging. The optimization model, which is built
upon the approach presented in [12], calculates the reference
consumption profile for the representative scenario of each
cluster. It achieves this by minimizing the procurement costs
for the EV parking lot, which include both those associated
with purchasing the energy from the grid and the consumption
of the initial energy stored in the vehicles. Additionally, the
model determines the maximum power reduction and increase
margins to be offered as flexibility services.

The flexibility margins represent the maximum achievable
power reduction and increase that ensure the maintenance of
appropriate EV charging levels. Following a power change
requested by the DSO, the considered regulatory framework
allows the EV parking lot to recover its energy level within
a predefined subsequent interval, through a constant variation
in the absorbed power.

The structure of the paper follows. Section II describes the
scenario management of the stochastic parameters, which rep-
resent the parked EVs, and the construction of the multistage

scenario tree. Section III describes the optimization models
of the EV parking lot that provide the demand flexibility
services. Section IV describes the case studies and the results
for different sizes of parking lots. Section V concludes the
paper.

II. STOCHASTIC PARAMETERS AND SCENARIO
MANAGEMENT

The flexibility margins of the EV parking lot, which de-
termine how much power consumption can be reduced or
increased in response to a DSO request while ensuring ap-
propriate EV charging level, are calculated using stochastic
optimization, where some parameters and variables are subject
to uncertainty or randomness. These uncertainties mainly
relate to the characteristics and the number of EVs connected
to the charging stations throughout the day.

The description of the procedure is divided into two parts.
The first part, which is the subject of this Section, defines the
stochastic parameters by using scenarios, each representing a
different realization of the uncertain parameters, and performs
scenario management. This process generates the multistage
tree model, which aggregates similar scenarios at various
stages of the day-long optimization horizon.

Section III deals with the second part of the procedure,
which includes the definition of constraints and objectives
of the stochastic models. A first optimization model calcu-
lates the daily reference consumption profile of the car park
without any request for providing flexibility to the DSO.
Two additional models allow the calculation of the maximum
feasible reduction and increase in power consumption for
each period. All of these models are formulated as linear
programming mathematical problems, without the inclusion of
binary variables, ensuring computational efficiency, even when
dealing with a large number of EVs and charging stations.
This is achieved by adopting an aggregate representation of
the charging stations and EV batteries, which preserves the
accuracy of the calculation of the power exchanges with the
network and of the charge/discharge losses, including those
associated with V2V exchanges.

A. Scenario generation

The procedure starts by generating a number of scenarios
for the next day. The scenario generation procedure assumes
the availability of the forecasts of the number of EVs entering
(N t

EV in) and leaving (N t
EV out) the parking lot in each of the 96

periods of the following day. These forecasts can be obtained
by the analysis of the EV entry and exit data from previous
or similar days. All the entries and departures of a period are
assumed to occur at the end of that period.

For each scenario ω, entering Nω,t
EV in and leaving Nω,t

EV out
EV numbers are obtained by multiplying the corresponding
forecast sequences by 1+kt, which accounts for the increasing
forecast uncertainty throughout the day. Time series kt is
generated by using a normal distribution with the mean value
set to zero, and the standard deviation calculated as

√
1− ψt

2,
where ψt is a decreasing function of t. Each value obtained
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is rounded to the nearest positive integer. Moreover, for each
scenario, the order of the numbers of leaving EVs is adjusted
so that the number of parked EVs is never negative.

To construct an accurate aggregate model of the parking
lot, the sequences of arriving and departing EV numbers
are associated with specific populations of EVs. Each EV
is defined by entry and exit time periods, ensuring that the
entire population of EVs reproduces the sequences of arriving
and departing EV numbers. To achieve this, a simple ’first in,
first out’ strategy is implemented. Only those EVs that can
connect to an available charger are considered (i.e., they are
limited by Nparch max) and they are assumed to disconnect at
their departure time.

Furthermore, each EV is characterized by its rated battery
size EEV, the maximum power PEV allowed by the charging
station, and the initial state of charge. To define the first two
characteristics, the procedure uses a predefined categorization
of currently available EV models and their market penetration.
Specifically, the attributes of each EV are selected based on the
prevalence of each category, which represents the probability
that a vehicle entering the parking lot belongs to that category.
The initial energy of the vehicles entering the car park follows
a truncated normal distribution, with the mean and standard
deviation values assumed to be 0.3 times the size of the battery.

