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Abstract—Incorporating the AC power flow equations into unit
commitment models has the potential to avoid costly corrective
actions required by less accurate power flow approximations.
However, research on unit commitment with AC power flow con-
straints has been limited to a few relatively small test networks.
This work investigates large-scale AC unit commitment problems
for the day-ahead market and develops decomposition algorithms
capable of obtaining high-quality solutions at industry-relevant
scales. The results illustrate that a simple algorithm that only
seeks to satisfy unit commitment, reserve, and AC power balance
constraints can obtain surprisingly high-quality solutions to this
AC unit commitment problem. However, a naive strategy that
prioritizes reserve feasibility leads to AC infeasibility, motivating
the need to design heuristics that can effectively balance reserve
and AC feasibility. Finally, this work explores a parallel decom-
position strategy that allows the proposed algorithm to obtain
feasible solutions on large cases within the two hour time limit
required by typical day-ahead market operations.

Index Terms—AC power flow, Optimization, Reserve products,
Unit commitment

NOMENCLATURE

Sets

T Set of time periods t
J Set of dispatchable devices j
J{cs,pr} Set of {consuming, producing} devices
J
{cs,pr}
i Set of {consuming, producing} devices at bus i

Jac Set of AC transmission lines
I Set of buses i
J
{fr,to}
i Set of AC transmission lines {from, to} bus i

Np Set of active reserve zones n
Jpr,cs
n Set of producing and consuming devices in active

reserve zone n

Parameters

dt Duration of time period t
pmin
jt Minimum online power of device j at t

pmax
jt Maximum online power of device j at t

prujt Maximum online ramp-up rate of device j at t
pru,sujt Maximum start-up ramp rate of device j at t
prdjt Maximum online ramp-down rate of device j at t
prd,sdjt Maximum shut-down ramp rate of device j at t
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gsrj Series conductance of line j

g
{fr,to}
j “{From, To}”-side conductance of line j
bsrj Series susceptance of line j

b
{fr,to}
j “{From, To}”-side susceptance of line j

bchj Charging susceptance of line j
prgu,reqnt Regulation up reserve requirement in zone n at t
pscr,reqnt Synchronous reserve requirement in zone n at t

Binary variables

uon
jt On status of device j at t

u
{su,sd}
jt {Start-up, Shut-down} status of device j at t

Continuous variables

pjt Dispatched real power of device j at t
pit Real power mismatch at bus i at t
qit Reactive power mismatch at bus i at t
p
{fr,to}
jt Real power through the “{from, to}” side of line j

q
{fr,to}
jt Reactive power through the “{from, to}” side of line

j
zjt Operating cost of device j at t
vit Voltage magnitude of bus i at t
θit Voltage angle of bus i at t
prgujt Regulation up reserve provided by device j at t
pscrjt Synchronous reserve provided by device j at t
prru,onjt Online ramp-up reserve provided by device j at t
prgu,+nt Regulation up reserve shortfall in zone n at t
pscr,+nt Synchronous reserve shortfall in zone n at t

I. INTRODUCTION

The unit commitment problem is a power system scheduling
task that is solved in day-ahead and real-time power markets to
balance supply with demand at low cost and ensure feasibility
with respect to physical, reliability, and operational constraints
[1]. Due to the size of networks that grid operators consider
(thousands to tens of thousands of buses), discrete commitment
decisions, nonlinear alternating current (AC) physics that must
be respected, and strict time limits within which commitment
decisions must be made, solving the unit commitment prob-
lem is a challenging optimization task. The current standard
practice is for market operators to use a direct current (DC)
approximation of the power flow physics, which allows the
unit commitment problem to be formulated as a mixed-
integer linear program (MIP) and solved with established and
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performant commercial solvers such as CPLEX, Gurobi, and
Xpress [2].

While MIP technology has proven effective in saving hun-
dreds of millions of dollars annually in U.S. markets com-
pared to previously used less accurate Lagrangian relaxation
approaches [2], [3], MIP-based unit commitment with a DC
approximation requires post-market clearing corrective action
to ensure AC feasibility. In a study on the 24-bus IEEE RTS
test network, Castillo et al. estimate a 1% cost increase due
to these corrections compared to the solution of the unit
commitment problem with a full AC power flow model [4].
However, unit commitment with AC power flow constraints
(AC Unit Commitment, or AC-UC) on industry-scale networks
with practical time limits have not been widely demonstrated.

To investigate whether AC-UC problems can be solved
for large-scale networks within realistic time limits, the U.S.
Department of Energy’s Advanced Research Projects Agency-
Energy (ARPA-E) has developed the Grid Optimization Com-
petition (GOC), in which teams compete to develop solvers
for the AC-UC problem as specified in the GOC Challenge 3
problem formulation [5]. This problem formulation strives to
be representative of modern power market optimization models
and includes unit commitment and ramping constraints, AC
power flow, variable loads, real and reactive reserve products,
startup/shutdown trajectories, line switching, and contingency
constraints. The full optimization problem as written in [5] is
a large-scale nonconvex, multi-period, multi-scenario mixed-
integer nonlinear program (MINLP). To realize the benefits of
using this AC-UC problem in real-world electricity markets,
high-quality solutions to large-scale instances of this problem
must be computed within realistic time limits.

Using the Grid Optimization Competition challenge 3 prob-
lem as foundation, this work aims to develop the simplest
algorithm capable of obtaining high-quality solutions to the
AC-UC problem for the day-ahead market within the two
hour time limit prescribed by the competition rules. This
“benchmark algorithm” is intended to help inform researchers
and market software providers about what features of the AC-
UC problem are necessary for a viable solution approach. To
this end, the results presented in this paper indicate that: (1)
off-the shelf optimization solvers are incapable of solving the
full GOC challenge 3 problem within specified time limits;
(2) it is possible with current optimization methods (e.g.,
Gurobi and Ipopt) to develop high-quality heuristics for the
AC-UC problem, which can solve industry-scale instances
within the reasonable time limits; (3) one of the key challenges
in developing such heuristics is to manage the competing
requirements of the AC power balance and reserve allocation
constraints; (4) problem decomposition and parallelization
across multiple cores is essential to achieving the runtime
requirements in large datasets with thousands of buses.

The next section begins by introducing the core features
of the AC-UC problem that is considered in this work and
motivates the aspects of the problem that make it challenging
in practice.

