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Abstract—The reliance of power systems on gas-fired gener-
ators that run on timely delivery of natural gas compels new
methods for coordinating electricity markets and gas pipeline
operations. Concurrently, the growth in power generation by in-
termittent and uncontrollable renewable energy sources increases
uncertainty in spatiotemporal electricity loads that propagates
to interconnected pipeline systems. This has been addressed
by day-ahead uncertainty management frameworks, including
a joint optimization problem with chance constraints for optimal
power flow and robust optimization to handle interval uncertainty
in pipeline scheduling. While that formulation is tractable and
ensures feasibility of the integrated system with high probability,
it results in highly conservative pipeline flow scheduling. We
propose a two-stage formulation where a stochastic finite volume
representation for nonlinear gas flow with uncertain boundary
conditions is used to manage intertemporal uncertainties for a
pipeline that supplies fuel to peaking plants that provide oper-
ating reserves to an electricity market. This allows calibration
of power production and reserves together with pipeline flow
schedules with probabilistic guarantees using chance constraints
for both networks. We describe chance-constrained formulations
for power and gas networks and demonstrate the workflow using
3-bus, 1-pipe and 24-bus, 24-pipe gas-electric network cases.

Index Terms—gas-electric coordination; operations; uncer-
tainty quantification; DC power flow; gas pipelines

I. INTRODUCTION

Roughly 25% of worldwide electricity generation is fueled
by natural gas, which is viewed as playing a major role in
the transition to net-zero energy systems [1]. Natural gas-fired
generators emit far less carbon dioxide and other pollutants
than coal power plants and are much easier to site, permit,
and build than nuclear generation stations [2]. In addition
to combined-cycle plants that provide base load, gas-fired
peaking plants can quickly ramp up output to compensate for
shortfalls in production by variable and intermittent renewable
sources. This has resulted in a reliance of the power grid
on gas-fired generation that is fueled by just-in-time delivery
of natural gas through pipeline systems, whose managers are
challenged to respond to changes in fuel loads on the faster
time-lines of power system decision making [3]. Significant
attention has been paid to the interdependence between power
grids and natural gas pipeline networks, and managing un-
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certainty in generation timing that arises from demand and
uncontrollable renewable wind and solar remains compelling.

Prior studies on joint gas-electric grid optimization for day-
ahead planning have modeled the physics of energy flow in
the power grid using the direct current (DC) model typically
used in the unit commitment (UC) problem, and approximate
the nonlinear gas flow equations to model pipeline network
response to variable hourly consumption by gas-fired genera-
tors [4]. A standard approach to uncertainty management for
this problem is to use stochastic optimization, which results
in well-known issues of challenging computational scaling
arising due to sampling of parameters in the uncertainty region
[5], [6]. A popular method of representing the stochastic
optimization problem for optimal power flow (OPF) given
uncertain loads involves so-called chance constraints, which
place a limit on the probability that an inequality constraint
is violated [7]. Under assumption of Gaussian uncertainty and
linear or linearlized models of power flow, chance-constrained
OPF problems can be solved efficiently [8]. This technique
has been incorporated in recent studies aiming to represent
the joint gas-electric stochastic optimization problem using
deterministic approximations, where Gaussian uncertainty is
managed for the power grid using chance constraints and
interval uncertainty is managed for the pipeline system by
using robust optimization with extremal scenario constraints
[9]. Feasibility guarantees for interval uncertainty are provided
by invoking the monotonicity property, which guarantees that
ordered boundary conditions of gas flows throughout a pipeline
network correspond to ordered pressures, and this is shown to
hold in the usual physical regime of gas pipeline operations
carrying roughly homogeneous gas [10]. A strictly increasing
linear or quadratic heat rate curve is typically assumed for
joint gas-electric network formulations.