It is assumed that the EVs leaving the parking lot are fully
charged or charged to the maximum level allowed by the
charging power and parking duration. While it is possible to
account for scenarios where some EVs leave the parking lot
with lower energy levels by introducing a penalty into the
objective functions, this aspect is not addressed here for the
sake of simplicity.

The results of this paper have been obtained assuming the
same rated power for all charging stations, but the procedure
can be adapted to the case where different types of charging
stations are present.

B. Scenario clustering and tree construction

The procedure has been implemented as a day-ahead eval-
uation considering a 4-stage stochastic approach (one day-
ahead stage and three intraday stages), where the day-ahead
evaluation is updated every 6 hours during the day to use
information on the actual number and characteristics of the
EVs in the parking lot. We assume that the EV parking lot
aggregator provides the reference consumption profile and the
down and up flexibility margins at the beginning of each
intraday stage for each of the relevant 15-minute time periods.

For each stage s, similar scenarios are grouped into a sce-
nario tree. For this purpose, the k-medoid clustering procedure
is applied. Starting from a single cluster in the first (day-ahead)
stage, each cluster can originate different clusters in the next
stage. The clustering procedure provides both the medoid for
each cluster and stage (i.e., one of the initial scenarios that
minimizes the dissimilarity measure with respect to the other
scenarios in the cluster) and probabilities πω . Compared to the
k-means algorithm, which calculates centroids by averaging

data points within clusters, the k-medoid approach avoids non-
integer numbers of entering, leaving, and parked EVs. This
ensures the preservation of scenario feasibility after clustering.

Here is a detailed description of the procedure. The cluster-
ing is based on the number of parked EVs (assuming that they
are all connected to a charging station), Nω,t

EV . Alternatively,
the clustering can use the sum of the battery sizes of the
parked EVs. Even a combination of the two parameters can
be considered, normalizing them based on their minimum and
maximum values at each time period, as described in [13].

For each stage, the dissimilarity measure d, based on the
Euclidean distance ∥∥2 between two scenarios Nω1,t

EV and
Nω2,t

EV is

d
(
Nω1, t

EV , Nω2, t
EV

)
=

∑
t∈Ts

∥∥Nω1, t
EV −Nω2, t

EV

∥∥
(1)

where Ts is the subset of periods in stage s. Regarding the
clustering procedure, different distance definitions can be used
to assess the dissimilarities between scenarios, such as the
Manhattan distance, as shown in [14].

At stage s = 1, a scenario ωi is chosen as medoid Cs=1
1

such that the average dissimilarity between Nωi,t
EV and every

other scenario N
ωj ,t
EV in the set of generated scenarios is

minimized. At stage s = 2 and subsequent stages, the set
of scenarios aggregated in the previous stage is divided into
K clusters. The steps of the clustering routine applied in stage
s = 2 and subsequent stages are the following.

1) Selection of initial medoids: the first medoid is randomly
chosen, and the remaining K − 1 initial medoids are
selected as the most distant K − 1 scenarios by using
(1).

2) Selection of the closest medoid: each scenario ω is
grouped to the medoid for which the distance given by
(1) is minimal. This results in the creation of K clusters
denoted as Cs

1 to Cs
K for stage s.

3) Update of the medoids: within each cluster, the scenario
that minimizes the average distance to every other sce-
nario in the same cluster is chosen as the new medoid.

4) Iteration and medoid update: after updating the medoids,
the procedure is repeated starting from step 2. This iter-
ative process continues until either the scenarios chosen
as medoids do not change in consecutive iterations, or
the maximum allowed number of iterations is reached.

5) Cluster merging check: the distance between each pair of
medoids and the average distance among the scenarios
grouped in the relevant clusters is compared, and if
the former is lower than the latter, the two clusters are
merged.

6) Scenario replacement: when stable medoids are ob-
tained, all the scenarios of each cluster are replaced
by the corresponding medoid, namely, the sequences
of Nω,t

EV in and Nω,t
EV out for t in Ts. To ensure feasibility

during the transition between stages, this replacement is
performed at the level of each individual EV within the
population, preserving all EV characteristics, including
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the rated battery size, maximum charging power, and
initial charging level.

7) Subsequent stages: the clustering routine is indepen-
dently carried out for each cluster of the previous stage.

8) Scenario tree construction: the described procedure re-
sults in the formation of a scenario tree composed of
nodes (namely, the medoids) at each stage, connected by
arcs. The probability associated with each node in the
tree corresponds to the summation of the probabilities
of each scenario assigned to the corresponding cluster.

