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Abstract—Literature suggests different technologies and control
algorithms to counteract the decrease in system damping and inertia
caused by the increasing penetration of inverter-interfaced resources
in renewable power systems. Published studies generally focus on
comparing different control mechanisms for a single technology
and examine a limited number of operating conditions. Technology
comparisons are typically limited to small test cases, base on
assumptions that no longer hold in renewable-rich systems or are
solely based on literature reviews. This work thoroughly compares
fast-frequency reserve provision from inverter-based active thermal
loads (ATLs) against battery storage. As such, we employ a large-
scale multi-level test case representing the future Victorian power
system and link steady-state and dynamic analysis. We examine the
frequency and voltage performance following distinct disturbances
for five days with hourly resolutions. The results suggest that the
potential for electrifying residential heating demand in Victoria is
enormous and can significantly enhance frequency metrics. Generally,
the improvements achieved with the aggregation of ATLs are similar
or even higher than employing a large battery.

Index Terms—Fast-frequency reserve, inverter-based heat pumps,
battery energy storage, renewable power systems

I. INTRODUCTION

Several solutions, such as grid-forming and grid-following
control of Voltage Source Converters (VSCs) or fast demand
response strategies, have been suggested in the literature to cope
with the decline in system inertia and damping caused by the
increasing penetration of Inverter-Based Resources (IBRs) [1].
While batteries and thermal loads have been proposed in nu-
merous publications to provide Fast-Frequency Reserve (FFR),
the literature is generally limited to comparing the regulatory
landscape or different control modes for the same technology. For
example, [2, 3] review global grid standards for FFR provision,
list implemented battery projects, and pinpoint technical issues
associated with FFR provision in IBR-rich power systems. Sim-
ilarly, [4] provides an overview of grid-forming battery storage
projects. The work in [5] reviews technological solutions for
frequency regulation in IBR-rich systems and provides a deep-
level comparison of battery models for frequency reserve studies.

Comparisons of different resource technologies are typically
limited to small test cases or are subject to assumptions that
no longer hold in renewable-rich power systems [5]. In addition,
most control concepts are only tested for a limited number of
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operating conditions, model the load-side contributions as large
aggregations or are restricted to the Transmission Network (TN)
level. However, some resource types, e.g., distributed batteries
and demand response, are located in subordinated Distribution
Networks (DNs). While [6,7] suggest control algorithms to ensure
reliable DN-operation with device aggregations, the considered
time scales are not suitable for FFR. Consequently, the effect of
supplying an FFR-service at TN level through DN resources is
not assessed [8].

Steady-state analysis of renewable power systems shows that
operating conditions are subject to high variability throughout the
day, even more so with the integration of additional demand from
electrified heating. For example, [9] examines how the electrifica-
tion of heating via heat pumps in Victoria alters the steady-state
operation. Similarly, [10] assesses the electrification of heating
demand for the Italian power system and depicts variable daily
patterns. With these changing operating conditions, inertia levels
and system strength change accordingly. While some works, e.g.
[11, 12], acknowledge the impact of time-varying penetrations of
Inverter-Based Generation (IBG) on system strength and stability,
studies that link steady-state and dynamic analyses are missing.

This paper addresses the abovementioned shortcomings and
presents a large-scale multi-level case study on the power system
of Victoria (VIC). The conducted study extends the recent steady-
state analysis in [9,13], where the impact of electrifying formerly
gas-based thermal loads on the steady state of the VIC power
system is examined. Here, we aim to assess the contribution of
the electrified thermal load to frequency dynamics if these are
implemented in a grid-supporting fashion, called Active Thermal
Loads (ATLs) in the remainder of this paper. Furthermore, their
performance is compared to that of grid-scale batteries. As such,
the contributions of the presented work are as follows:

• We employ a straightforward method to link steady-state and
dynamic studies. The method consists of three distinct steps
and uses an Optimal Power Flow (OPF) solution as input for
the dynamic simulation.

• We use a large-scale test case with multiple DN and TN
layers to run extensive dynamic studies on a representation
of the VIC power system. We simulate three different elec-
trification levels of residential thermal loads and two battery
scenarios for five exemplary days with hourly resolution.

• Finally, the performance of all scenarios is assessed with
respect to steady-state and dynamic performance metrics. The
results highlight how a system’s steady-state and dynamic
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performance are linked while providing detailed insights into
the reserve provision with batteries and ATLs.

In short, the key aim of the presented work is to answer the
following two research questions: (1) How much can the replace-
ment of residential gas-based heating with inverter-interfaced heat
pumps that employ FFR help frequency response in VIC? (2)
Is electrification of thermal loads equally efficient to improve
frequency dynamics as deploying battery storage?