II. PROBLEM FORMULATION AND SCALE

The unit commitment formulation considered maximizes
market surplus by scheduling dispatchable devices (generators
and dispatchable loads) over a 48 hour time horizon (i.e.
T = {1, . . . , 48}). A simplified version of this unit commit-
ment problem is given by Equation (1).

max
pjt,ujt

∑
t∈T

dt

 ∑
j∈Jcs

zjt −
∑
j∈Jpr

zjt


s.t.

∑
j∈Jcs

pjt =
∑
j∈Jpr

pjt ∀t ∈ T

Constraints (2)− (4)
zjt = fzj (pjt) ∀t ∈ T, j ∈ J
uon
jt, u

su
jt, u

sd
jt ∈ {0, 1}, pjt ∈ R ∀t ∈ T, j ∈ J

(1)
This formulation contains a copper-plate real power balance,
semi-continuous real power constraints (2), ramping con-
straints (3) and (4), and a convex piecewise-linear function fzj
for the operating cost of each device. Here, binary variables
uon
jt , usu

jt , and usd
jt encode a device’s status as either “on”,

“starting up”, or “shutting down”. For example, uon
jt = 1

means that device j is scheduled to be online at time period
t. In this case, the device’s real power pjt must be within its
bounds pmin

jt and pmax
jt . If uon

jt = 0, the device’s real power must
be zero. Binary variables for start-up and shut-down are used
to encode different maximum ramp rates for devices in these
states, as implemented in (3) and (4). For more information on
unit commitment problems and formulations, see [1], [6]–[8].

uon
jtp

min
jt ≤ pjt ≤ uon

jtp
max
jt ∀t ∈ T, j ∈ J (2)

pjt − pj,t−1 ≤
dt

(
pru
j

(
uon
jt − usu

jt

)
+pru,su

j

(
usu
jt + 1− uon

jt

)) ∀t ∈ T, j ∈ J

(3)
pjt − pj,t−1 ≥ −dt

(
prd
j u

on
jt + prd,sd

j

(
1− uon

jt

))
∀t ∈ T, j ∈ J

(4)
Binary variables uon

jt , usu
jt , and usd

jt are the primary source of
discrete variables in the GOC AC-UC problem, and ramping
constraints (3) and (4) are the primary source of intertemporal
linking. The full formulation of this problem can be found
in the ARPA-E Grid Optimization Competition Challenge 3
Problem Formulation [5]. Including all specifications on input
data, this formulation contains over 300 equations and is
omitted here for brevity. The notation in this work is consistent
with the problem formulation, which may be consulted for
further reference. The remainder of this section summarizes
key features of the problem formulation that differentiate it
from previous work in the area.

A. AC network constraints

The unit commitment problem in this work considers AC
transmission lines and the associated power flow (derived from
Ohm’s law) and power balance (derived from Kirchhoff’s first
law) using the polar power-voltage formulation. The power
flow equations are defined with ifrj and itoj denoting the buses
on either side of line j. Real and reactive power on each
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side of an AC transmission line are given by (5)-(8). For
more information on this power flow formulation, see [9].
The power flow equations are nonlinear, nonconvex constraints
and add significant complexity when incorporated in the
unit commitment problem. The GOC problem formulation
also considers DC lines, transformer branches, and control
thereof [5]. The algorithms presented in this work but keep
transformer operating settings fixed but are free to adjust the
power flow along a DC line.

pfrjt = uon
jt

((
gsrj + gfrj

)
v2it

+
(
−gsrj cos (θit − θi′t) −bsrj sin (θit − θi′t)

)
vitvi′t

)
,

∀t ∈ T, j ∈ Jac, i = ifrj , i
′ = itoj (5)

qfrjt = uon
jt

((
−bsrj − bfrj − bchj /2

)
v2it

+
(
bsrj cos (θit − θi′t) −gsrj sin (θit − θi′t)

)
vitvi′t

)
,

∀t ∈ T, j ∈ Jac, i = ifrj , i
′ = itoj (6)

ptojt = uon
jt

((
gsrj + gtoj

)
v2i′t

+
(
−gsrj cos (θit − θi′t) −bsrj sin (θit − θi′t)

)
vitvi′t

)
,

∀t ∈ T, j ∈ Jac, i = ifrj , i
′ = itoj (7)

qtojt = uon
jt

((
−bsrj − btoj − bchj /2

)
v2i′t

+
(
bsrj cos (θit − θi′t) −gj sin (θit − θi′t)) vitvi′t) ,

∀t ∈ T, j ∈ Jac, i = ifrj , i
′ = itoj (8)

Real and reactive power balance equations are given by (9)
and (10). Bus power variables pit and qit are mismatch slack
variables, or power balance violations, that are penalized in the
objective function. In this way, the power balance equations
are soft constraints that always have a feasible solution.∑

j∈Jcs
i

pjt +
∑
j∈J fr

i

pfrjt +
∑
j∈Jto

i

ptojt =
∑
j∈Jpr

i

pjt + pit

∀t ∈ T, i ∈ I (9)∑
j∈Jcs

i

qjt +
∑
j∈J fr

i

qfrjt +
∑
j∈Jto

i

qtojt =
∑
j∈Jpr

i

qjt + qit

∀t ∈ T, i ∈ I (10)

In the GOC problem formulation [5] the AC power flow
constraints also include shunt devices which are controlled
via a collection of discrete “steps”. However, shunt steps are
considered fixed by all algorithms in this work, so these terms
are omitted for brevity.

B. Reserve products

To ensure a power network has sufficient capacity to bal-
ance small deviations in supply and demand and to provide
backup in case of an unexpected disturbance or shut-down,
dispatchable devices provide reserve products in addition to
actual (i.e., planned) generation or consumption [10], [11].
The unit commitment formulation considered in this work
contains reserve products for both real and reactive power
capacity of all dispatchable devices, which includes both
generators and loads. Reserve products are categorized as

“up” or “down” according to whether they are provided by a
device’s capacity to add or remove net power from the system.
Reserves must be satisfied within active and reactive reserve
zones, each of which partition the dispatchable devices based
on which network buses they are connected to. The reserve
requirements for each zone are implemented as soft constraints
with a slack variable that is penalized in the objective if the
requirement is not satisfied. The reserve balance equations
for regulation up reserve and synchronous reserve are given
as examples in (11) and (12). Reserves for each device are
constrained by the “headroom” to the device’s upper or lower
bounds depending on the type of reserve and the type of
device. For example, regulation up, synchronous, and online
regulation ramp-up reserves are constrained by the headroom
to a producer’s upper bound, as in (13), or the headroom to a
consumer’s lower bound, as in (14). In all, the GOC problem
formulation considers eight active reserve products and two
reactive reserve products. In this work the vectors pRES and
qRES are used to denote an assignment of all active and
reactive reserve products for all dispatchable devices across
all time periods. Higher-quality reserve products, such as
regulation up, can be used simultaneously for lower-quality
products such as synchronized reserve, as implemented in (11)
and (12).∑

j∈Jpr,cs
n

prgujt + prgu,+nt ≥ prgu,reqnt , ∀t ∈ T, n ∈ Np (11)