The maximum number of clusters K is chosen to preserve
the tractability of the problem by limiting the final number of
scenarios in the tree while ensuring an adequate representation
of the stochastic processes during the day. The scenario gen-
eration technique allows for the inclusion of specific metrics
that assess the selection of the maximum value of K, such
as the elbow method or the silhouette coefficient, using the
obtained objective function values. Other metrics, like the
value of stochastic solution and the expected value of perfect
information, can also be considered. In this paper, the results
are obtained for a maximum K equal to 3.

C. Characterization of each scenario in the tree

As a result of the scenario tree construction, sets Sω,t
in and

Sω,t
out of entering and leaving EVs are defined, for each scenario
ω and period t. The aggregated storage size Eω, t

Smax of the
parking lot and the maximum charging power Pω, t

max are derived
by summing the corresponding data of the individual arriving
and departing vehicles, i.e. EEV, PEV. Moreover, the increase
of stored energy due to the initial energy in the incoming EVs,
Eω,t

S+ , and the energy decrease due to the charged outgoing
EVs, Eω,t

S- , are obtained as

Eω, t
S+ =

∑
i∈Sω,t

in

E0
i (2)

Eω, t
S− =

∑
i∈Sω,t

out

E−
i (3)

where E0
i and E−

i are the energy of the i-th EV when enter-
ing and leaving the parking lot, respectively. The difference
between E−

i and E0
i represents the final charge gain during

the parking time, for the i-th EV.
Each set of EVs that enter and leave in the same periods is

grouped by means of two matrices, the rows of which indicate
the entry periods and the columns the exit periods. Specifically,
in order to retain the information on the period of entry and
exit of the energy initially stored in the batteries, matrix Eω, t

ini, j
is formed as the sum of E0

i for the EVs that enter in period
j and exit in period t. Similarly, for the charge gain, matrix
Eω, t

g, j is constructed as the summation of E−
i −E0

i for the EVs
entering at period j and leaving at period t.

D. Intraday decision procedure

The solution provided by the recourse model, which is based
on the scenario tree constructed using the day-ahead forecasts
of the number of arriving and departing EVs, generates multi-
ple potential decisions at each stage beyond the first one (i.e.,

during the day). Consequently, a decision making procedure
is implemented to determine the most suitable decision for
each stage among those identified by the stochastic problem
solution. This selection takes into account the current number
of parked EVs. More precisely, at the beginning of each
of the considered three stages after the first, the intraday
procedure selects the scenario from the tree that offers the
best match with the real number of parked EVs compared to
those associated with the nodes/medoids of the scenario tree.

III. OPTIMIZATION MODELS TO REPRESENT EV PARKING
LOT FLEXIBILITY

Once the scenario tree is defined, the procedure uses the
optimization models described in this Section. The models
are formulated as linear programming problems and calculate,
for each stage and node of the tree, non-negative variables
Pω,t

ref , ∆Pω,t flex
flex down and ∆Pω,t flex

flex up , through repeated stochastic
optimizations. Due to the aggregated structure of the EV
parking lot model and its linearity, each optimization is
computationally efficient, requiring only tens of milliseconds
regardless of the number of EVs and charging stations.

The assumptions made include an agreement between the
EV parking lot aggregator and the DSO that allows the parking
lot to recover the power change during a predefined interval
following the flexibility provision interval. Therefore, each
flexibility margin is associated with a maximum recovery of
opposite sign within the recovery interval. The actual recovery
is assumed to be proportional to the effective reduction re-
quested by the DSO. It is also assumed that the DSO does not
request any further reductions or increases during the recovery
period and that the power variation is constant over time.

The model calculates the flexibility margins assuming that
the DSO request is limited to a single 15-min period, denoted
as of tflex. Furthermore, the calculation is repeated assum-
ing that the DSO requires flexibility provision in additional
consecutive 15-min periods after tflex, denoted as n+flex. These
calculations are performed with the constraint that the flexibil-
ity margin remains the same throughout the entire flexibility
interval, i.e., from tflex to tflex+n+flex.

The values of Pω,t
ref and ∆Pω,t

flex , along with their associated
recovery profiles, are provided to the DSO at the beginning of
each stage.

