
Automatically Optimized Component Model
Computation for Power System Simulation on GPU

Marcel Mittenbühler∗, Junjie Zhang∗,†,§ and Andrea Benigni∗,†,‡
∗ IEK-10: Energy Systems Engineering

Forschungszentrum Jülich, 52428 Jülich, Germany
{m.mittenbuehler, ju.zhang, a.benigni}@fz-juelich.de
† RWTH Aachen University, 52056 Aachen, Germany

‡ JARA-Energy, Jülich 52425, Germany

Abstract—This work provides an approach that automatically
optimizes the component computations on graphics processing
unit (GPU) devices from different vendors. The approach consists
of a two-level optimization, where the first level considers the
linear part of the computation for vectorization and applies mixed
matrix formats to increase computational throughput further.
Then, the second optimization level treats the combination of
linear and non-linear parts as a black box and searches for
the optimal configuration of parameters such as the degree of
vectorization, the combination of matrix formats, and the group
(of threads) sizes during parallel execution on GPU. Moreover,
we also introduce constraints that reduce the optimization proce-
dure’s execution time. Finally, we select three different types of
components that could be representative to computational tasks
in power system and perform our optimization approach on
these kernels. The computational performance is compared with
unoptimized baseline and sparse linear algebra library based
implementations, result shows that our optimization leads to
better performance and more efficient memory utilization.

Index Terms—Automatic Code Generation; Graphics Process-
ing Unit; Parallel Processing; Power System Simulation; Sparse
Matrices

I. INTRODUCTION

To meet the need for a global carbon neutrality goal by
2050, the installation of renewable energy resources like pho-
tovoltaic and on- and off-shore wind farms has been boosted
in recent years. This trend rapidly expands the power system’s
size and complexity, giving more challenges to power system
simulation techniques.

A power system can be described by the differential equa-
tions of the components coupled by electrical connections.
This results in a large system of differential equations that
must be solved, usually numerically. The increasing number of
components results in a dramatic growth of the problem size.
At the same time, the fast dynamics brought on by the power
electronic devices make it increasingly necessary to simulate
the power system on a smaller time scale. These reasons

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Grant 450829162.
M. M. and J. Z. contributed equally to this paper.
§ Corresponding author.

have led to the development of different parallel simulation
approaches to improve simulation performance.

The optimization technique proposed in this work is by
exploiting parallel programming techniques to improve the
performance of GPU code for power system component mod-
els automatically. We consider the code is already imple-
mented under certain parallel simulation algorithms from the
parallel-in-space family [1]–[3]. The main idea of the parallel-
in-space based methods is to decouple the solution of the
dynamic components and the solution of the network. This
enables parallel processing on hardware accelerators such as
GPUs and field-programmable gate arrays (FPGAs). In this
work, we focused only on the performance optimization on
GPUs because different types of hardware accelerators require
different optimization techniques. The main contributions of
this work are:

• We use automatic vectorization techniques on linear
algebraic operations whilst not requiring global synchro-
nization and maintaining good data locality.

• We optimized memory access by considering a variety of
matrix formats and storage strategies. Different formats
can be combined in a single component kernel allowing
more freedom in performance optimization.

• We use automatic benchmarking and automatic code gen-
eration technique to allow the performance being tuned
automatically for new components and on any compatible
platform and hardware. We also introduced a strategy to
reduce exploration space so that the benchmarking time
is limited.

The paper is organized as follows: Sect. II presents related
approaches and positions our work among other methods.
Sect. III introduces the background related to heterogeneous
computing concepts and execution models on the GPU.
Sect. IV describes our approach to process component models
on the GPU with vectorization, sparse formats, and automatic
optimizations. Sect. V evaluates the achieved speedup based
on different component models and Sect. VI summarizes the
paper and discusses further work.

II. RELATED WORK

The application of parallel-in-space-based algorithms can
be traced back as far as the late 70s [4], where the au-

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



thors split the solution for the ordinary differential equations
(ODEs) of synchronous machines and the network equations in
the transient stability analysis (TSA) programs. More recent
developments and implementations of parallel-in-space type
approaches are looking into using hardware accelerators for
dynamic simulations, e. g., GPUs [5]–[9] and FPGAs [10]–
[13]. In [5], the authors introduce a transformation on different
component computations so that a single compute kernel can
be used to execute them; moreover, automatic code generation
is applied to build the compute kernel. In [6], the overall equa-
tions are grouped into linear and nonlinear equation systems;
afterwards, the linear and nonlinear systems are decomposed
separately and executed using different kernels. Therefore,
there are no specific component kernels but general kernels to
compute the fine-grained partitioned sub-networks in parallel.