The remainder of this paper is structured as follows: The
scenarios for the case studies are detailed in Section II, while
Section III describes the applied method. Section IV provides
insights into the test case and the ATL model. Then, steady-state
and dynamic results are presented in Section V. Finally, Section VI
concludes the work.

II. SCENARIOS

This work analyzes dynamic simulations based on realistic
scenarios of the future VIC power system, which is a part of the
interconnected eastern Australian power system. For this purpose,
carefully selected scenarios that assess the impact of electrifying
residential heating demand in VIC are examined. All scenarios
were selected to represent the projected future situation of the
VIC power system. This section details the setup and layout of
the studied scenario tree. Since the presented study continues the
work presented in [9,13], the chosen scenarios are similar. Fig. 1
provides an overview of the scenario tree detailed in the remainder
of this section.

A. AEMO’s 2020 Integrated System Plan

Our case studies comply with the 2020 Integrated System Plan
(ISP) provided by Australian Energy Market Operator (AEMO)
in [14]. In its reports, AEMO assesses five scenarios to trace

Exemplary Days
hourly resolution

Electrification Scenarios
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Fig. 1. Overview of the scenario tree: Each exemplary day is considered with
hourly resolution, i.e. 24 operating points.

0 5 10 15 20

time in h

0

2

4

P
th

in
G

W

spring summer autumn winter 1 in 20

Fig. 2. Electrified load P th per representative day for the 100% electrification
scenario. The depicted values halve for the 50% case.

different speeds of the energy transition. Our work builds on
the AEMO Step Change scenario that is the most aggressive
transition. It exhibits high uptakes in distributed energy resources,
demand, and variable Renewable Energy Sources (RES). As
such, it incorporates a 50% renewable energy target in VIC by
2030. Furthermore, it exhibits the highest net market benefits. All
assumptions, inputs, and outcomes are available in [14, 15].

This work assesses the potential of electrifying residential
heating demand for five representative days under the Step Change
scenario for the projected generation mix of 2025. Electricity
demand and RES output forecasts for the representative days and
months are obtained from the 2020 ISP in [15]. The electric
system model provided in [16] is adjusted to account for the 2025
generation mix, the augmentation of interconnectors, and internal
network extensions.

B. Electrification Scenarios
The studies are conducted for five different gas demand days,

which are obtained from actual historical data provided in a tempo-
ral resolution of 1 hour. Generally, the average daily gas demand
in VIC varies from 280TJ/day in summer to 900TJ/day in
winter. The peak gas demand is around 1200TJ/day. Within each
day, the gas demand for space heating may vary significantly.
Such intra-day variations are predominantly affected by outdoor
temperatures and time of day [9,13]. The following representative
days have been selected to depict most of these variations:

• Average spring demand on Oct, 21th 2019
• Average summer demand on Dec, 22nd 2019
• Average autumn demand on May, 15th 2019
• Average winter demand on July, 17th 2019
• 1-in-20 peak gas demand on August, 9th 2019

where the cursive parts denote the scenarios for the remainder of
the paper. Each representative day is projected to 2025 under the
AEMO 2020 ISP Step Change scenario. Different electrification
levels of gas-based residential space heating and domestic hot
water supply are considered. These include a base case scenario
with no electrification, referred to as 0% or benchmark, medium
electrification at 50%, and high electrification at 100%. Details on
the gas demand breakdown into different sectors and the procedure
for electrification of the thermal demand are provided in [9, 13].

An overview of the resulting electrified thermal demand, i.e. the
additional active power demand stemming from the electrification,
is depicted in Fig. 2 for the 100% scenario. As expected, the elec-
trified thermal load P th is lowest during summer and highest in
the colder months, peaking around 4GW active power demand for
the 1-in-20 demand scenario. Considering the five representative
days with hourly resolution and three electrification scenarios, 360
operating points for the VIC power system are obtained.

C. Battery Scenarios
Like the electrification scenarios, the battery sizing reflects

the actual situation in the VIC power system. Currently, several
large projects are online or planned. For example, the VIC big
battery project installs a 300MW battery in the Moorabool power
station [17]. Other battery projects close to VIC are located in
South Australia (100MW) [18] and planned in New South Wales
(700MW) [19]. But, the storage capacity is not only employed
for FFR. Indeed, the ISP 2022, provided in [20], projects storage
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capacities for specific grid services. The plan differentiates shallow
storage required for short-term control from longer-term service
provisions required to balance intra- or even inter-daily load
variations. It projects 1GW of storage for short-term services in
the entire National Electricity Market (NEM).

Considering these projections, the studies are conducted for two
battery sizes: a battery with (1) 300MW capacity to reflect the
current grid-scale storage availability within VIC, and (2) 1GW
capacity to reflect the planned FFR storage capability of the NEM.
The batteries idle in the pre-fault state, hence do not alter the pre-
fault system operating conditions.