∑
j∈Jpr,cs

n

(
prgujt + pscrjt

)
+ pscr,+jt ≥ prgu,reqnt + pscr,reqnt ,

∀t ∈ T, n ∈ Np (12)

p+ prgujt + pscrjt + prru,onjt ≤ pmax
jt uon

jt , ∀t ∈ T, j ∈ Jpr (13)

p− prgujt − pscrjt − prru,onjt ≥ pmin
jt uon

jt , ∀t ∈ T, j ∈ Jcs (14)

In addition to penalties incurred if reserve requirements are
not satisfied, devices may incur additional cost by providing
reserves. As reserve constraints are linear and reserve variables
are continuous, the problem of balancing reserve shortfall
penalties with device reserve costs may be modeled as a
linear program (LP) for fixed power levels and commitment
decisions p, q, and u. While these constraints are not com-
plicated individually, the sheer number of constraints and
variables required to encode the full reserve model (five
headroom constraints and ten reserve variables per device)
adds significant complexity to the AC-UC problem.

C. Contingency constraints

Security constraints are an important feature of electric
power markets, and may be incorporated into Unit Commit-
ment problems [12] or Optimal Power Flow problems [13].
The GOC AC-UC problem considers security constraints that
penalize branch flow thermal limit violations in a defined
set of contingencies, where each contingency is defined as
the loss of a single specified branch in the network. While
solutions computed in this work are evaluated in the context
of these contingency constraints, the algorithms presented do
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not account for them as they did not contribute to significant
penalties in the objective function value.

D. Problem scale

Early approaches to AC Unit Commitment applied La-
grangian relaxation [14] and Benders decomposition [15] to
problems defined on the IEEE 118-bus network. Fu et al.
have considered a security-constrained version of this problem
on the same network [16] using an augmented Lagrangian
and Benders decomposition approach. Castillo et al. apply
an outer approximation method to solve AC-UC problems on
networks of up to 118 buses and compare with a method that
employs DC unit commitment followed by an AC feasibility
solve [4], while Tejada-Arango et al. benchmark a direct
mixed integer nonlinear programming (MINLP) formulation,
an approach based on sequential linear programming, and
a second-order conic programming formulation [17]. These
previous works on the AC-UC problem have applied exact
local MINLP algorithms to this problem and have only demon-
strated scalability up to power networks of on the order of
100 buses and 24 time points, which is far from the size
desired by industrial practitioners. Section IV-A investigates
the scalability of the Knitro [18] MINLP solver on AC-UC
problems and confirms that large-scale instances are out of
reach. This work considers AC-UC problems on the Grid
Optimization Competition ranging from 73 buses to more
than 8,000 buses with 48 time points, and approaches solving
such large problems by decomposing the full AC-UC problem
into several subroutines and parallelizing these tasks across
multiple cores.

III. METHODS

The decomposition algorithms that are developed in this
work rely on several subroutines, each focusing on different
aspects of the complete AC-UC problem. This section intro-
duces these subroutines then describes how they are combined
into four distinct heuristic solution approaches.

A. Subroutines

1) Copper-plate scheduling: The unit commitment ap-
proach taken is to model the full-horizon scheduling problem
as a MIP. For tractability, the scheduling problem considers
only copper-plate real and reactive power balances. That is,
no network model is considered. Only total demand and
generation must match, as if all devices are connected to a
single conductive plate. The full zonal reserve requirement
model is considered in this subproblem as well. The outputs
of this subproblem are discrete commitment decisions u, real
and reactive power estimates p and q, and real and reactive
reserve commitments pRES and qRES.

2) AC optimal power flow (AC-OPF): This work achieves
AC feasibility by solving an AC optimal power flow (AC-OPF)
problem at individual time periods t. Each subproblem has
the discrete commitment decisions fixed and only considers
devices that are online in time period t. Device costs are
convex piecewise-linear cost functions modeled with the ∆

formulation described by [19]. In this work, shunts and trans-
former taps are fixed to their operating conditions at the initial
point. To keep AC-OPF problem sizes manageable, reserve
constraints are not considered by these subproblems. Incorpo-
rating these constraints would add ten additional variables and
five additional inequality constraints per dispatchable device
and several additional variables and inequality constraints per
reserve zone, nearly doubling the size of the model.

3) Reserve allocation: While reserve products and zonal
reserve requirements are incorporated in the unit commitment
model, they are not explicitly considered by the AC-OPF
model. For this reason, care is taken to reallocate feasible
reserves after the commitment schedule and AC-feasible power
dispatch is generated. The algorithms discussed in Section
III-B differ primarily in how they allocate reserve products
based on the methods discussed here.

Greedy reserve allocation, the first method considered for
allocating reserves, is a simple greedy procedure that, for
every dispatchable device, attempts to allocate the headroom
to the device’s upper and lower bounds to the appropriate
reserve products, starting with the highest value products. In
this approach, the cost of providing a reserve and the zonal
reserve requirements are not considered. That is, reserve is
assigned for every device possible even if doing so is not
necessary to satisfy the requirements. This is motivated by the
observation that, in most cases, the penalty for failing to meet
a reserve requirement is much larger than the cost of providing
the reserve, which is often zero.

Tighten device bounds, the second method considered, fixes
real reserve products computed by the copper-plate unit com-
mitment schedule on all devices where doing so does not lead
to a guaranteed local power balance violation on the device’s
bus. A local power balance violation occurs if, for example, a
lone producing device on a bus is scheduled to provide more
regulation down reserve than the sum of upper bounds on
real power that can be transmitted from adjacent lines. For
devices where this type of violation does not occur, bounds
are tightened on device real power variables p to guarantee
that the reserves committed by the unit commitment problem
are feasible after the AC-OPF subproblems. If a large number
of devices provide reserves, this method can become overly
restrictive for the AC-OPF subproblems and can lead to power
balance violations. For this reason, a variation of this method
is considered where only some fraction γ of devices providing
real power reserve have their bounds tightened. When γ < 1,
devices are sorted by the value of reserve that they provide and
the top γ of them are constrained in the AC-OPF subproblems.
This method can be also be used in conjunction with post-AC-
OPF reserve allocation.