In [8], [9], kernels are implemented for different compo-
nents and the network separately so that instances of each
type of component are calculated in parallel in a single
instruction/multiple threads (SIMT) manner. Besides, kernels
are implemented for the same type of sub-components inside
a component. For instance, in [7], the parallelization is ap-
plied on a single component, where the compute kernels are
designed to parallelize the computations of sub-modules in a
Modular Multi-Level Converter (MMC).

Automatic optimization is achieved by executing perfor-
mance benchmarks with different presets, and finally finding
the best-performing preset for the given program. This is
needed since the optimization of scientific computing code
is platform-specific, so the optimization for a given hard-
ware architecture is likely to slow-down on other platforms.
Traditionally, the code would need to be tuned for each
architecture by experienced developers with domain-specific
knowledge [14]. Such process is time-consuming, and with
the continuous evolution of computer architecture, the process
need to be repeated constantly. Therefore, automatic tuners
have been adopted in scientific computing community for
decades [14], [15], where the ATLAS project could be the best
well-known example [14], which uses auto-tuning technique
to generate near-optimal code for dense basic linear algebra
subprograms (BLAS) routines.

III. BACKGROUND

Heterogeneous computing frameworks such as OpenCL,
CUDA or HIP shares a similar concept in their hardware
abstractions, which contains three levels: device, compute unit
(CU), and processing element (PE). Illustration of the three
levels as well as the memory hierarchy are shown in Fig. 1.
To map the hardware abstraction with the actual hardware,
take Nvidia GPU as an example, where the Nvidia streaming
multiprocessors (SMs) are the CUs, which is composed of
the CUDA cores, being their PEs; and the whole GPU is
represented as a device.

During parallel execution, the finest process granularity is a
work-item (or thread in CUDA/HIP), which executes the code
written in kernel in parallel on the device; a collection of work-
items that are scheduled together and executed on the same

Local
memory

Global Memory Constant Memory

Global/Constant Memory Data Cache

PE

Private
memory

Compute Unit

Local
memory

PE

Private
memory

Fig. 1. Hardware abstraction of heterogeneous computing frameworks like
OpenCL, CUDA or HIP. Illustration using terminology of OpenCL.

Global & Constant Memory

GPU

Kernel

Work-item or Thread
Work-group or Block

NDRange
or Grid

Executes kernel 
code in parallel

Fig. 2. Illustration of the parallel execution model [16], based on terminology
from OpenCL and CUDA/HIP.

CU is a work-group (or block in CUDA/HIP), work-items in
the same work-group can share data via the local memory if
needed. Finally, a collection of work-groups forms NDRange
(or grid in CUDA/HIP) which represents all work-items that
is spawned during execution of a kernel. An illustration of the
execution model is shown in Fig. 2.

IV. APPROACH

The overall optimization process is illustrated in Fig. 3. By
providing the kernel as input to our optimizer, the optimizer
executes benchmarks and finally generate code with optimal
execution parameters, i. e. NDRange size, work-group layout,
etc., automatically. The optimization needs only to be executed
once for a given given set of models (kernel optimization is
independent from the model parameters and operating points),

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Component
Computations

Linear
Operations

Non-linear
Operations

Memory Access
Optimization

Automatic Code
Generation

Vectorization

Exploration Space
Reduction

Optimized 

Kernel Code

Automatic
Benchmarking

Coarse Optimization

Fine Optimization

Low 
Selection

Exploration
Space

Reduction

Work-group layout
Optimization

Automatic
Benchmarking

Optimized
Execution

Parameters

Kernel
Code

Candidates

Kernel
Code

Candidates

Kernel
Code

Candidates

Automatic Code
Generation

Kernel
Code

Candidates

Kernel
Code

Candidates

Kernel
Code

Candidates

Fig. 3. Illustration of the overall optimization process.

and the outcome, i. e., optimized kernel code and execution
parameters, can be stored and reuse for later simulations.

The overall process consists of a two-level optimization
process, where the first level considers the possibility of
vectorization inside component kernels and applies mixed
matrix formats with different matrix storage strategies to
increase the computational throughput further. Therefore, the
second optimization level treats the combination of linear
and nonlinear parts as a black box and searches for the
optimal configuration of parameters such as the degree of
vectorization, the combination of matrix formats, and the
group (of threads) sizes during parallel execution on GPU.