D. Selected Disturbances

Since the presented case study focuses on frequency dynamics,
trigger disturbances are to be selected. Typically, the worst case for
frequency stability is the loss of the largest generator in the system.
Thus, the first considered disturbance is the loss of a 500MW
coal-fired generator. In addition, a load drop of 300MW is studied.
This magnitude corresponds to the spinning reserve required in
VIC and is selected such that for the base case, all spinning reserve
needs to be activated. With these two disturbances, a total of 720
dynamic simulations are conducted.

III. ALGORITHMIC METHODOLOGY

The flow chart in Fig. 3 details the applied method advanced
from the approach in [9]. The first stage obtains an optimal
electricity dispatch per scenario: per electrification per hour of
each day. It is based on inputs such as TN and gas network
infrastructures, electricity and gas demand profiles, renewable
forecasts, and generation information. A unit commitment with a
strengthened DC-OPF model provides all generators with optimal
active power setpoints. These are used in the second stage to
prepare the power system dynamic studies. As such, the 2nd
stage disaggregates the TN nodal demand to subordinated DNs
that are only considered in the last two stages. A complete
Newton-Raphson method provides a full power flow solution,
including reactive power setpoints of all generators, additional
voltage regulators, and nodal voltage magnitudes and angles. Stage
3 uses the obtained solution and runs dynamic simulations for the
two selected contingencies. Dynamic models and their parameters
for all system components, such as generators, exciters, turbines,
governors, loads, wind turbines, and PV systems, are employed for
this last step. Finally, stability indicators are evaluated to compare
the performance of different scenarios. The remainder of this
section describes each stage of the method and its implementation
in more detail.

A. Stage 1: Optimal Energy Dispatch per Scenario

The first stage provides the optimal energy dispatch of the gen-
eration mix and the curtailment of RES for each scenario at the TN
level. It implements a Unit Commitment (UC) with a strengthened
DC-OPF model that estimates system losses, considers spinning
reserve, and is solved over a 24-hour scheduling horizon with an
hourly resolution for each representative day, as developed and
executed in [9,13,21]. The reader is referred to [21] for a detailed
formulation of the optimization algorithm.

Stage 1: Strengthened DC-OPF to obtain optimal
energy dispatch per scenario

Electric System Data Gas System Data

Steps added for this study

Stage 2: Preparation of
dynamic studies

Dynamic models and
parameters

Stage 3: Run dynamic power system studies

full power flow solution

Fig. 3. Overview of the algorithmic process (The chart was expanded and adapted
from [9]).

B. Stage 2: Preparation of Dynamic Power System Studies

A complete power flow solution, including all grid levels, is
required to initialize the dynamic studies. Stage 2 obtains such a
solution. However, the Newton-Raphson algorithm requires further
inputs. Since Stage 1 only uses the net active load per TN node,
further disaggregation to the DN buses is essential. Also, reactive
power is not considered in the DC-OPF formulation. Hence,
assumptions are required to determine reactive power demand.

1) Disaggregation of Load: From the inputs to the first stage,
the nodal thermal active power demand P th

i,s and the remaining
electric power consumption, referred to as background load, P l

s

are known per scenario s. Hence, the total nodal load at the i-th
TN bus for the s-th scenario Pi,s is

Pi,s = κiP
l
s + P th

i,s = P l
i,s + P th

i,s, (1)

where κi is the fixed background load share of the i-th TN node.
These fixed load shares are provided in [16].

The TN nodal background and thermal load are further dis-
aggregated for the dynamic studies. The entire thermal load is
consumed in subordinated DNs because the electrified heating sce-
narios only integrate residential demand. On the contrary, shunts
connected to the TN buses partially consume the background load
to account for industrial and other large consumers. Thus, the
shunt active P sh

i,s and the DN nodal active power consumption
Pij,s are

P sh
i,s = κsh

i P l
i,s = κsh

i κiP
l
s, (2)

Pij,s = κijP
l
i,s + κijP

th
i,s = κijκiP

l
s + κijP

th
i,s, (3)

where κsh
i is the constant power share of the shunt and κij denotes

the constant share of power consumed by the j-th DN node
subordinated to the i-th TN bus, respectively. The same active
power distribution is used for background load and thermal load.
Note that the sum of load shares at one TN bus must be unity,
i.e. κsh

i +
∑

j∈DNi
κij = 1, where DNi includes all DN buses

subordinate to the i-th TN node. A system-wide constant power
factor is assumed because no information on reactive power is
provided from Stage 1 or the input data. Since the added ATLs
are interfaced with inverters and operate at unity power factor, the
reactive power is computed using the background active power
demand.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



0.90

0.95

1.00

1.05

1.10
V

in
p.

u.
Scenario: 1 in 20, 100%DC-OPF Newton-Raphson

4

6

8

10

P g
in

G
W

0 4 8 12 16 20

time in h

0

5

10

Lo
ss

es
in

%

Fig. 4. Comparison of the DC-OPF solution to the full Newton-Raphson for the
1-in-20 electrified demand day with 100% electrification. The dotted line in the
voltage magnitude plot corresponds to v =0.93p.u.