Reserve re-dispatch via linear programs, the final method,
computes reserve products post-AC-OPF by fixing commit-
ment decisions u and dispatched real and reactive power levels
p and q by solving the reserve model (zonal reserve balances,
headroom constraints, costs, and penalties) as a linear program
(LP). These LPs are independent at each time period and are
solved in parallel.
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B. Decomposition algorithms

The subroutines described in Section III-A are combined
into the follow four algorithms for solving the full AC-UC
problem.

Algorithm 1 is a simple decomposition designed to mimic
a basic version of current industrial practice. A commitment
schedule u, along with nominal real power p, reactive power
q, and real reserve products pRES, is computed via the
copper-plate unit commitment problem described in Section
III-A1. Co-optimization of commitment decisions with real
power reserves is chosen to mimic a joint reserve scheduling
market [20]. Real reserve products are then fixed, imposing
tightened bounds on real power. AC-OPF subproblems are
solved sequentially, with a bound-tightening step before each
solve to ensure feasibility of ramping constraints. Reactive
power reserve products are allocated after solving AC-OPF
subproblems by the greedy strategy described in Section
III-A3.

Algorithm 1 Reserve-preserving decomposition
1: Initialize: p, q, u← initial status
2: p, q, u, pRES ← Copper-plate unit commitment
3: Tighten bounds on p by fixing pRES

4: for t = 1 . . . 48 do
5: Tighten bounds on pt using ramping constraints
6: pt, qt ← AC-OPF at t
7: end for
8: qRES ← Greedy reserve allocation
9: return p, q, u, pRES, qRES

Algorithm 2 is designed to prioritize unit commitment-
feasible, AC-feasible solutions. It solves a copper-plate unit
commitment problem to obtain a commitment schedule and
nominal real and reactive powers, then solves AC-OPF sub-
problems sequentially. After solving AC-OPF subproblems,
real and reactive powers are fixed and both real and reactive
reserve products are allocated using the greedy approach.

Algorithm 2 Simple greedy decomposition
1: Initialize: p, q, u← initial status
2: p, q, u← Copper-plate unit commitment
3: for t = 1 . . . 48 do
4: Tighten bounds on pt using ramping constraints
5: pt, qt ← AC-OPF at t
6: end for
7: pRES, qRES ← Greedy reserve allocation
8: return p, q, u, pRES, qRES

Algorithm 3 uses the same basic decomposition, but is
refined by the observation that tightening bounds on a large
number of devices can lead to AC infeasibility. It employs the
same bound tightening strategy as Algorithm 1 but only for
the top 5% of devices providing reserve value, as described
in Section III-A3. After AC-OPF subproblems, reserves are
re-computed via linear programs that balance costs with zonal

reserve penalties subject to fixed real power, reactive power,
and on status variables previously computed.

Algorithm 3 Reserve/AC-balancing heuristic
1: Parameter γ = 5
2: Initialize: p, q, u← initial status
3: p, q, u, pRES, qRES ← Copper-plate unit commitment
4: Tighten p bounds by fixing pRES for top γ% of devices
5: for t = 1 . . . 48 do
6: Tighten bounds on pt using ramping constraints
7: pt, qt ← AC-OPF at t
8: end for
9: pRES, qRES ← Reserve re-dispatch via linear programs

10: return p, q, u, pRES, qRES

Algorithm 4 is the balancing heuristic algorithm with a par-
allel decomposition of the AC-OPF subproblems at individual
time periods. This is followed by a sequential projection of
real power into the bounds implied by ramping constraints at
the previous time point. The resulting solutions satisfy the unit
commitment and ramping constraints, have modest AC power
balance violations due to ramping constraint projections, and
have reserves that are balanced between the pre-OPF copper-
plate reserve schedule and the post-OPF reserve re-dispatch.
This algorithm variant is comparable to the solution method
that was used for the “ARPA-E Benchmark” algorithm in
Event 4 of GOC Challenge 3.

Algorithm 4 Parallel decomposition heuristic
1: Parameter γ = 5
2: Initialize: p, q, u← initial status
3: p, q, u, pRES, qRES ← Copper-plate unit commitment
4: Tighten p bounds by fixing pRES for top γ% of devices
5: for t = 1 . . . 48 in parallel do
6: pt, qt ← AC-OPF at t
7: end for
8: for t = 1 . . . 48 do
9: Project pt to satisfy ramping constraints

10: end for
11: pRES, qRES ← Reserve re-dispatch via linear programs
12: return p, q, u, pRES, qRES

These decomposition algorithms consider all hard con-
straints of the GOC problem formulation [5]. That is, omitted
features such as contingency constraints are modeled as soft
constraints. As such, solutions produced by these algorithms
are guaranteed to be feasible for the GOC problem formu-
lation. However, as all of these algorithms are heuristics,
they provide no particular guarantees on solution speed or
quality. To address this, future work may focus on using
these decompositions in a Benders decomposition or outer
approximation framework to develop approaches that, given
enough time, are guaranteed to converge to a locally optimal
solution. The next section conducts detailed experiments on a
variety of realistic network instances to explore the strengths
and weaknesses of these algorithms.
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TABLE I
RESULTS OF SOLVING FULL AC-UC PROBLEM WITH KNITRO

Case ID N. Var. N. Con. Objective ($) Solve time (s)
S0N00003-003 2260 3850 9.07e+05 71
S0N00014-003 22080 26183 2.23e+06 33
S0N00037-003 43584 47494 1.07e+07 20

N00073-333 159072 195415 2.30e+08 84
N00617-002 627768 705544 N/A >10000

IV. RESULTS AND DISCUSSION

A. Full AC-UC problem evaluation

To motivate the use of heuristic decomposition algorithms
for large scale instances of the AC-UC problem, we first
evaluate the performance of Knitro 14.0 on small instances
of the full AC-UC problem, using a heuristic branch-and-
bound algorithm [21] with nonlinear programming (NLP)
subproblems solved by an interior point method [22]. We use
small networks and construct an AC-UC problem containing
only unit commitment and AC network constraints (i.e. omit-
ting reserve products). The test datasets have 3, 14, 37, 73,
and 617 buses, and come either from GOC Event 4 or the
“sandbox” dataset, indicated by “S0” in the Case ID. Solve
times and objective values for these small instances of the
simplified problem are shown in Table I. The results indicate
that, even for this simplified problem, Knitro is unable to
solve a 617-bus instance of the full AC-UC problem as an
MINLP with 627,768 variables and 705,544 constraints. The
largest instance considered in this work, with 8,316 buses, has
8,260,224 variables and 8,947,330 constraints in this simplified
version of the AC-UC problem. This is well beyond the
scope of off-the-shelf MINLP solvers, and motivates the use
of heuristic decomposition methods to produce high-quality
solutions for industry-scale instances of this problem.