To perform vectorization inside component kernels, we take
the discretized ODE of the components and separate them into
linear and nonlinear contributions. The computation of the
model’s linear part is based on matrix-vector multiplication
(mv) operations. A first optimization level can already be
achieved by applying vectorization on the mv operations.
Moreover, since the mv operation is limited by memory
transfer speed, applying sparse matrix formats boosts the
performance when the associated matrices are sparse [17].
The nonlinear part includes any other operations that is not
or difficult to be treated as linear algebraic. By combining
the two optimization levels, our implementation provides a
framework that automatically benchmarks different parameters
and selects the best-performing one. Furthermore, we also
introduce an algorithm in Sect. IV-C to reduce the exploration
space during automatic benchmarking by constraining the
possible parameters.

A. Vectorization

Efficient vectorization requires a regular structure in com-
putations to be efficient. A typical example of such a regular
structure is linear algebra operations. In fact, GPUs are mostly

designed and optimized for these operations, and automatic
vectorization can be easily achieved by processing each di-
mension with a different thread.

Automatic vectorization is difficult to apply to power system
components as they mostly contain nonlinearities. Usually, af-
ter discretization, a large portion of the required computations
can be formulated into linear algebra operations with a small
nonlinear part remaining. Therefore, processing a vast part
of the nonlinear component in parallel is possible, whilst a
residual part is computed sequentially.

To perform vectorization inside component kernels, the
ODE of the components are reformulated similarly to a state-
space representation as

ẋ(t) = A(t)x(t) +B(t)u(t) + χẋ(t, x(t), u(t)) (1)
y(t) = C(t)x(t) +D(t)u(t) + χy(t, x(t), u(t)). (2)

with time-dependant input u ∈ RNu , state x ∈ RNx , output
y ∈ RNy , component matrices A ∈ RNx×Nx , B ∈ RNx×Nu ,
C ∈ RNy×Nx , D ∈ RNy×Nu , and nonlinearities χẋ and χy .
Fig. 4 visualizes the interactions of the linear contributions
in a block diagram. Effectively, this splits the component
computation into linear and nonlinear contributions where the
linear contribution can be seen as a state space model.

u B +
∫

C + y

D

A

dx
dt x

Fig. 4. Block diagram of the model described by (1) and (2) when setting
the nonlinearities χẋ = χy = 0.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



The nonlinear computations of these functions are treated as
a black box, and are almost impossible to vectorize efficiently.
Therefore, each component’s nonlinearity is processed by one
thread. This also simplifies the implementation as parallelism
can be ignored. However, it is still worth to be noted that
this sequential execution only applies to a single component
instance, the nonlinear parts of different component instances
are still computed in parallel. In practice, nonlinearities are
computed by callbacks that are invoked between each com-
putation in the state space model as shown in Alg. 1. These
callbacks can alter the states, inputs, and outputs for maximal
flexibility. Moreover, it is possible to introduce additional
arguments to the kernel when needed. For example, a turbine
may have a mechanical simulation alongside an electrical one
with a shared buffer. With the additional arguments, sharing
the turbine frequency with the electrical simulation would be
possible.

Algorithm 1 Pseudo-code for linear part of component ker-
nels. Nonlinear part can be added as additional callbacks
anywhere.

1: PRECALLBACK(t, x, y, u, ...args)
2: ẋ← Ax+Bu
3: DERIVATIVECALLBACK(ẋ, t, x, y, u, ...args)
4: x← INTEGRATE(x, ẋ, t, step)
5: NEXTSTATECALLBACK(t, x, y, u, ...args)
6: y ← Cx+Du
7: OUTPUTCALLBACK(t, x, y, u, ...args)

B. Memory Access

The main computation of the linear part of components is
matrix-vector multiplication which is largely limited by the
bandwidth of the device [18]. By reducing the amount of
data that has to be transferred, the overall computation can be
accelerated. Moreover, reducing memory requirements allows
storing more components in memory, thereby enabling the
simulation of larger systems.

A multitude of different sparse formats have been explored
in the past with various kernel implementations [17], [19]–
[22]. All formats have in common that they try to minimize
the number of stored zero elements. The main difference is the
method used to store the positions of the remaining non-zero
elements. Each format performs differently depending on the
sparsity pattern of the matrix and the architecture of the GPU.