2) Full Power Flow Solution: The results from the disaggre-
gation algorithm and Stage 1 are combined to obtain a complete
power flow solution and used to initialize the dynamic studies. The
power flow computation software Artere [22] is used. All generator
buses, including those connecting IBG and excluding the slack
bus and nodes connecting Static VAR Compensators (SVCs), are
treated as PV buses that actively participate in voltage control. All
other buses are of PQ type. With Artere, all outputs for the next
stage are obtained, namely, active and reactive power setpoints for
all generators and voltage magnitudes and angles of all buses.

The DC-OPF and the Newton-Raphson solution do not perfectly
match despite including system losses in the DC-OPF. The overall
system losses increase by up to 2% of the total load for the
Newton-Raphson algorithm. The generator at the slack bus can
cover these additional losses in all cases. Fig. 4 showcases the
comparison for one exemplary day and electrification scenario.
This day exhibits the highest overall electric load.

In addition, Fig. 4 depicts the voltage ranges throughout all grid
layers. The voltages of all nodes are within the shaded region. The
voltage is less than 0.93 p.u. only for a few cases and remains
within the limits of 0.9 p.u. to 1.1 p.u. at all times.

C. Stage 3: Dynamic Power System Studies
Dynamic studies for the two selected TN faults employing the

previously obtained complete power flow solution and additional
dynamic models and their parameters are performed. The dynamic
system is implemented in Ramses [23] and executed on a server
using parallelization to reduce computation times. For the quantita-
tive assessment of the dynamic simulations, frequency and voltage
stability indicators are introduced to evaluate each scenario.

1) Frequency Indicators: The selected frequency stability in-
dicators indicate how well the system responds to the given dis-
turbance but cannot determine whether the system is stable. They
are rather a comparative measure to assess the different operating
conditions. The selected frequency indicators include (1) the maxi-
mum Center-of-Inertia (COI) frequency deviation ∆fmax

coi , and (2)
and the steady-state COI frequency deviation ∆f ss

coi. Since the
dynamic simulations are performed for a fixed simulation time to

0 2 4 6 8 10 12 14

time in s

0.925

0.930

0.935

v
in
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v v UVS

Fig. 5. Graphic interpretation of the Undervoltage Score (UVS) for a single bus
with v = 0.93 p.u.

keep the computational effort within bounds, a pragmatic approach
to quantify the steady-state frequency deviation is selected. The
simulations are conducted for 20 s, while the contingency occurs
at t = 1 s. Since only the primary frequency response is reacting,
and no integrative control is active, the frequency typically has
settled at this point. Thus, the COI steady-state frequency deviation
is evaluated at t = 20 s, that is, 19 s after the contingency
occurred. Preliminary studies assessed the Rate-of-Change-of-
Frequency (ROCOF) as an additional indicator. However, neither
batteries nor heat pumps significantly affected the ROCOF-levels,
which is to be expected. While both control strategies are capable
of supplying a fast response, the implemented ROCOF estimation
technique is still too slow for effective ROCOF reduction and
hence mirrors the problem of supplying virtual inertia through
measurement-based ROCOF-proportional control.

2) Voltage Indicators: In addition to the frequency metrics,
voltage indicators are evaluated. Like the frequency indicators,
these do not assess stability but serve as a comparative metric. The
selected indicators include (1) the maximum (vmax) and minimum
(vmin) voltage magnitudes in p.u., and (2) the undervoltage and
the overvoltage score. The latter scores account for the severity
of a voltage violation across the entire system. Fig. 5 graphically
defines the Undervoltage Score (UVS) for a single bus. It equals
the area, or integral, where the voltage magnitude is lower than
the voltage magnitude bound v. The UVS of the entire system is
the sum of all these areas, i.e.

UVS =
∑
i∈B

∫ tvi≥v

tvi≤v

(v − vi(t)) dt, (4)

where B is the set of all buses. Similarly, the Overvoltage Score
(OVS) is defined as

OVS =
∑
i∈B

∫ tvi(t)≤v

tvi≥v

(vi(t)− v) dt. (5)

Both scores equal 0 when no bus exceeds the voltage limits
(v, v) at any time. The selected voltage magnitude bounds are
v = 0.93 p.u. and v = 1.07 p.u., and correspond to the limits
selected during the diversification procedure of the large test case.
A trapezoidal rule computes the integral because the obtained
time-domain responses are discrete signals.