B. Test data

The algorithms presented in Section III-B are evaluated in
terms of solution quality and solve time on 28 day-ahead
AC-UC cases provided by Event 4 of the Grid Optimization
Competition, Challenge 3. Networks with 73, 617, 2,000,
4,224, 6,049, 6,717, and 8,316 buses are considered. Four
representative scenarios are considered for each network.
Problem data for each network are given in Table II. Except for
the 73-bus network, all scenarios for a given network have the
same numbers of dispatchable devices, AC lines, and reserve
zones. Each case is assigned a unique identifier (“Case ID”)
using the network size and the scenario number from GOC
Event 4. The objective values of solutions are computed by
an independent evaluation program provided by the GOC that
considers the full problem formulation [23].

C. Computational Setting

All results in this section are computed using HPE ProLiant
XL170r servers with two Intel 2.10 GHz CPUs and 128 GB of
memory using Julia v1.6 [24]. These machine have 36 physical
cores and up to 72 simultaneous threads. Optimization models

TABLE II
STATISTICS FOR THE EVENT 4 NETWORKS CONSIDERED

Buses Devices AC lines p res. zones q res. zones
73 (scenario 991) 208 127 1 1

73 (other scenarios) 205 105 1 1
617 499 723 10 10

2000 1894 2345 4 10
4224 2151 2605 2 2
6049 3774 4920 6 6
6717 5826 7173 9 12
8316 5585 7723 7 7

are constructed with JuMP v1.14 [25]. The unit commitment
MIP models are solved with Gurobi v10.0 and the AC-OPF
subproblems are solved with Ipopt v3.14 [26] using the MA27
linear solver [27] and a symbolic automatic differentiation
approach [28] that is similar to the approach of Gravity
[29]. To reduce the runtime of ill-conditioned instances that
require many interior-point iterations to converge, solves are
terminated via callback if they have reached a 10−3 unscaled
primal residual and a 1.0 unscaled dual residual. The reserve
assignment LPs are solved using HiGHS v1.5 [30].

Implementations of the models and subroutines used
in this work can be found at https://github.com/lanl-ansi/
GOC3Benchmark.jl.

D. Solution quality

Solution quality results for Algorithm 1 are shown in Table
III. In Tables III-VI, “Objective” is the market surplus value
of the solution produced by presented algorithm, while “Best-
known solution” is the value of the best solution produced by
any team in the GOC, according to the leaderboards [31]. Each
of these best solutions was obtained within a two hour time
limit on the standardized hardware used by the competition.
“Gap” is defined as the percent difference with respect to
the best-known solution. “Res. penalty” is the total penalty
incurred by zonal reserve shortfalls, while “p-penalty” and
“q-penalty are total real and reactive power balance violation
penalties. The penalty factor is 106 US dollars per power unit,
so achieving a 102 power balance penalty is equivalent to a
total power balance violation magnitude of 10−4. “Solve time”
is the time elapsed between the start of Julia code execution
and the point at which the solution file is written.

While the algorithm produces acceptable solutions for many
cases, 13 cases have gaps to the best-known solution of
over 30%. In 12 of these 13 cases (and several others),
the dominant penalties are real and reactive power balance
violation penalties. In Table III, rows corresponding to solution
gaps of larger than 30% are highlighted. This suggests that
fixing reserve products for many devices is too restrictive to
achieve AC feasibility.

Algorithm 2 prioritizes AC feasibility over reserve feasibil-
ity. It includes reserves in its copper-plate unit commitment
model, but does not fix any reserve products before the AC-
OPF subproblems. Table IV shows solution quality results
for Algorithm 2, which produces surprisingly high-quality
solutions for a simple greedy approach. Except for seven
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cases, these solutions are computed within the 2 hour time
limit. Of the 28 cases, 12 have a gap of less than 10% to
the best-known solution. In 9 of the remaining 16 cases, the
dominant penalty is the reserve shortfall penalty. This suggests
that post-AC-OPF greedy reserve allocation is not sufficient to
minimize reserve penalty, and that solutions could be improved
by including information from the reserves computed by the
unit commitment subproblem.

Algorithm 3 attempts to improve reserve shortfall penalties
by tightening bounds on γ = 5% of devices providing reserve
value. In addition, reserve products are re-dispatched after
the AC-OPF subproblems via linear programs with zonal
balance models. The solution quality results for this algorithm
are shown in Table V. The results show that this algorithm
produces high-quality results in most cases, with the gap to
the best-known solution less than 10% for 19 of 28 cases.
Reserve penalty dominates in only one of the remaining nine
cases (N02000-031). The total market surplus across all cases
is 1.74×1010$ for Algorithm 3, compared to 1.37×1010$ for
Algorithm 2, a 20% improvement with a value of over 3
billion US dollars. Fig. 1 compares the penalties incurred by
Algorithms 1-3 on cases 4,000 buses or larger. The comparison
shows large power balance violation penalties for Algorithm
1 and large reserve shortfall penalties for Algorithm 2. In the
few cases where Algorithm 3 incurs large penalties, they are
dominated by moderate power balance violations.

The results demonstrate that surprisingly good solutions
can be obtained by a simple algorithm that does not con-
sider contingency constraints, line switching, shunt control, or
transformer control. In 16 of 28 cases considered, Algorithm 3
obtains solutions with objectives within 2% of the best-known.
In case N08316-131, however, the algorithm takes longer than
the 2 hour time limit to produce a solution.