Of course, the nonzero structure of the component matrices
can vary vastly, although they are for the same component.
Thus, each matrix can have its own format in our implemented
kernels. Moreover, we also convert matrices that are zero or
the identity matrix to a scalar, so that they do not necessarily
to be stored as matrices.

When considering matrix storage, except utilizing different
sparse formats like ELLPACK format (ELL) [23], compressed
sparse row (CSR) [24], Coordinate list (COO), etc., we pro-
posed following strategies to store the matrices of multiple

Values
Storage pattern

Fig. 5. The pattern storage strategy. Assuming the nonzero pattern for certain
component doesn’t change during simulation, the nonzero pattern and values
are stored separately. Multiple instances of the same component type shares
the same storage pattern vector and maps to different value vectors.

component instances. Nevertheless, new sparse formats and
strategies can be easily integrated.

1) Block-Diagonal storage: The state space equations are
decoupled; therefore, the equations for all component instances
can be combined into one. This results in block diagonal
coefficient matrices that can be efficiently stored using sparse
formats. Each thread can then compute the required rows of
the matrix-vector multiplication.

2) Concatenated storage: Not all formats can be stored
efficiently in a block diagonal form. For example, storing
a block diagonal matrix in a dense format is inefficient.
Moreover, some other formats also perform better, or even
require (e. g., COO), to store instance individually. In this case,
the matrices for each instance are encoded into certain matrix
format (dense or sparse format) and then concatenated into
one buffer, an additional buffer is used to locate the individual
instances.

3) Pattern storage: The nonzero pattern of the component
matrices is usually determined by the algebraic description of
the component’s behavior, implying that it suffices to store this
pattern once and reuse it for all instances of that component.
By just storing the pattern, and allowing instances to have
different values, this reduces memory transfers significantly
as only the values of the component matrices are transferred,
not the pattern. The downside of this approach is that the
component must have a known and fixed nonzero pattern that
can be determined during optimization and remains fixed in
simulation, but it is usually the case.

C. Exploration space reduction and optimization

The linear part is vectorized, allowing multiple threads
executing the same mv operation. Normally, one thread is
assigned to process each row, however, when there are still
resource available, i. e., if there are more threads available than

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Fig. 6. Illustration of two of the vectorization parameters Nv and Nr on the
matrix-vector multiplication (mv). When more than one thread work on the
same row, a parallel binary reduction is used to collect the sum for each row.

the number of rows, then multiple threads process each row
simultaneously. In this case, the element-wise products in each
row are summed using a binary reduction.

To quantify the constraint for exploration space reduction,
we first limit the number of threads per row to be a power of
two. Then we introduce the number of rows per thread Nr and
the number of threads per row during vectorized mv execution
Nv , as shown in Fig. 6 as

Nr =

⌈
NmNj

Ng

⌉
,

Nv = 2

⌊
log2

Ng
NmNj

⌋
,

with Nm rows per matrix, a group size of Ng , and Nj

components per group. Furthermore, the maximal number of
threads per row N̂v for a matrix with Nn columns is

N̂v = 2⌈Nn⌉.

The optimization for component kernels have six degrees of
freedom. The matrix format choice for the component matrices
introduces four parameters. In addition, a kernel should be
built for a certain group size Ng on the GPU, i. e., the number
of SIMT threads working in sync. Finally, the number of
instances processed by one group Nj must be selected.

By design, the device limits the group size Ng to 1 ≤
Ng ≤ N̂g with the upper limit group size N̂g . Furthermore, the
group size should be a multiple of two for efficient scheduling.
For example, the NVIDIA A100 supports group sizes of up
to 1024 threads, resulting in just 10 efficiently usable group
sizes. Also, we assume that 1 ≤ Nj ≤ Ng – i.e., each thread
computes at most one component – to stay within the regime
of thin threads for better work distribution and less memory
consumption [25].

Our goal is to minimize idle time among threads, as this can
increase computation times. Thus, we maximize the number
of components per group Nj so that the work performed
per thread stays constant. Effectively, this should remove

inefficient parameter sets. In practice, we loop over all Nj

for a given group size Ng and only benchmark those where
Nj + 1 results in a different Nr or Nv .