IV. TEST CASE & DYNAMIC MODEL

This section provides insights into the dynamic modeling of the
test case that includes the 22 kV to 500 kV TN and DN layers. It
further details the ATL and battery model.
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A. Test Case

The test case is a combination of the TN-layer employed in
Stage 1 and the Australian sample DN system published in [24].
A full description of the test system is available in [25].

The VIC TN layer comprises 125 buses, 139 transmission lines,
five interconnections to neighboring states, and 51 transformers.
The generation mix comprises six hydropower plants, six large-
scale PV power plants, 17 wind farms, and 11 coal- and gas-
fired power plants, totaling 40 generators. The installed generation
capacity is 15.2GVA. Since no information on voltage control is
publicly available, all voltage-controllable devices control their
terminal voltage to 1 p.u. Conventional generators are modeled
by standard 5th and 6th order Synchronous Machine (SM) and
are equipped with governors, exciters, and Automatic Voltage
Regulators (AVRs). In contrast, IBGs are modeled with the WECC
models from [26] and control their reactive power setpoint through
a voltage-reactive power droop. They do not provide frequency
reserve. Several SVCs are included in the system. While their
impedance is adjusted during the full Newton-Raphson, it is
constant for the dynamic simulation. The same assumption holds
for all tap changers. All machinery is considered with standard
dynamic models as outlined and parameterized in [25].

One or multiple DN feeders with 93 nodes each are connected
to each TN node. While the electrified thermal load is distributed
with the constant load shares defined in Section III-B1, some back-
ground load is consumed by TN shunts. The DN layer consists
of 203 independent feeders and 18880 buses. In other words, the
test case includes 18880 individual ATLs and 18880 background
loads. Each background load is modeled as an induction machine
and an exponential load model as described in [25]. Note that
the background load consumption of the DN layer corresponds
to the net load. Distributed generation, like residential PV, is not
considered separately because no data was available.

B. ATL Model

The heat pumps are modeled by a universal ATL model. Fig. 6
provides an overview of the outermost control layer, where the
blue block represents an even more detailed Differential-Algebraic
Equation (DAE) model including inverter control dynamics of the
ATL. The model was derived in [27], extended in [28], and is
detailed in [25]. We refer the reader to the mentioned publication
for a definition of all variables. The following adaptions apply:
In [28], the ATLs provided solely a frequency-proportional droop
with a constant gain. In this work, the frequency support block
is replaced with the version in Fig. 7. Besides the frequency-
proportional reaction, a ROCOF-proportional droop is added to
achieve a faster response immediately after the fault occurs. In
addition, the droop gains are no longer constant but depend on
the pre-fault operation. The piecewise-linear droop gain df is
computed depending on the individual unit’s pre-fault operating
point p0 and available reserve (pmin, pmax) with:

dupf =
pmax − p0
fmax − fn

fn, ddnf =
p0 − pmin

fn − fmin
fn, (6)

where fmin and fmax denote the frequency values at which the
maximum reaction should occur. When the pre-fault consumption
is high, the gain to increase the load further dupf is small, while
the gain to drop load ddnf is large. Furthermore, the ATLs have a
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sustained droop, as indicated by the running min and max blocks
in Fig. 6. Once the maximum post-fault reaction is reached, the
unit continues to provide that amount until the fault is cleared.
With this control configuration, the support from the DN layer
is maximized while being more grid-friendly than constant droop
gains. For a comparison of different control modes and further
details regarding the control formulation and parameterization of
all units, the reader is referred to [25].

C. Battery Model

For both battery scenarios, the battery does not charge or
discharge in the pre-fault steady-state and is initialized at 50 %
State of Charge (SOC) to ensure no limits are reached. Hence,
adding the battery does not alter the pre-fault system’s operating
point. The battery is modeled as a single unit in both cases and
connects to a TN bus in VIC. The WECC battery model from [29]
applies. The battery is added to the reference system, i.e. the 0 %
electrification scenario. It provides frequency-proportional droop
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load for selected exemplary days. Note the different scaling of the ordinate for the
different days.

with a constant gain and does not support voltage to limit its effect
on frequency performance.

V. CASE STUDY RESULTS

Before illustrating and analyzing the dynamic performance,
this section clarifies some steady-state phenomena relevant to the
dynamic studies.

A. Steady-State Analysis

The added heat pumps change the steady state of the power
system. While a thorough analysis of steady-state metrics for some
of the exemplary days is already provided in [9, 13], here we
evaluate metrics that are relevant to the dynamic studies, such
as the system inertia and RES curtailment. Note that no voltage
violations were observed in the steady state.

For this assessment, the rotational inertia constant H of the
system is evaluated with

H = Σg∈Gs
HgSg,n

(
Σg∈{Gs,RGs}Sg,n

)−1
, (7)

where Gs is the set of online synchronous machines, and the
RGs includes all online renewable generators for scenario s. The

individual generator inertia constants and nominal powers are
denoted by Hg and Sn,g respectively.