While the approach of chance-constrained power flow to-
gether with robust interval gas pipeline constraints results
in a tractable formulation and yields feasible solutions, the
operating set-points it provides are typically too conservative
in requiring excessive pressurization of pipelines in case the
line-pack is needed to fuel a peaking plant [9]. Such a
solution essentially guarantees that the pipeline network is
sufficiently pressurized to provide reserves at each hour when
they are scheduled, but not necessarily dispatched. Because
the likelihood that reserve activation is required to fulfil a
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potential power system load scenario may be low, the solution
provides too much margin in the form of reserve line-pack,
and this prevents the full capacity of the pipeline network from
being used to provide ramping flexibility. A method to apply
chance constraints to the inequalities in gas pipeline intra-
day dynamic optimization would provide less conservative
solutions, but this has been elusive. Uncertainty quantification
(UQ) for gas pipeline flows is notoriously complex, because
of the significant nonlinearity and computational complexity
involved [11]. The challenge has to an extent been met by
a new stochastic finite volume (SFV) method for UQ in
gas pipeline flows, which was recently shown to model the
propagation of uncertainty in initial boundary value problems
(IBVPs) for gas flow in pipeline networks [12].

In this paper, we use the SFV representation for solutions
of the nonlinear gas flow equations with uncertain boundary
conditions to manage intertemporal uncertainties for a pipeline
system. Intertemporal uncertainty in this context is used to
denote a temporary increase in load starting at a time that
is randomly distributed (e.g. uniformly on an interval). We
propose this type of uncertainty modeling to represent the
likely activation of a peaking plant for a brief time interval
(e.g., 2 hours) but at an a priori unknown time in a part of
the day-ahead planning interval, which reasonably represents
the uncertainty that gas pipeline operators experience due to
lack of visibility into power grid operations. The primary
contribution of our study is a chance-constrained model-
predictive optimal scheduling and reserve allocation problem
for integrated gas-electric systems. In conjunction with the
proven method of chance-constraints, our joint uncertainty
management scheme provides probabilistic robustness guar-
antees by computing a minimum value for the extra reserve
requirements for both the power and gas delivery networks.

The remainder of this paper is as follows. We first describe
a multi-period stochastic optimal power flow formulation in
Section II, and then describe a chance-constrained dynamic
optimal gas flow formulation that accounts for intertemporal
load uncertainty in Section III. We then describe the compu-
tational implementation and limited computational studies in
Section IV, and conclude in Section V.

II. MULTI-PERIOD STOCHASTIC DC-OPF

We employ a simple continuous-time approximation of the
multi-period DC OPF problem, which is similar to that used in
a previous study [3], and extend it to a stochastic formulation
with probabilistic constraints. Further, we approximate this
formulation in a discretized stochastic space using integer
variables, so that the chance-constrained OPF can be stated
as a mixed-integer linear program. We suppose that the power
system is represented by a set of nodes Np connected by lines
E, with generators G and loads Nd.

A. Deterministic Multi-period DC-OPF
Consider a continuous-time formulation of a day-ahead

power system economic dispatch problem, in which the mini-

mized objective is the total running marginal cost of electricity
production over the planning period:

min
∑
g∈G

∫ t=Tf

t=0

f(Pg(t))dt (1a)

s.t.
∑

i∈∂+j

Pij(t)−
∑

k∈∂−j

Pjk(t) = Pg(t)− Pd(t),

∀j ∈ Np,∀t, (1b)
bij(θi(t)− θj(t)) = Pij(t) ∀(i, j) ∈ E, ∀t, (1c)

Pmin
ij (t) ≤ Pij(t) ≤ Pmax

ij (t) ∀(i, j) ∈ E, ∀t, (1d)

Pmin
g (t) ≤ Pg(t) ≤ Pmax

g (t) ∀g ∈ G, ∀t. (1e)

The constraints (1b)-(1c) represent the DC power flow equa-
tions, and (1d)-(1e) represent the line flow limits and generator
production limits evaluated point-wise in time. We denote the
marginal production cost function by f(·), the production of
generator g ∈ G by Pg(t), the consumption by a load d ∈ Nd

as Pd(t), the power flow on line (i, j) ∈ E by Pij(t), and the
voltage phase angle at bus j ∈ N by θj . The parameters bij
are line impedance values. The continuous-time formulation
in equations (1a) can be expressed in discrete time on the set
of time points {0,∆t, 2∆t, ...., Tf} with intervals ∆t:

min
∑
g∈G

t=Tf∑
t=0

f(P t
g) (2a)

s.t.
∑

i∈∂+j

P t
ij −

∑
k∈∂−j

P t
jk = P t

g − P t
d ∀j ∈ Np, ∀t, (2b)

bij(θ
t
i − θtj) = P t

ij ∀(i, j) ∈ E, ∀t, (2c)