N
04

22
4-

00
5

N
04

22
4-

02
2

N
04

22
4-

03
8

N
04

22
4-

05
4

N
06

04
9-

00
3

N
06

04
9-

03
1

N
06

04
9-

05
7

N
06

04
9-

06
9

N
06

71
7-

04
4

N
06

71
7-

05
0

N
06

71
7-

06
2

N
06

71
7-

06
8

N
08

31
6-

10
9

N
08

31
6-

12
1

N
08

31
6-

13
1

N
08

31
6-

15
7

Case IDs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
en

al
ty

($
)

×109

Reserve penalty

p-penalty

q-penalty

Other penalties

Algorithm 1

Algorithm 2

Algorithm 3

Fig. 1. Summary of objective penalties incurred for Algorithms 1-3 on the
larger networks considered in this work. Algorithm 3 reliably balances AC
and reserve feasibility requirements, finding solutions with low penalties.

E. Solve time

Fig. 2 shows a breakdown of the solve times of Algorithm 3
for the 28 cases presented. The results show that solving the se-

quential AC-OPF subproblems is the dominant computational
expense, although for the 6,717-bus cases the unit commitment
solve time also contributes significantly.
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Fig. 2. A breakdown of solve times with Algorithm 3, where the scenarios for
each network have the same order as in Table V. These results highlight how
AC-OPF solve times are a dominant factor in the runtime of the algorithm.

Algorithm 4 solves individual AC-OPF subproblems in par-
allel to attempt to reduce the dominant computational burden
and provide solutions within the two hour time limit. It does
so at some expense to solution quality, however, as the post-
processing projection step that recovers ramping feasibility
can also introduce power balance violations. Solution quality
results for Algorithm 4 are shown in Table VI. While the
parallel solution strategy does produce high-quality solutions
for most cases, it does incur a penalty compared to Algorithm
3 on cases N04224-005, N04224-022, and N04224-038 due
to power balance violations.

Fig. 3 shows the solve times and speed-up factors as func-
tions of the number of threads allocated to the Julia process
running Algorithm 4 on one scenario from each of the five
largest network sizes considered. While Algorithm 3 exceeds
the time limit on case N08316-131, Algorithm 4 solves within
the time limit when using only a single thread. With only
four threads, Algorithm 4 solves within the time limit by a
margin of at least 2,000 s for all cases. Additional runtime
gains can be achieved using additional cores. According to the
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Fig. 3. Scaling of Algorithm 4’s solve time with number of threads for five
of the large cases considered in this work. The results show that 32 parallel
processes are sufficient for satisfying a two hour runtime limit.

results presented in Fig. 2, Algorithm 3 spends between 36%
and 90% of its time in the sequential AC-OPF portion of the
algorithm for networks 2,000 buses and larger. As only this
portion of the algorithm is parallelized, linear speedup with
the number of processors is not expected. A theoretical upper
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bound on speedup for the most OPF-intensive instance is 10×,
while an upper bound on speedup for the average instance
is approximately 4×. Fig. 3 shows speedups between 1.4×
and 2.6× with 64 threads for the most challenging instances,
indicating the presence of some overhead. Thread scheduling
is done by Julia’s built-in Threads package. While paral-
lelizing subproblems across time periods is sufficient to solve
the presented cases within the time limit, additional gains may
be obtained by decomposing in space as well. Overall, these
results suggest that parallelization can be an effective approach
to balancing solution quality and runtime requirements in
industrial-scale AC Unit Commitment.

V. CONCLUSION

This work provides a simple decomposition framework
for solving large-scale instances of a challenging AC Unit
Commitment problem posed by Challenge 3 of the Grid Opti-
mization Competition. Although the competition formulation
includes several features that this work does not consider, such
as contingency constraints and line switching, the proposed
algorithms are successful in producing high-quality solutions
to the majority of problem instances considered. A variant
of the proposed method using a parallel decomposition of
AC-OPF subproblems is capable of producing solutions to all
instances considered within the two hour time limit, with some
reduction in solution quality compared to a fully sequential
computational approach. The success of this algorithm and
those from other participants in the grid optimization com-
petition suggest that industry-scale AC Unit Commitment is
within reach of current numerical optimization methods.
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TABLE III
SOLUTION QUALITY RESULTS FOR ALGORITHM 1

Case ID Best-known solution ($) Objective ($) Gap Res. penalty ($) p-penalty ($) q-penalty ($) Solve time (s)
N00073-303 +1.48e+08 +1.48e+08 0.03% -4.90e+04 -2.42e+00 -3.18e+00 181
N00073-333 +2.31e+08 +2.30e+08 0.02% -7.36e+04 -1.44e+01 -2.70e+01 180
N00073-373 +2.35e+08 +2.34e+08 0.48% -3.43e+05 -7.28e+01 -3.91e+02 187
N00073-991 +5.90e+07 +7.95e+06 86.51% -1.16e+05 -6.50e+01 -4.92e+07 193
N00617-002 +1.64e+08 +1.64e+08 0.17% -3.58e-12 -2.68e+02 -1.45e+03 257
N00617-015 +2.65e+08 +2.65e+08 0.11% -2.55e+04 -3.58e+02 -2.21e+03 304
N00617-039 +1.64e+08 +1.64e+08 0.18% -2.72e+04 -2.79e+02 -1.49e+03 299
N00617-069 +2.66e+08 +2.65e+08 0.31% -8.14e+03 -6.91e+02 -5.04e+03 295
N02000-022 +7.59e+08 +7.31e+08 3.78% -2.45e+07 -1.27e+02 -1.08e+03 984
N02000-031 +8.26e+08 +7.84e+08 5.12% -1.83e+07 -1.64e+07 -1.73e+03 2621
N02000-074 +7.58e+08 +5.13e+08 32.36% -2.05e+06 -2.44e+08 -1.97e+03 608
N02000-080 +8.30e+08 +5.51e+08 33.62% -5.83e+05 -2.79e+08 -6.09e+03 641
N04224-005 +4.96e+08 +2.18e+08 55.99% -5.01e+07 -5.56e+07 -1.52e+08 1813
N04224-022 +4.96e+08 -5.32e+07 110.71% -2.59e+07 -2.01e+08 -3.04e+08 2013
N04224-038 +4.97e+08 +2.24e+08 54.82% -3.11e+07 -9.72e+07 -1.26e+08 1729
N04224-054 +7.22e+08 +4.92e+08 31.90% -2.26e+08 -3.72e+05 -1.22e+05 1074
N06049-003 +6.09e+08 +5.71e+08 6.30% -5.64e+05 -5.93e+05 -1.24e+07 5173
N06049-031 +6.78e+08 +4.09e+08 39.69% -1.18e+06 -2.54e+05 -2.63e+07 4360
N06049-057 +6.09e+08 +2.83e+08 53.58% -3.47e+05 -3.19e+05 -9.33e+07 3887
N06049-069 +8.27e+08 +3.82e+08 53.74% -3.22e+05 -2.65e+06 -9.78e+06 5095
N06717-044 +9.05e+08 +8.14e+08 10.05% -2.02e+07 -3.15e+07 -1.65e+04 3870
N06717-050 +1.32e+09 +1.23e+09 6.79% -1.80e+07 -1.97e+07 -3.34e+04 3748
N06717-062 +9.11e+08 +2.99e+08 67.20% -1.33e+07 -5.50e+08 -4.41e+06 3407
N06717-068 +1.33e+09 +3.11e+08 76.57% -2.05e+07 -9.31e+08 -1.53e+06 4242
N08316-109 +1.43e+09 +1.36e+09 4.55% -1.94e+06 -5.22e+07 -4.07e+06 4661
N08316-121 +1.16e+09 +1.03e+09 11.28% -3.37e+06 -2.32e+07 -9.62e+07 5723
N08316-131 +1.43e+09 +1.41e+09 1.85% -6.96e+06 -5.66e+06 -5.01e+06 4928
N08316-157 +1.18e+09 +6.44e+08 45.54% -4.01e+06 -2.59e+08 -2.66e+08 6957