Fig. 8 indicates significant variation in system inertia throughout
the exemplary days but also reveals seasonal and electrification-
level-dependent trends. Daily variations are pronounced during
summer, when RES generation is highest. Then, the inertia con-
stant varies within 0.3 s to 1.7 s. Daily variations are similar
when the load is high, e.g., during the cold months, but the
inertia levels increase compared to summer. Also, inertia levels, in
general, rise for increased electrification of thermal load since the
additional load is covered by conventional generation. However,
inertia reduces with high electrification during the midday of
spring and summer. Considering the curtailment of RES, Fig. 9
provides insights into this counter-intuitive finding. Previously
curtailed RES are turned on to cover the increased load. When
the added load is mainly covered by IBGs, the overall system
inertia reduces. Yet, the magnitude of inertia reduction is minor
compared to the variations in inertia during high-demand days.

B. Dynamic Simulation Analysis

This section presents the quantitative analysis comparing the
different electrification levels to the frequency reserve supplied by
batteries. Simulations are performed for all scenarios summarized
in Fig. 1. The 0 % electrification scenario provides the benchmark.
This section first illustrates exemplary time-domain results for
single units and system-level frequency and voltage, followed by
an analysis of selected frequency and voltage indicators.

1) Exemplary Time-Domain Performance: The sum of the
individual responses impacts the frequency and voltage at the
system level, as exemplarily depicted for the generator loss for
one specific day and time in Fig. 10. The sum of all reserve
contributions from ATLs or the batteries, referred to as ∆Px, and
the COI frequency deviation are presented. The maximum and
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Fig. 10. System-level exemplary time-domain response for the different reserve
scenarios in case of a loss of generation: Overall control reserve activation per
technology ∆Px, frequency deviation ∆f and maximum and minimum voltages
vmax and vmin.
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minimum voltage magnitudes are acquired per time step rather
than displaying the magnitude at specific buses.

Fig. 10 suggests that any added reserves improve the frequency,
whereas electrification performs best. While the small battery only
advances the frequency nadir by 23mHz, the large battery results
in a maximum deviation around 300mHz. In contrast, electrifica-
tion reduces the frequency nadir by 147mHz and 190mHz. In the
latter case, with 100 % electrification, almost the entire generator
loss is covered by responding ATLs.

Furthermore, Fig. 10 highlights the different control settings.
The ATL response is faster than the batteries due to the ROCOF-
proportional component. In addition, the sustained droop ensures
a high post-fault steady-state reserve contribution.

While the battery does not impact the voltage magnitudes sig-
nificantly, the electrification scenarios invert the initial response.
Instead of decreasing, the minimum voltages rise right after the
disturbance due to the fast reduction of ATL demand in the
transient phase. The maximum voltage magnitudes are relatively
similar except for 100 % electrification. Here, imports are required,
and further investigation of the steady state indicates that imports
across the interconnectors correlate with high voltages. Note that
additional generators are switched on for the electrification cases
that change the voltage profile across the system.

2) Frequency Metrics: This section provides a quantitative
analysis of the frequency metrics. It further highlights the cor-
relation of the frequency metrics and ATL pre-fault loading.

Fig. 11 displays the expected maximum and steady-state fre-
quency deviation for a generation loss in all scenarios. The bars
reflect the variance occurring within each exemplary day. The
mean and variability of the frequency undershoot vary significantly
for the benchmark scenario across the different exemplary days,
highlighting the need to consider different operating conditions
during frequency stability studies. The mean deviation consistently
exceeds 400mHz in the base case. The lowest mean in maximum
frequency deviations is below 300mHz and is achieved by the
high electrification scenario when the initial load is high, i.e. for
autumn, winter, and the 1-in-20 days. In summer, the ATLs are
less effective and only reduce the mean to 370mHz. Still, the
50 % electrification and large battery exhibit similar performance.
In contrast, the batteries’ improvement is more predictable and
steady, and the mean of the maximum deviation stays in the same
range. Fig. 11 further suggests that the variability is affected by
electrification. While high electrification increases the variation
in maximum frequency deviation compared to the benchmark
for some days, the opposite holds during summer. Generally, the
summer day exhibits the highest variation in all cases, which is
due to the load and generation profile. As the previous steady-
state analysis suggested, the system is weakest during midday in
summer but still has larger inertia at night.

Fig. 11 permits similar conclusions for the steady-state fre-
quency deviation, although the differences in the mean are more
minor, as indicated by the smaller spread. Any reserve improves
the performance, and major improvements occur for high-loading
conditions. The advancement by batteries is more consistent
throughout the exemplary days. However, the scenarios with little
ATL demand (summer and spring) still achieve a response similar
to that of the large battery.
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Fig. 11. Boxplot of the frequency indicators for all exemplary days in the case
of a generator loss.
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Fig. 12. Boxplot of the frequency indicators for all exemplary days in the case
of a load loss.