Pmin
ij ≤ P t

ij ≤ Pmax
ij ∀(i, j) ∈ E, ∀t, (2d)

Pmin
g ≤ P t

g ≤ Pmax
g ∀g ∈ G, ∀t. (2e)

The formulation (2) can be directly implemented using a linear
or nonlinear programming solver, based on the form of f(·).

B. Stochastic Discretized Multi-period DC-OPF
Our goal is to develop a joint electricity and gas net-

work day-ahead planning formulation that accounts for inter-
temporal uncertainty, so system operators are prepared to serve
additional load that occurs at an unknown time. We develop a
streamlined model where uncertainty management is the key
modeling aspect of interest, supposing that common modeling
aspects such as commitment variables, ramping constraints,
AC power flow, and other elements of power system day-
ahead planning could be added in practice. We thus define
an uncertain inter-temporal power load P t

d, of form

P t
d = P̄ t

d + P̃ t
s,d, ∀s ∈ S, t ∈ T, d ∈ Nd, (3)

where P̄ t
d is a baseline load and P̃ t

s,d are a collection of
additional load contingency scenarios indexed by the scenario
set S, such that

∑
s∈S P(s) = 1. We suppose that the uncertain

excess power scenarios P̃ t
s,d take the form of a re-scaled

trapezoidal function H , as illustrated in Figure 1, with steep
ramp-up to and ramp-down from an amplitude hs, of form

P̃ t
s,d = hsH(t− ts). (4)
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The initial time ts of the additional load P̃ t
s,d is random and

depends on the scenario s in set of uncertain scenarios S.

Fig. 1. Trapezoidal load scenario of duration ∆t starting at time ts.

To modify the OPF formulation (2) to include reserve genera-
tion with probabilistic guarantees, we define the reserve power
variable Rt

r and reserve participation factor as αr, where each
r ∈ R ⊆ G corresponds to a generator that participates in
reserve provision. The constraint (2e) is modified to bound the
total scheduled production and scheduled reserves for each of
these generators within its production limits according to

Pmin
g ≤ P t

g +Rt
r ≤ Pmax

g ∀r ∈ R ⊆ G, g ∈ G. (5)

We consider a linear objective that approximates marginal
costs of generating power and allocating reserve power as

f(P t
g , R

t
r)=

∑
g∈G

cgP
t
g +

∑
r∈R

crR
t
r. (6)

Finally, rather than enforce strict feasibility limits on the multi-
period OPF problem, we determine production and reserve
schedules that allow for a small chance that the reserve
requirements may not be met. Such chance-constrained OPF
strategies have shown significant improvement in objectives at
the cost of only a small chance of constraint violations [7],
[13]. We apply probabilistic chance constraint for the power
flow problem of form

P

(
αr

∑
d∈Nd

P̃ t
s,d −Rt

r ≤ 0

)
≥ 1− ϵp, ∀t ∈ T, r ∈ R, (7)

in total probability, where no assumption is made on the
scenario s ∈ S. Here αr are the reserve participation factors
for generators, which sum to unity:∑

r∈R

αr = 1. (8)

The inequality (7) can be written in terms of marginal and
conditional probabilities as∑

s

1

(
αr

∑
d∈Nd

P̃ t
s,d −Rt

r ≤ 0

)
ν(s) ≥ 1− ϵp,

∀t ∈ T, r ∈ R, (9)

where ν is a measure on the stochastic scenarios, i.e., the
marginal probability ν(s) = P(s). The conditional probability
in the inequality (9) can be written as an indicator function,
because the chance constraint for scenario s ∈ S is enforced
only if the scenario occurs. Using constraints (5), (8), and

(9) in place of constraint (2e), and the objective (6) in place
of equation (2a), results in a formulation where reserves are
allocated with a guarantee that the independent contingency
scenarios S can be served with total probability 1− ϵp.