TABLE IV
SOLUTION QUALITY RESULTS FOR ALGORITHM 2

Case ID Best-known solution ($) Objective ($) Gap Res. penalty ($) p-penalty ($) q-penalty ($) Solve time (s)
N00073-303 +1.48e+08 +1.48e+08 0.11% -9.39e+02 -2.42e+00 -3.18e+00 163
N00073-333 +2.31e+08 +2.30e+08 0.11% -1.94e+04 -1.44e+01 -2.70e+01 165
N00073-373 +2.35e+08 +2.34e+08 0.48% -2.00e+05 -7.28e+01 -3.91e+02 171
N00073-991 +5.90e+07 +7.96e+06 86.50% -9.12e+04 -6.50e+01 -4.92e+07 188
N00617-002 +1.64e+08 +1.64e+08 0.01% -0.00e+00 -5.39e+01 -2.69e+02 253
N00617-015 +2.65e+08 +2.65e+08 0.12% -2.70e+05 -2.29e+02 -1.22e+03 271
N00617-039 +1.64e+08 +1.64e+08 0.17% -2.70e+05 -7.80e+01 -4.14e+02 262
N00617-069 +2.66e+08 +2.66e+08 0.10% -2.70e+05 -2.46e+02 -1.30e+03 280
N02000-022 +7.59e+08 -2.01e+09 364.29% -2.77e+09 -6.88e+01 -3.14e+02 1345
N02000-031 +8.26e+08 -4.40e+09 632.79% -5.23e+09 -8.40e+01 -4.31e+02 2886
N02000-074 +7.58e+08 +1.62e+08 78.64% -5.96e+08 -5.18e+01 -2.89e+02 926
N02000-080 +8.30e+08 -1.87e+07 102.25% -8.49e+08 -6.19e+01 -2.93e+02 943
N04224-005 +4.96e+08 +4.40e+08 11.34% -2.78e+05 -2.08e+07 -3.01e+07 2240
N04224-022 +4.96e+08 +2.92e+08 41.26% -0.00e+00 -8.21e+07 -1.17e+08 2246
N04224-038 +4.97e+08 +2.57e+08 48.20% -0.00e+00 -9.04e+07 -1.41e+08 2068
N04224-054 +7.22e+08 +6.05e+08 16.22% -1.15e+08 -1.82e+03 -9.52e+03 2471
N06049-003 +6.09e+08 +5.95e+08 2.27% -6.95e+05 -8.79e+04 -1.00e+07 5951
N06049-031 +6.78e+08 +5.54e+08 18.32% -1.13e+07 -1.08e+05 -1.61e+07 5283
N06049-057 +6.09e+08 +3.20e+08 47.57% -1.00e+06 -2.98e+05 -7.96e+07 6050
N06049-069 +8.27e+08 +4.40e+08 46.72% -1.26e+06 -1.29e+06 -5.07e+06 7597
N06717-044 +9.05e+08 -4.23e+08 146.70% -1.33e+09 -1.42e+02 -3.82e+02 6385
N06717-050 +1.32e+09 -1.29e+08 109.81% -1.45e+09 -2.92e+02 -1.65e+03 7302
N06717-062 +9.11e+08 -5.57e+08 161.19% -1.47e+09 -1.55e+02 -9.73e+02 6585
N06717-068 +1.33e+09 -4.71e+08 135.40% -1.80e+09 -4.77e+02 -3.40e+03 7614
N08316-109 +1.43e+09 +1.42e+09 0.76% -7.80e+05 -1.13e+06 -8.53e+05 8866
N08316-121 +1.16e+09 +1.06e+09 9.09% -3.81e+06 -1.10e+07 -7.68e+07 9318
N08316-131 +1.43e+09 +1.42e+09 1.23% -7.64e+06 -9.54e+05 -4.55e+05 8838
N08316-157 +1.18e+09 +1.07e+09 9.57% -3.23e+06 -1.06e+07 -8.26e+07 10000
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TABLE V
SOLUTION QUALITY RESULTS FOR ALGORITHM 3