A. Calculation of the reference consumption profiles

The objective function for the day-ahead calculation of
the parking lot consumption profile Pω,t is to minimize the
procurement costs, considering probability πω of each scenario
ω:

min
∑
ω

πω
∑
t

(
ρtTOUP

ω,t∆t+ Cω,t
S

)
(4)

The model considers the presence of bidirectional charging
stations, used for V2V energy exchanges but not to inject
power into the external grid. These exchanges help ensure that
EVs depart with the maximum charge allowed by the parking
duration, Eω,t

S- , using the energy stored in EVs expected to
have prolonged parking times.
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The energy balance equation for the parking lot is:

Eω,t
S net = (1− δ)E

ω,(t−1)
S net + Eω,t

ch,grid − Eω,t
S- +

µω, tEω,t
S+ − lω, t

V2V +

t∑
j=1

(1− µω, j)Eω, t
ini, j

(5)

that represents the aggregate energy stored in the parked EVs
in scenario ω at the end of period t. Eω,t

S net takes into account
not only the energy supplied by the grid Eω,t

ch,grid = ηch P
ω,t∆t

but also the possibility to use for V2V a part of the initial
energy Eω,t

S+ of the EVs that entered the parking lot in
period t (namely, µω, tEω,t

S+ ). The fraction of the initial energy
used is represented by non-negative variable µω, t, which is
subject to upper bound µω,t

max that ensures a minimum energy
margin emin maintained in the EV batteries. The associated
cost of using the initial energy of the EVs is represented by
Cω,t

S = ρµµ
ω, tEω, t

S+ in (4), which can be interpreted as the
remuneration of the vehicles providing the service.

In the context of V2V energy exchanges, constraint (5)
accounts for the associated energy losses through non-negative
variable lω, t

V2V given by

lω,t
V2V ≥ (1− ηV2V)

Eω,t
ch,grid −

t−1∑
j=1

Eω, t
ch j + µω, tEω,t

S+

 (6)

where ηV2V represents the efficiency of the V2V energy
exchanges, taking into account the losses in the power elec-
tronic converters and in the batteries. The long-term reduction
in efficiency due to aging and demanding operation is not
considered.
Eω, t

ch j for t > j is the profile that ensures that the EVs parked
in the interval [j, τ ] receive Eω,τ

g, j , i.e., their final charge gain,
before leaving the parking lot. Eω, t

ch j is zero for t ≤ j . The
sum of Eω, t

ch j is equal to the total net charge increase at the
departure period τ of the last EVs among those entered in
period j, while it is larger before that period. The constraints
representing Eω, t

ch j are

i∑
t=j+1

Eω, t
ch, j −

i∑
t=j+1

Eω, t
g, j ≥ 0 for all i < τ

j∑
t=1

Eω, t
ch, j = 0

τ∑
t=j+1

Eω, t
ch, j −

τ∑
t=j+1

Eω, t
g, j = 0

(7)

where τ is the departure period of the last EV among those
entered in period j.

In the presence of V2V energy exchanges, some EVs receive
more energy from the grid than they need to cover their final
charge gain during their parking time. In (6), the term Eω,t

ch,grid−
t∑

j=1

Eω, t
ch j + µω, tEω,t

S+ represents the energy from the grid that

is used for V2V exchanges.

According to (6), lω,t
V2V losses are calculated when the excess

energy is stored, not when the V2V exchange is performed.
This does not affect the final result since ηV2V is assumed to be
constant. If the chargers are not bidirectional, both µ and lV2V
are set to zero. The V2V energy can also be used to add a cost
in the objective function (4) associated with the remuneration
of vehicles providing the V2V service.

Non-negative variable Eω,t
S net is constrained as

Eω,t
S net ≤ Eω, t

Smax −
t∑

j=1

(1− µω, j)Eω, t
ini, j , (8)

Assuming that the connection of the parking lot with the
external grid is limited by Pmax,grid then

Pω,t ≤ min
(
Pmax,grid, P

ω,t
max

)
(9)

The solution of problem (4)-(8) provides reference profile
Pω,t

ref = Pω,t for all scenarios ω.

B. Calculation of the maximum power reduction and increase
margins

The calculation of the maximum power reduction and in-
crease margins is performed for each period. It considers cases
where flexibility is requested in a single period tflex and cases
where flexibility is also requested in additional consecutive
periods n+flex, limited to n+max,flex.