C. Integer-based Formulation

Formulating the conditional probabilities using indicator
functions in equation (9) results in a non-smooth and non-
convex optimization problem. We reformulate this using bi-
nary integer variables to build a mixed integer programming
(MIP) problem. Define a set of binary variables zs,tr ∈ {0, 1}
∀s ∈ S, t ∈ T corresponding to the indicator functions as{

zs,tr = 1←→
(
αr

∑
d∈Nd

P̃ t
s,d −Rt

r ≤ 0
)
,

zs,tr = 0←→
(
αr

∑
d∈Nd

P̃ t
s,d −Rt

r ≥ 0
)
.

(10)

The chance constraint can then be stated as
Ns∑
s=1

zs,tr ν(s) ≥ 1− ϵp. (11)

We then apply the big-M reformulation to rewrite the disjunc-
tive constraints, for ∀s ∈ S, t ∈ T, and r ∈ R, as

Xs,t
g = αr

∑
d∈Nd

P̃ t
s,d −Rt

r, (12a)

−Pmax
g zs,tr ≤ Xs,t

r ≤ (1− zs,tr )
∑
d∈Nd

P̃ t
s,d. (12b)

The result is a mixed-integer linear program (MILP) for
chance-constrained OPF of form

min Objective Eq. (6)
s.t. DC Power Flow Eq. (2b)-(2c)

Line Flow Limits Eq. (2d)
Generator Production Limits Eq. (5)
Participation Factors Eq. (8)
Chance Constrained Reserve Adequacy Eq. (11)
Disjunctive Conditional Binary Values Eq. (12)

(13)

III. INTERTEMPORAL UNCERTAINTY MANAGEMENT FOR
A GAS PIPELINE NETWORK

We develop a formulation for managing intertemporal un-
certainty in gas pipeline flow scheduling in order to enable
more effective support of power systems through gas-fired
generation. The approach is an extension of a now standard
deterministic formulation for dynamic optimal gas flow [14],
which we review below.

A. Dynamic Optimal Gas Flow

We start with the fundamental partial differential equations
(PDEs) for gas transport in a pipe [15],

∂ρ

∂t
+

∂ϕ

∂x
= 0, (14a)

∂ϕ

ϕt
+

∂(p+ 1
2ρu

2)

∂x
= − λ

2D

ϕ|ϕ|
ρ

, (14b)

with initial conditions ρ(0, x) = ρ0(x), ϕ(0, x) = ϕ0(x) and
boundary conditions ρ(t, 0) = ρs(t), ϕ(t, L) = ϕL(t). Here
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ρ, p, ϕ, and u are gas density, pressure, per area mass flux, and
velocity, respectively, and λ and D are the friction factor and
pipe diameter. We apply the typical simplifying assumptions
[16] that the ideal gas equation of state p = a2ρ can be used
(where a is the wave speed in the gas), that transients are slow
so that ρu2 << p, and friction dominates the flux derivative
term ∂ϕ/∂t so that the latter can be neglected. Following
established approaches [17], [18], we discretize the equations
(14a) using a lumped-element approximation. Integrating Eq.
(14a) over a pipe segment of length L yields

L
dρ+(t)

dt
+ 2ϕ−(t) = 0, (14c)

a2ρ−(t) = −λL

4D

ϕ+(t)|ϕ+(t)|
ρ+(t)

, (14d)

ρ+(0) + ρ−(0) = ρ0(L), (14e)

where we denote

ρ+(t) =
ρ(t, L) + ρ(t, 0)

2
, ρ−(t) =

ρ(t, L)− ρ(t, 0)

2
, (15)

ϕ+(t) =
ϕ(t, L) + ϕ(t, 0)

2
, ϕ−(t)=

ϕ(t, L)− ϕ(t, 0)

2
. (16)

We suppose that a pipeline network can be defined on a
graph where N is the set of nodes (junctions) and E = P ∪C
is a set of edges connecting pairs of nodes, where P and C
are sets of pipes and compressors. We denote correspondences
between edge boundary variables and nodal variables as