The most important finding here is that ATLs perform as well as
the large battery in summer, when the potential offered by ATL is
low. During these times, little heating is required, so the potential
in terms of droop gain to reduce the load further in response to a
generator outage is small. Yet, it is still sufficient to stabilize the
simulated generator outage and perform as well as the batteries.

Fig. 12 shows the values for frequency metrics obtained during
load loss. Again, variations are dependent on the specific exem-
plary day but are generally of a smaller magnitude than for the
generator outage. The improvements achieved by electrification
outperform the batteries on any day. This holds for both the
maximum and steady-state frequency deviations. In addition, the
variance is reduced for the electrification scenarios for all exem-
plary days compared to the benchmark, reducing uncertainty in
maximum and steady-state frequency deviations. In contrast, the
batteries are subject to similar uncertainty levels as the benchmark.

The conclusions drawn from Fig. 12 must be considered cau-
tiously. The modeling in this case study does not consider that ATL
units might disconnect during warmer months and not be available
for reserve. Hence, the results for warmer months are subject to
change when considering this fact. However, the results for colder
months are accurate since all units should be online during these
periods. Note that the reserve supplied by ATLs during the cold
periods (autumn, winter, and 1-in-20) is still sufficient to improve
frequency metrics significantly. At these times, the droop gain
to increase the load, as is required during a load loss, is small,
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Fig. 13. Correlation of the pre-fault thermal load and the frequency indicators in
the case of a generator loss on the left and load loss on the right.

potentially limiting their efficacy. Fig. 12 further suggests that
the load increase provided by those ATLs is even sufficient to
outperform the batteries.

The previous conclusions indicate a correlation of ATL demand
and frequency metrics. Fig. 13 studies how the pre-fault ATL
consumption relates to the frequency performance metrics. For the
generator loss, Fig. 13 suggests an explicit dependency of pre-fault
ATL consumption and frequency metrics. The dependence seems
to follow an anti-proportional relation for absolute frequency
deviations. In case of a load loss, some dependencies are lost
and any added thermal load drastically improves the frequency
metrics. Remember, this effect might be caused by overestimating
reserve capabilities for a load loss in times of low ATL demand.

3) Voltage Metrics: Before analyzing the metrics, note that
voltage control and the modeling of reactive power resources are
potentially improper. The implemented voltage control scheme
controls all voltages to 1 p.u.. In the actual system, voltage
magnitude setpoints are different. Consequently, reactive power
setpoints would adapt, and the voltage profile across the system
would change. Nevertheless, we can observe some tendencies.

Fig. 14 displays the voltage magnitudes and highest UVS for
all scenarios subjected to the generator outage. Voltage violations
are generally undervoltages and cause the highest UVS during
summer, but severe undervoltages occur during spring and winter.
These undervoltages are likely caused by the adjusted generation
profile. The highest RES shares occur in summer. Then, active
power is transmitted over long distances from the RES locations
to the load centers. The low voltages indicate that the voltage
control capabilities are insufficient, and additional resources might
be required.

The results indicate a strong interdependence of frequency and
voltage performance since voltages are generally improved by the
ATLs or a battery. An improved frequency performance leads to
better voltage levels, even if the same generators are online, as is
the case for the battery scenarios. The effect is dominant in a weak
system, e.g. during midday in summer. This finding highlights the
need to consider voltage and frequency dynamics in renewable
power systems simultaneously.

For a load loss, undervoltages decline, as shown in Fig. 15. The
severity of violations observed in the high electrification scenario
during the winter and 1-in-20 days is significantly smaller than
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for a generation loss in summer and likely caused by the high
demand of the 100 % electrification case.

VI. CONCLUSIONS

The presented work compares FFR provision from ATLs against
that of batteries. To this end, a large scenario-based case study is
performed on an implementation of the VIC power system. The
battery sizing considers actual projections by AEMO on future
storage needs for short-term control services. Likewise, the added
heat pumps correspond to the possible electrification amounts of
residential currently gas-based hot water and space heating supply.
Per design, the study links steady-state and dynamic analysis. The
applied test case includes voltage levels from 22 kV to 500 kV.
Two faults, the loss of the largest generator and a load loss, are
selected for the dynamic simulations. The operating points of
the system correspond to five exemplary days of the VIC power
system. A DC-OPF provides the optimal active power setpoints
for all generators, and a full power flow establishes the initial
state, including voltage magnitudes, angles, and reactive power
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setpoints, for the dynamic simulation. Frequency and voltage
stability indicators are evaluated for each scenario.