The objective function is

min
∑
ω

πω
∑
t

(
ρtTOUE

ω,t
buyGrid + Cω,t

S −Rω, t
flex

)
(10)

where non-negative Rω,t
flex is the revenue associated with the

provision of the maximum flexibility in tflex:

Rω, t
flex =

{
ρtflex ∆Pω, t

flex ∆t if tflex ≤ t ≤ tflex + n+flex

0 otherwise
(11)

Predefined tariff ρtflex is the compensation rate that the DSO
pays to the flexibility provider for achieving a non-negative
power change ∆Pω,t

flex in period tflex compared to reference
power level Pω,t

ref . ∆Pω,t
flex is defined as

∆Pω, t
flex = Pω, t

ref − Pω, t for down margin

∆Pω, t
flex = Pω, t − Pω, t

ref for up margin

for tflex ≤ t ≤ tflex + n+flex

(12)

The model includes the possibility for the EV parking lot to
recover the power change with respect to Pω,tflex

ref that occurred
at tflex in a predefined number of periods nrec after tflex+n+flex
(with a value of nrec = 3 in the tests). ∆Pω, t

flex is constrained
to be uniform in the recovery interval by:

∆Pω,t
flex ≥ −

tflex+n+
flex∑

j=tflex

∆Pω,j
flex

nrec

for tflex + n+flex < t ≤ tflex + n+flex + nrec

∆Pω,t
flex = 0 for t < tflex and t > tflex + n+flex + nrec

(13)

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



The inequality of the previous constraint becomes an equal-
ity for the flex-up scenario to prevent the use of incremental
losses (such as unnecessary V2V exchanges) to enhance the
flexibility margin.

In the case of multiple consecutive periods of flexibility,
the maximum margin is constrained to be the same in all the
periods:

∆Pω, t
flex = ∆Pω, tflex

flex for tflex < t ≤ tflex + n+flex. (14)

All the models are completed with nonanticipativity con-
straints, typical in stochastic optimization, which ensure that
decisions made at different stages depend only on currently
available information and not on future outcomes or informa-
tion that will be revealed later.

IV. CASE STUDIES AND RESULTS

A. Test cases and scenarios

The case studies include three parking lots, denoted as PL
A, B, and C, each with a maximum power import capacity
of 3 MW. The number of available charging stations for these
parking lots is 70 for PL A and PL B, and 45 for PL C. In all
scenarios, the parking lots are empty at the beginning of the
day, and all EVs leave before the end of the day.

Fig. 1 shows the different day-ahead forecasts for the num-
ber of EVs entering and leaving each parking lot in ∆t =15
min time periods. These forecasts are used to generate a total
of 60 different daily scenarios. The ψt function is assumed
to decrease linearly from 0.9999 in the first period to 0.99 in
the last period. Similar scenarios are grouped together using
the k-medoid method, resulting in a 4-stage tree composed of
nodes representing the scenarios that are the medoids obtained.
The profiles of scenarios with common nodes in the tree are
bounded at each stage based on the tree structure. Fig. 2
illustrates the tree corresponding to parking lot PL A with
24 medoids in the last stage.

Fig. 1: Day-ahead forecast profiles of the number of EVs
entering (solid lines) and exiting (dashed lines) in the three
parking lots considered: PL A in black, PL B in blue, PL C
in red.

Fig. 2: Scenario tree for parking lot PL A. The identification
numbers of the medoids are shown for each stage of 6 hours,
together with, between parenthesis, both the arc probabilities
and scenario probabilities πω

In the tests, the types of EVs are classified into 4 categories
based on their battery capacities and market penetration rates:
1) EEV = 25 kWh with 15% penetration, 2) EEV = 45 kWh
with 45% penetration, 3) EEV = 70 kWh with 25% penetra-
tion, 4) EEV = 100 kWh with 15% penetration. These values
are derived from data available from various Internet sources.
While they may be appropriate for the current situation in cer-
tain countries, it is essential to adapt them to the actual usage-
specific conditions. A maximum charging power of 40 kW is
assumed for each charging station, which is representative of
typical ac charging stations installed in parking lots where EVs
remain connected for extended periods of time.

For the EV batteries, δ is assumed to be zero. The charging
and V2V energy transfer efficiencies, ηch and ηV2V, are set to
0.96 and 0.92, respectively.

Time of use price ρtTOU is equal to 72.39 C/MWh from
7 am to 11 pm and to 51.62 C/MWh at other times. If µω,t

max is
set greater than 0, the price for using the initial EV energy is
ρµ = 50 C/MWh, which is lower than the grid price. In each
period, minimum initial energy emin is set to 20% of the sum
of the rated capacity of the batteries of the entering EVs.

For both downward and upward power flexibility provided
by the parking lot, predefined tariff ρtflex is set to 100 C/MWh,
significantly higher than the grid prices. For all the cases,
the recovery interval is nrec=3 periods after the end of the
flexibility interval.