ρij(0, t) = ρi(t), ρij(Lij , t) = ρj(t), (17a)

ϕij(0, t) = ϕin
ij (t) = ϕ+(t)− ϕ−(t), (17b)

ϕij(L, t) = ϕout
ij (t) = ϕ+(t) + ϕ−(t). (17c)

The above notations enable us to state a reduced network
optimization model for the dynamic optimal gas flow (DOGF)
problem [19], [14] as follows:

min
∑
c∈C

∫ t=Tf

t=0

ϕc(t)(µc(t)− 1)dt (18a)

s.t. Lij(ρ̇
+
ij(t)) + 4ϕ−

ij(t) = 0, ∀(i, j) ∈ P, (18b)

ρ2j (t)−ρ2i (t)=−
λijLij

a2Dij
ϕ+
ij(t)|ϕ

+
ij(t)|, ∀(i, j)∈P, (18c)∑

i∈∂+j

ϕout
ij (t)Aij−

∑
k∈∂−j

ϕin
jk(t)Ajk=qj(t), ∀j∈N , (18d)

ρj(t) = µij(t)ρi(t), ∀(i, j) ∈ C, (18e)

pmin ≤ a2ρi(t) ≤ pmax, ∀i ∈ N , (18f)
ρi(0) = ρi(Tf ),∀i ∈ N . (18g)

In the above formulation, the objective ϕc(t)(µ(t)− 1) in Eq.
(18a) is a bilinear proxy for the adiabatic work done by a
compressor c ∈ C where µc = µij is the compressor ratio
acting as in Eq. (18e) and ϕc(t) is the through-flow. The
constraint (18d) represents nodal mass flow balance, where
Aij is the cross-section area of pipe (i, j) and qj(t) is the
mass flow withdrawn from node j ∈ N . The indexing sets
∂+j and ∂−j are sets of nodes connected to pipes incoming

to and outgoing from node j, respectively. The constraint
(18f) requires system pressures to stay within minimum and
maximum bounds, which we assume to be uniform network-
wide. The constraint (18g) enforces C1 time-periodicity for
nodal densities (and thus pressures and all other decision
functions), which is crucial to well-posedness of the optimal
control problem (OCP) and well-behaved solutions.

B. Chance-Constrained Intertemporal Uncertainty

Recall that we define by intertemporal uncertainty a tem-
porary increase in load starting at a time that is unknown
and randomly distributed (e.g. uniformly on an interval), and
propose this as a model for the likely activation of a gas-fired
peaking plant, which reasonably represents the uncertainty
that gas pipeline operators experience due to lack of visibility
into power grid operations. The key concern in coordination
of power systems, gas-fired generation, and gas pipelines is
ensuring electricity production while maintaining adequate
pipeline pressures. The lower bound in constraint (18f) is
somewhat flexible, as long as it is not violated significantly or
for long periods. We therefore enforce this limit using chance
constraints, allowing for a small chance of violation during a
short period of uncertain timing.

Suppose that a subset of gas pipeline nodes j ∈ S ⊂ N has
stochastic gas consumption profiles of the form

qj(t, ω) = q̄j(t) + q̃jH(t− tω), (19)

where t ∈ T := [0, Tf ] and tω ∈ TΩ ⊂ T. In a typical
setting, Tf = 24 hours and TΩ = [6, 18] hours. We may
suppose that qj(t, ω) = q̄j(t) for j ∈ N \ S. The functions
q̄j(t) and q̃j(t) denote the nominal baseline load at a node and
the quantity of the uncertain load, if it occurs at time t. Here
H denotes the same type of temporary increase in load of
duration ∆t (typically ∆t = 1 hour) as illustrated in Figure
1. The uncertainty is in the timing tω of augmented load,
where for simplicity we suppose that tω ∈ TΩ is distributed
uniformly, although other distributions may be used. This
represents the point of view of a gas pipeline manager, who
sees a peaking gas-fired generator as likely to operate for a
short period at some point during a congested time of the day,
but with uncertain timing. To express the chance constraint for
pipeline pressure, we define a quadratic penalty function