The case study reveals daily and seasonal patterns in the ex-
pected maximum frequency deviations. The deviations follow the
level of inertia and available FFR. During summer, the frequency
deviation experienced after a generator outage varies by 400mHz
depending on the time of day and the scenario. Correspondingly,
the reserve requirements to safeguard system operation change
significantly within one day. New tools are required to find and
assess the weakest and most critical operating conditions.

The dynamic simulations highlight that the electrification of
residential heating in VIC and its employment in FFR provision is
a promising pathway to ensure stable operation in the future. Elec-
trifying thermal loads brings several benefits while also imposing
and enhancing challenges. The extensive case study suggests that
the ATLs outperform the battery scenarios even when the potential
FFR contribution from ATLs is small. Note that the battery does
not supply a ROCOF-proportional response in the presented study,
and results might change for some scenarios if they did. To
this end, future work could also investigate and improve the
local control mechanisms for the inverter-based thermal loads
and the batteries to reach their maximum potential. Nonetheless,
the results emphasize the enormous potential offered through the
electrification of residential heating. The results further indicate
a correlation between the pre-fault ATL demand and frequency
performance. Future research should analyze how much ATL load
is needed to safeguard system operation. In addition, correlation
charts like the one provided could enable system operators to
quickly assess the severity of a potential fault when knowing the
overall load available for demand response.

The only benefit of batteries over ATLs, in terms of frequency
performance in this study, is their predictability and steadiness
in reserve provision. However, batteries are potentially subject
to daily and seasonal patterns when required to deliver multiple
services. To study such an impact, future work could expand the
OPF formulation of the first stage to incorporate the multiple
battery services in the optimization problem. Another interesting
aspect for expanding the comparison is the inclusion of cooling
and air conditioning systems, distributed batteries, and distributed
PVs. These were not considered in the study since only data for
residential heating was available. Additionally, future studies could
enhance the voltage control scheme by gathering and considering
the actual setpoints or replacing the DC-OPF formulation with an
AC-OPF.

REFERENCES

[1] H. Karbouj, Z. H. Rather, D. Flynn, and H. W. Qazi, “Non-synchronous fast
frequency reserves in renewable energy integrated power systems: A critical
review,” Int. J. Electr. Power Energy Syst., vol. 106, pp. 488 – 501, 2019.

[2] L. Meng, J. Zafar, S. K. Khadem, A. Collinson, K. C. Murchie, F. Coffele,
and G. M. Burt, “Fast frequency response from energy storage systems—a
review of grid standards, projects and technical issues,” IEEE Trans. Smart
Grid, vol. 11, no. 2, pp. 1566–1581, 2020.

[3] D. Fernandez-Munoz, J. I. Perez-Diaz, I. Guisandez, M. Chazarra, and
A. Fernandez-Espina, “Fast frequency control ancillary services: An interna-
tional review,” Renewable and Sustainable Energy Reviews, vol. 120, 2020.

[4] R. Musca, A. Vasile, and G. Zizzo, “Grid-forming converters. a critical review
of pilot projects and demonstrators,” Renewable and Sustainable Energy
Reviews, vol. 165, 2022.

[5] U. Akram, M. Nadarajah, R. Shah, and F. Milano, “A review on rapid
responsive energy storage technologies for frequency regulation in modern
power systems,” Renewable and Sustainable Energy Reviews, vol. 120, 2020.

[6] S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, “Optimal fre-
quency regulation using packetized energy management,” IEEE Transactions
on Smart Grid, vol. 14, no. 1, pp. 341–353, 2023.

[7] S. C. Ross, G. Vuylsteke, and J. L. Mathieu, “Effects of load-based frequency
regulation on distribution network operation,” IEEE Trans. Power Syst.,
vol. 34, pp. 1569–1578, 3 2019.

[8] S. Chatzivasileiadis, P. Aristidou, I. Dassios, T. Dragicevic, D. Gebbran,
F. Milano, C. Rahmann, and D. Ramasubramanian, “Micro-flexibility: Chal-
lenges for power system modelling and control,” in 2022 Power Systems
Computation Conference (PSCC), Porto, 2022.

[9] I. Saedi, S. Mhanna, H. Wang, and P. Mancarella, “Integrated electricity and
gas systems modelling: Assessing the impacts of electrification of residential
heating in victoria,” in 2020 Australasian Universities Power Engineering
Conference (AUPEC). IEEE, 2020.

[10] S. Bellocchi, M. Manno, M. Noussan, M. G. Prina, and M. Vellini, “Electri-
fication of transport and residential heating sectors in support of renewable
penetration: Scenarios for the italian energy system,” Energy, vol. 196, 2020.

[11] L. Mehigan, D. Al Kez, S. Collins, A. Foley, B. Ó’Gallachóir, and P. Deane,
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