B. Results

AIMMS Developer was used to implement the optimization
procedures. The adopted LP solver is Gurobi V10 on 4.7-GHz
processors with 32 GB of RAM, running 64-bit Windows.

The objective function values of the stochastic optimizations
for the three parking lots are: C 438 for PL A, C 568 for
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PL B, and C 242 for PL C. The average and maximum
objective function reductions with single flexibility are: 1.32%
and 8.63% for PL A, 1.08% and 12.11% for PL B, 1.37% and
18.71% for PL C, respectively. These reductions depend on
the difference between ρtflex and ρtTOU.

As an illustrative example of the upward and downward
flexibility margin evaluations and of the subsequent recovery
periods, Fig. 3 shows the down and up margins in power
variations at tflex=29 and tflex=45, respectively, relative to
the reference profile for scenario 56 of PL A included in
the stochastic tree of Fig. 2. The figure shows the results
considering the flexibility interval given by a single period or
2 or 3 consecutive 15-min periods. While both up and down
margins can generally be computed for the same interval, the
figure separates the up and down flexibilities into distinct tflex
for clarity.

Fig. 3: Flexibility margins and corresponding recoveries of
scenario 56 of PL A: down flexibility starting at tflex=29
(7:15 am) and up flexibility starting at tflex=45 (11:15 am).

Fig. 4 shows the periods when the maximum up and down
flexibility margins exceed 100 kW for scenario 56 in PL A.
It considers the flexibility interval of a single 15-min period,
2 periods, and 3 consecutive periods (only the first period is
shown in the figure). In time period 46, the parking lot can
provide both up and down flexibility for n+flex=0. In several
cases, when single period flexibility cannot be provided, a two-
or three-period flexibility is allowed as the different recovery
interval is more suitable.

Fig. 4 also shows the results obtained by tripling both the
size (i.e., increasing the number of charging stations to 210)
and the number of EVs entering and exiting with respect to
PL A. This expanded scenario is referred to as PL D. As a
result of the changes introduced, the operating conditions of
the corresponding scenarios differ between the two parking
lots. Nevertheless, the figure shows that the flexibility widens
as the size of the parking lot increases, as expected. In scenario
56, for PL A, the maximum up flexibility is 54.0 kW with an
average equal to 12.2 kW, and the maximum down flexibility
is 70.8 kW with an average equal to 13.1 kW; for PL D, the
maximum up flexibility is 101.0 kW with an average equal to

a)

b)
Fig. 4: Initial period of the flexibility intervals with a margin
larger than 100 kW for scenario 56: a) PL A, b) PL D.
Downward flexibility in green and upward flexibility in red.

24.3 kW, and the maximum down flexibility is 129.2 kW with
average equal to 38.6 kW. In time period 53, the PL D can
provide both up and down flexibility for n+flex=0.

The computation time for the cases considered in the paper
is always less than a few minutes.

V. CONCLUSION

The paper introduces a method to characterize the flexibility
offered by parking lots equipped with EV charging stations,
which can be used by the distribution system operator to
address challenges such as voltage and congestion problems.

Key aspects of the method include computing the reference
demand profile and flexibility margins for each period of
the following day, considering predefined incentives for load
changes. The approach uses a multistage stochastic procedure
that adapts to real-time conditions and vehicle connections to
the charging stations throughout the day.

Scenarios for stochastic optimization are created based on
forecasts of EV arrivals and departures, accounting for factors
like battery size, diffusion, and maximum charging power.
Clustering of similar scenarios using the k-medoid method
reduces computational complexity while maintaining scenario
feasibility.

The optimization model aggregates EV battery behavior and
formulates the problem as a linear one, making it computation-
ally efficient even for large parking lots. It accounts for losses
associated with grid charging and vehicle-to-vehicle energy
exchanges enabled by bidirectional charging stations.

To enhance the flexibility of the EV parking lot, power
reductions and increases in consecutive periods are considered
while ensuring schedule feasibility, by including a recovery
after the interval when the flexibility is requested.

This approach operates as a day-ahead evaluation with a 4-
stage stochastic process, updating the decisions every 6 hours
to reflect real-time EV data. Numerical tests on parking lots
of various sizes demonstrate the effectiveness of the method.

Overall, this procedure ensures that charging requirements
are met and serves as a valuable tool for the EV aggregator of-
fering flexibility services to improve the operation of the power
distribution network and mitigate the impacts of electromobil-
ity. The typical main barriers to practical implementation are
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related to the lack of an appropriate regulatory framework for
the local market and an efficient communication infrastructure.
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