Γ(z) =

{
γz2, if x ≥ 0,

0, otherwise,
(20a)

and define a penalized minimum pressure violation variable

vmin
j (t, ω) = Γ

(
pmin

a2
− ρj(t, ω)

)
. (20b)

The quadratic penalty is chosen in order to reflect that larger
violations of the lower pressure limits are more problematic.
Additionally, because it is twice differentiable, it facilitates a
well-behaved nonlinear program. The chance constraint is then
expressed as

Eω

[
vmin
j (t, ω)

]
≤ ϵg, ∀t ∈ T. (21)
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In order to approximate constraint (21) in a deterministic man-
ner (i.e., without requiring Monte Carlo simulation), we apply
the SFV method as follows. We discretize the stochastic space
Ω, which has one-to-one correspondence with the interval TΩ

on which the random time tω appears, into M cells delimited
by M + 1 boundary points, each of which corresponds to a
value of tω . We construct the penalty function variable using
a third order spline expansion on Ω as

vmin
j (t, ω) =

∑
m∈M

ajm(t)bjm(ω), (22a)

where bjm(ω) is the m-th spline function on the stochastic
space grid that is completely known. The constraint (21) can
then be expressed as an expectation over ω as∑

m∈M

ajm(t)

∫
ω

bjm(ω)dω ≤ ϵg, ∀t ∈ T, (22b)

where the coefficients ajm(t) are decision functions that can
be optimized. The presence of stochastic parameters leads to
state variables that are also stochastic, and the optimization
task is to choose deterministic planning profiles for gas com-
pressors µc(t) for c ∈ C such that state variables satisfy all
constraints. The objective function must also be evaluated in
expectation. The chance-constrained dynamic optimal gas flow
for intertemporal uncertainty management is formulated as

min
∑
c∈C

∫ t=Tf

t=0

Eωϕc(t, ω)(µc(t)− 1)dt. (23a)

s.t. Lij(ρ̇
+
ij(t, ω)) + 4ϕ−

ij(t, ω) = 0,

∀(i, j)∈P, ∀ω ∈ Ω (23b)

ρ2j (t, ω)−ρ2i (t, ω)=−
λijLij

a2Dij
ϕ+
ij(t, ω)|ϕ

+
ij(t, ω)|,

∀(i, j)∈P,∀ω ∈ Ω (23c)∑
i∈∂+j

ϕout
ij (t, ω)Aij−

∑
k∈∂−j

ϕin
jk(t, ω)Ajk=qj(t, ω),

∀j∈N , ∀ω ∈ Ω (23d)
ρj(t, ω) = µij(t)ρi(t, ω), ∀(i, j) ∈ C, ∀ω ∈ Ω (23e)

a2ρi(t, ω) ≤ pmax, ∀i ∈ N , ∀ω ∈ Ω (23f)

vmin
j (t, ω) = Γpen

(
pmin

a2
− ρj(t, ω)

)
,

∀j ∈ S, ∀ω ∈ Ω, (23g)

vmin
j (t, ω)=

∑
m∈M

ajm(t)bjm(ω),∀j∈S, ∀ω ∈ Ω, (23h)

∑
m∈M

ajm(t)

∫
ω

bjm(ω)dω ≤ ϵg,∀j ∈ S, (23i)

ρi(0, ω) = ρi(Tf , ω), ∀i ∈ N , ∀ω ∈ Ω. (23j)

C. Time Discretization

We discretize problem (23) in time on T = [0, T f ] us-
ing N points {tn}Nn=1 defined by tn = ∆t · (n − 1) for

n = 1, 2, . . . , N . The time derivatives ρ̇j(tn) are approximated
using a simple first order forward finite difference formula as

ρ̇+ij(tn, ω) ≈
1

∆t
(ρ+(tn+1, ω)− ρ+(tn, ω)), (24)

where ρ+ is as defined in (15). To represent the cyclic
boundary conditions on the state variables in (23j), we use

ρ̇+ij(tN ) ≈ 1

∆t
(ρ+(0, ω)− ρ+(tN−1, ω)), (25)

which implicitly includes the cyclic condition (23j) and thus
reduces the number of variables and constraints. This leads
to a computationally well-posed OCP that, when discretized,
results in a nonlineer program (NLP) with good numerical
conditioning and well-behaved solutions, both conceptually
and computationally. The application of gas-electric system
coordination using deterministic models with cyclic boundary
conditions applied in a rolling-horizon manner to non-periodic
boundary data was demonstrated previously [20].