With these prerequisites, we can define a function f

f : (Nm, Nn, N̂g)→ {(Ng, Nj)} (3)

with Nm rows and Nn columns of the considered matrix
that maps the external parameters given by the matrix di-
mensions and the GPU to a set of parameters fulfilling the
above-mentioned constraints. As four matrices describe each
component, the set of suitable parameters P is given by

P =
⋃

x∈{A,B,C,D}

f(N (x)
m , N (x)

n , N̂g). (4)

For the parameter selection, we split the optimization into
a coarse optimization that benchmarks one part at a time
and a fine-grained optimization to select the best combination
of parameters as shown in Fig. 7. This two-step process
significantly lowers the required optimization time.

t(A) t(B) t(C) t(D) t(χx) t(χy)

+

t

Benchmark lowest ts

Step
1

Step
2

Fig. 7. Visualization of the optimization flow. The first phase benchmarks each
part isolated. The second part then combines the results to predict runtimes for
combinations and benchmarks the ones with the lowest predicted runtimes.

1) Coarse Optimization: For the coarse optimization, we
benchmark each component of Alg. 1 individually to try
out each format for each matrix. Assume F is the matrix
format, and x identifies the matrix, then the runtime for the
matrix-vector multiplication is t

(x)
F and depends on the total

number of instances Ni, as well as the group size Ng , and
the number of components per group Nj . We determine this
by running a benchmark, as runtime prediction is generally
a hard problem [26]–[28]. The same benchmark is performed
only with the nonlinearities to get t(χx) and t(χy).

2) Fine Optimization: In general, the optimization goal is
to minimize the kernel’s runtime. This can be estimated by
assuming the runtime t of the combined kernel consists of the
runtimes of the parts benchmarked in the coarse optimization
as

t ≡ t(A) + t(B) + t(C) + t(D) + t(χx) + t(χy). (5)

Using this, we find the parameter configurations expected to
perform best. Nevertheless, this is only an approximation, as
some other influences from the combination may change the
runtime slightly. Moreover, predicting runtimes on GPU is
generally difficult, imprecise, or computationally expensive.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



Component 1

Component 2

Component n

Fig. 8. Illustration of the library implementation to represent computations
in generic solvers, e. g. in [29]

Therefore, we benchmark some of the predicted configurations
and select the one with the lowest runtime.

V. EVALUATION

We evaluate our approach using three representative com-
ponents with different models – in particular, we consider a
distributed generation (DG) inverter, an electrolyzer, and a
synchronous machine. The time integration of (1) uses the
explicit Euler method; however, an implementation for RK-
4 also exists. The correctness of our kernels for all matrix
formats, group sizes, and components per group was verified
with negligible computation errors.

Simulations in this section are compiled and executed on a
server with two AMD EPYC 7H12 CPUs (2.6GHz base clock
frequency, 64 cores each, hyper-threading disabled); 256GB
DDR4 main memory; one Nvidia A100-40GB GPU with
40GB HBM2 global memory, and one AMD MI100 GPU
with 32GB global memory.

To evaluate the performance of the optimized kernels, we
prepare two alternative implementations to compare:

1) the library implementation: Previous works on power
system simulation with GPU show that component computa-
tions can be transformed and aggregated into a unified kernel.
Moreover, general purpose numerical solver libraries [29],
[30] will usually also aggregate all differential equations and
solve simultaneously, e. g., by calculating the Jacobian, and
computed with the help of a BLAS library. An example to
this is the SUNDIALS library with GPU acceleration [29].
The benefit of using general solvers is that the user, or mod-
eller, needs less concern regarding computational performance,
since the computations are relying on other linear algebra
libraries. However, this poses difficulty in implementing new
models or power system specific models that are essentially
an algorithms, e. g., specific controllers, automation systems,
etc. Therefore, to represent the computation resulted from this
approach, the linear part of the considered component models

are aggregated into a single state-space representation, where
the coefficient matrices of each component are placed along
the diagonal of the aggregated coefficient matrix, as shown
in Fig. 8. The numerical integration will then be processed
by a vendor-supplied sparse BLAS library – so that the many
off-diagonal zeros do not affect the computation – such as
cuSparse or hipSparse. These libraries are highly optimized
as they are utilized in many simulation environments. It needs
to be pointed out that for simplicity, the nonlinear part of each
model is ignored for this implementation.

In addition, to ensure a fair comparison, since the tested
sparse libraries only support fixed sparse matrix format
throughout the computation, prior to each benchmark, we
tested among different matrix formats to find the most per-
formant format for each library and use it in that benchmark.