Case ID Best-known solution ($) Objective ($) Gap Res. penalty ($) p-penalty ($) q-penalty ($) Solve time (s)
N00073-303 +1.48e+08 +1.48e+08 0.09% -2.11e+03 -6.09e+01 -3.73e+02 217
N00073-333 +2.31e+08 +2.30e+08 0.09% -1.65e+04 -4.70e+01 -2.87e+02 212
N00073-373 +2.35e+08 +2.34e+08 0.39% -2.69e+05 -1.32e+02 -7.99e+02 212
N00073-991 +5.90e+07 +7.36e+06 87.52% -1.12e+05 -3.51e+02 -5.05e+07 239
N00617-002 +1.64e+08 +1.64e+08 0.09% -3.64e-03 -6.19e+01 -2.64e+02 342
N00617-015 +2.65e+08 +2.65e+08 0.12% -1.32e+03 -4.25e+02 -8.20e+02 368
N00617-039 +1.64e+08 +1.64e+08 0.10% -1.26e+04 -5.03e+01 -2.24e+02 337
N00617-069 +2.66e+08 +2.66e+08 0.09% -1.39e+03 -1.89e+02 -3.91e+02 380
N02000-022 +7.59e+08 +7.47e+08 1.61% -1.21e+07 -1.57e+03 -5.73e+03 1614
N02000-031 +8.26e+08 +7.29e+08 11.73% -1.00e+08 -2.13e+03 -8.05e+03 3154
N02000-074 +7.58e+08 +7.57e+08 0.08% -1.62e+01 -6.37e+02 -2.80e+03 1831
N02000-080 +8.30e+08 +8.29e+08 0.08% -1.50e+01 -4.47e+02 -2.45e+03 1763
N04224-005 +4.96e+08 +4.88e+08 1.57% -1.67e+00 -9.62e+03 -2.38e+06 1462
N04224-022 +4.96e+08 +3.85e+08 22.47% -1.19e+00 -4.38e+07 -6.12e+07 1454
N04224-038 +4.97e+08 +3.19e+08 35.77% -6.00e-09 -6.66e+07 -1.05e+08 1464
N04224-054 +7.22e+08 +7.19e+08 0.43% -4.63e-02 -2.60e+03 -2.59e+04 902
N06049-003 +6.09e+08 +5.75e+08 5.57% -2.00e+05 -1.69e+05 -1.36e+07 4872
N06049-031 +6.78e+08 +5.38e+08 20.65% -1.89e+05 -1.56e+05 -1.78e+07 4581
N06049-057 +6.09e+08 +2.92e+08 52.17% -1.37e+03 -3.49e+05 -8.46e+07 3937
N06049-069 +8.27e+08 +3.84e+08 53.58% -1.40e-10 -1.16e+06 -8.18e+06 4532
N06717-044 +9.05e+08 +8.94e+08 1.26% -1.28e+07 -8.45e+02 -3.59e+03 4799
N06717-050 +1.32e+09 +1.32e+09 0.22% -2.41e+06 -8.21e+02 -5.60e+03 5008
N06717-062 +9.11e+08 +8.31e+08 8.79% -1.34e+07 -6.33e+07 -2.45e+05 4503
N06717-068 +1.33e+09 +1.23e+09 7.20% -9.18e+06 -8.07e+07 -7.49e+04 5313
N08316-109 +1.43e+09 +1.41e+09 1.29% -3.04e+05 -5.99e+06 -5.25e+06 6938
N08316-121 +1.16e+09 +1.03e+09 11.02% -2.09e+06 -1.97e+07 -9.93e+07 6469
N08316-131 +1.43e+09 +1.40e+09 1.96% -9.57e+06 -5.87e+06 -5.61e+06 8061
N08316-157 +1.18e+09 +1.06e+09 10.60% -1.26e+06 -9.71e+06 -1.10e+08 6747

TABLE VI
SOLUTION QUALITY RESULTS FOR ALGORITHM 4

Case ID Best-known solution ($) Objective ($) Gap Res. penalty ($) p-penalty ($) q-penalty ($) Solve time (s)
N00073-303 +1.48e+08 +1.48e+08 0.09% -2.11e+03 -6.09e+01 -3.73e+02 215
N00073-333 +2.31e+08 +2.30e+08 0.09% -1.65e+04 -4.70e+01 -2.87e+02 207
N00073-373 +2.35e+08 +2.34e+08 0.39% -2.69e+05 -1.32e+02 -7.99e+02 209
N00073-991 +5.90e+07 +7.36e+06 87.52% -1.12e+05 -3.51e+02 -5.05e+07 234
N00617-002 +1.64e+08 +1.64e+08 0.09% -3.64e-03 -6.19e+01 -2.64e+02 249
N00617-015 +2.65e+08 +2.65e+08 0.12% -1.32e+03 -4.25e+02 -8.20e+02 273
N00617-039 +1.64e+08 +1.64e+08 0.10% -1.26e+04 -5.03e+01 -2.24e+02 265
N00617-069 +2.66e+08 +2.66e+08 0.09% -1.39e+03 -1.89e+02 -3.91e+02 296
N02000-022 +7.59e+08 +7.47e+08 1.61% -1.21e+07 -1.58e+03 -5.90e+03 755
N02000-031 +8.26e+08 +7.29e+08 11.73% -1.00e+08 -1.98e+03 -7.70e+03 2390
N02000-074 +7.58e+08 +7.57e+08 0.08% -1.59e+01 -4.11e+02 -2.30e+03 738
N02000-080 +8.30e+08 +8.29e+08 0.08% -1.55e+01 -3.61e+02 -2.05e+03 652
N04224-005 +4.96e+08 +1.80e+08 63.61% -6.81e-01 -2.19e+08 -9.09e+07 827
N04224-022 +4.96e+08 +2.74e+08 44.84% -9.18e-01 -1.61e+08 -5.56e+07 775
N04224-038 +4.97e+08 +2.06e+08 58.53% -4.14e-09 -2.01e+08 -8.42e+07 921
N04224-054 +7.22e+08 +7.19e+08 0.47% -4.63e-02 -3.32e+05 -2.58e+04 720
N06049-003 +6.09e+08 +5.64e+08 7.39% -2.03e+05 -1.12e+07 -1.32e+07 1934
N06049-031 +6.78e+08 +5.38e+08 20.68% -1.88e+05 -4.29e+05 -1.76e+07 2059
N06049-057 +6.09e+08 +2.92e+08 52.06% -1.59e+03 -3.47e+05 -8.36e+07 1537
N06049-069 +8.27e+08 +3.80e+08 53.97% -1.57e-10 -2.16e+06 -1.01e+07 2636
N06717-044 +9.05e+08 +8.94e+08 1.26% -1.28e+07 -8.09e+02 -3.50e+03 3868
N06717-050 +1.32e+09 +1.32e+09 0.22% -2.41e+06 -8.65e+02 -5.65e+03 3977
N06717-062 +9.11e+08 +8.31e+08 8.79% -1.34e+07 -6.33e+07 -2.44e+05 3217
N06717-068 +1.33e+09 +1.23e+09 7.20% -9.18e+06 -8.07e+07 -7.49e+04 4379
N08316-109 +1.43e+09 +1.38e+09 3.14% -3.05e+05 -3.23e+07 -5.18e+06 4114
N08316-121 +1.16e+09 +1.01e+09 13.00% -2.10e+06 -3.78e+07 -1.05e+08 3046
N08316-131 +1.43e+09 +1.39e+09 3.24% -9.74e+06 -2.41e+07 -5.58e+06 3995
N08316-157 +1.18e+09 +1.02e+09 13.59% -1.20e+06 -4.37e+07 -1.12e+08 3438
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