IV. COMPUTATIONAL STUDIES

We evaluate power and gas network uncertainty manage-
ment using a workflow that consists of two sequential op-
timization solves. Given a power grid model with nominal
parameters and a set of stochastic scenarios, we solve the
MILP formulation (13) to obtain a power flow solution that
includes production schedules P t

g for each generator g ∈ G
as well as reserve allocation Rt

g for generators that partic-
ipate. Using idealized generator-dependent linear heat rate
functions hg(x) = Rhx, we transform these to get baseline
and uncertain gas demand curves as q̄j(t) = hg(P

t
g) and

q̃j(t) = hg(R
t
g). The stochastic intertemporal gas consumption

model for generator g is as defined in Eq. (19), and is used in
Eq. (23d) when solving problem (23). We use ϵp = ϵg ≡ 0.1
as violation probabilities for power and gas chance constraints.

The stochastic power problem (13) is solved with the MILP
solver HiGHS [21] in the Julia based modeling language
JuMP [22], whereas the stochastic dynamic optimal gas flow
problem (23) is solved using the NLP solver KNITRO [23].
The problems are solved for a 24-hour time horizon with
Tf = 24 hours. Because the problem is non-convex, there are
no global optimality guarantees for the NLP solver solution,
but a feasible solution is ensured for a local optimum.

TABLE I
POWER NETWORK SIZE PARAMETERS

Nb # of buses 3 24
Nk # of reference buses 1 1
Nl # of power lines 3 38
Nd # of loads 3 17
Ng # of total generators 3 33
Nr # of gas reserve generators 1 18
Nt # of time points 25 25
Ns # of scenarios 50 50

We consider a case study with a 3-bus power system and
single pipe, as illustrated in Figure 2, and another case study
with the IEEE RTS-96 24-node power test system coupled to a
24-pipe gas pipeline test network, which is described in detail
in previous studies [3], [9]. For the power system formulation
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(13), the optimization problem sizes for the studies are shown
in Table I. The power flow formulation has (Nr +Nb +Nl +
Ng)×Nt+Nr continuous and Nr×Nt×Ns binary variables,
(Nb + Nl + Nk) × Nt equality constraints, and 2 × Nr ×
nt+Nr×Nt×Ns inequality constraints. This results in 1501
variables (1250 binary + 251 continuous) and 1551 constraints
(151 equality + 1350 inequality) for the 3-bus system, and
25343 variables (22500 binary + 2843 continuous) and 25476
constraints (1576 equality + 23900 inequality) for the 24-node
RTS-96 test system.

In contrast to the power system problem, the uncertainty-
aware gas pipeline scheduling problem (23) requires 16848
variables and 16512 constraints (16224 equality and 288
inequality) for the single pipe problem.

A. 3-Bus Power System and 1-Pipe Gas System

We simulate uncertainty management for a 3-bus power
system with a gas-fired generator at node P1 fueled by a single
pipeline gas network, as shown in Fig. 2. The pipe is L = 30
km in length with diameter d = 0.9144 meters and friction
factor λ = 0.05, and is discretized into shorter segments of
10 km length to create a pipeline graph with 3 edges.

Fig. 2. 3-bus power grid and 1-pipe gas-grid test system

Solving the chance-constrained DC OPF problem with 50
stochastic scenarios requires < 0.01 CPU seconds (CPUs) and
yields the power production and reserve schedule shown for
power node P1 in Figure 3.

Fig. 3. Power solution at node P1. The base power load and 5 of 50 stochastic
load scenarios are shown, in addition to the nominal production schedule and
the total (including reserves).

Fig. 4. Stochastic gas demand at node G3. The bottom profile is the baseline
consumption, and the sequence of 2-hour consumption increase contingencies,
starting at ts ∈ [6, 18] hours and weighted according to the reserve schedule,
are superimposed above.

Fig. 5. (a) Solutions for compressor (1, 2) for deterministic and stochastic
DOGF. (b) Comparison of solutions for pipeline pressure (MPa) at node G3
for DOGF and average pressure Eωp3(t, ω) at node G3 for the stochastic
DOGF. Pressure trajectories for three of the stochastic cells corresponding to
ts ∈ {6, 12, 18} are shown as well.

Translating the production and reserve schedules through a
heat rate curve with Rh = 52.2 MJ/kg and 30% generator
efficiency results in stochastic gas consumption at gas node
G3 as shown in Figure 4. We now contrast solutions to
the deterministic and stochastic DOGF problems in (18) and
(23), with hard and probabilistic constraints for the minimum
pressure at pmin = 3 MPa. The stochastic DOGF problem
(23) for one pipe requires 7 CPUs to terminate after warm-
start with a deterministic steady-state solution, which requires
0.03 CPUs. Solving the DOGF with no uncertainty requires
0.12 CPUs. We contrast the compressor ratio solutions of
the stochastic and deterministic DOGF problems in Fig. 5(a),
and examine pressure solutions in Figure 5(b). Observe in
Fig. 5(b) that at times of peak demand, the pressure solution
in the deterministic case (no scenarios s ∈ S occur) binds
at the 3MPa minimum. The stochastic solution allows some
violation of the constraint, and on average the pressure will be
somewhat lower during a part of the optimization horizon. If
the deterministic solution were applied and a scenario s ∈ S
were to occur, the violation would be much more significant.
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B. 24-Bus Power System and 24-Pipe Gas System

We applied our stochastic optimal control formulation to the
case study constructed with the IEEE RTS-96 24-node power
test system coupled to a 24-pipe gas pipeline test network,
which is described in detail in previous studies [3], [9]. The
chance-constrained OPF for the 24-bus power network in (13)
requires 87 CPUs to solve to local optimality. Transforming
the power production and reserve allocation schedules to a
stochastic gas flow schedule according to (19) leads to a
stochastic DOGF problem. Solving the steady-state problem
using averaged boundary values results in a problem with
1513 variables and 1492 constraints, which requires only
0.16 CPUs to solve. The deterministic DOGF problem is
solved using the same discretization as the stochastic problem,
with no uncertainty and thus uniformity across the stochastic
space, leading to a NLP with 216888 variables and 123552
constraints that requires 6.65 CPUs to solve. The full stochas-
tic DOGF problem is formulated with 216888 variables and
214272 constraints, and requires 655 CPUs to solve.

V. CONCLUSIONS

We described a two-stage optimal control formulation in
which a stochastic finite volume representation for nonlinear
gas flow with uncertain boundary conditions is used to manage
intertemporal uncertainties for a pipeline system that supplies
fuel to peaking plants, which provide operating reserves to
an electricity market. The concept addresses a key concern
in coordination of power systems, gas-fired generation, and
gas pipelines indicated by our previous study [9], by ensuring
electricity production and probabilistic reserves while main-
taining adequate pipeline pressures. Moreover, the formulation
calibrates power system production and reserves as well as
pipeline flow schedules with probabilistic guarantees using
chance constraints for both networks.

The study motivates several challenges to be addressed.
While we have demonstrated that stochastic optimal control
formulations that can account for intertemporal uncertainty
can be formulated and are tractable for general-purpose non-
linear programming solvers, the convergence and accuracy
properties, and sensitivity to violation penalty γ and violation
probability ϵg remain to be characterized. Potential benefits
of the approach to increase pipeline capacity by permitting
low probability, small amplitude lower pressure constraint
violations due to power grid uncertainty may be quantified.
This will require defining an economic objective function in
expectation and a probabilistic metric for constraint violation,
and the comparison of multiple operating scenarios. Finally,
the complex evolution of probability distributions of time-
dependent pressure and flow trajectories across a network sys-
tem requires creative concepts for visualizing the optimization
solutions.
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