2) the baseline implementation: We take the kernel im-
plementations with the formulation in Sect. IV-A, i. e., the
reformulation into a linear and nonlinear part, without applying
any optimization. The group size and components per group
are set to Ng = 32 and Nj = 32, respectively. Such group
size matches the recommended default group size on the
considered devices as it matches the SIMT width of one
compute unit. This is a versatile configuration that should work
well in many cases.

The kernels for the baseline implementation as well as the
optimized code uses OpenCL C; library implementations only
need to invoke the related Application Programming Interface
(API) calls from the host, which is implemented in C++ in
our case.

A. Component Models

1) Distributed generation inverter: We take the DG inverter
introduced in [31]; it is modeled by an averaged inverter
model with a grid following control and neglects the switching
dynamics. The kernel is also implemented in our previous
work [32]. Such model depth is already sufficient for a
majority of test cases [33] involving power electronics. The
controller and circuit representation of the inverter model is
shown in Fig. 9. The input three-phase alternating current (AC)
signal to the controllers is first transformed into the dq domain
via a Park transform. The controller can be divided into three
main parts: a phase-locked loop (PLL) tracks the system’s
angular frequency; an average power calculation block that
calculates the current output power, and two PI controllers
that track reference power set points by controlling the output
voltage of the converter.

The converter controllers, excluding the Park transform
block, can be formulated via the following state-space for-
mulation:

ẋ = Ax+B(x)u, (6)
y = Cx+Du, (7)

where the B matrix is dependent on the state x. This is
due to the average power calculation block that performs
multiplications over states (vc−dq and ig−dq) to calculate

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



vs

vc-dq

ig-dq

Power
Controller vs-dq

Current
Controller

Average Power
Calculation

θPLL vc, ig

dq

abc
vc

ig

Controllers
Controlled

Voltage Source

AC filter

Park Transform

vc-dq, ig-dq

Fig. 9. Distributed generation inverter model [31], [32]

S1 S2 S3

D13 D14 D15

buckC

buckL mR

ctR

dlC

1 dc C 2 dc C

1 drR 2 dr R

revV

D
C

 b
us

+

-

3-phase interleaved buck converter

Randles-Warburg cell model

Fig. 10. Electrolyzer with three-phase interleaved buck converter [34], [35]

the power, thus introducing non-linearity in the state-space
representation.

2) Electrolyzer: We use the electrolyzer model in [34],
where the electrolyzer is considered to be connected with
a three-phase interleaved buck converter. The electrolyzer is
modeled with Randles-Warburg (RW) cell model, and the buck
converter uses the generalized state-space average model intro-
duced in [35]. The reason for selecting an electrolyzer model
for the benchmark is twofold: first, electrolyzers are gaining
more attention due to the increasing interest in hydrogen;
second, the main computational load in this model we selected
is the interleaved buck converter, therefore, it could be used
to partly represent the computational tasks when simulating a
power-electronics-based system with switching dynamics.

3) Synchronous Machine: We take the machine model
in [36] with saturation ignored, and its dq0-axis equivalent
circuits are shown in Fig. 11. Similar to the previous inverter
model, the machine is modeled in the dq frame as well.
The machine model also introduces non-linearity due to the
coupling of d− and q−axis and between electromagnetic
and mechanical equations. The overall equation set can be
represented by:

Ψ̇ = f(Ψ, ωr, U), (8)

δ̇r = f(ωr), (9)
ω̇r = f(Ψ, I, ωr), (10)
0 = g(Ψ, I). (11)

Where Ψ is a 7 × 1 vector of flux linkage; U , I are vectors
of stator and rotor voltages and currents with the same length,

ψd

ψ1d ψfd

ud

ifdLl+
+

+

+

+ +

-

- -- -

Lfld-Lad 

Lad 

L1d 

R1d 

Rfd 

Lfd 

efd 

Ra 
ωrψq

id

i1d

ψq

ψ1q ψ2q

uq

i2qLl+

+

++

+

-

- -- -

Laq 

L1q 

R1q R2q 

L2q 

Ra 
ωrψd

iq

i1q

-

ψ0
u0

L0

++

--

Ra i0

Fig. 11. The dq0-axis equivalent circuit of the synchronous machine [36]

respectively. ωr is the mechanical angular frequency of the
rotor.

B. Performance Evaluation

We benchmarked our optimized component kernels against
the library and the baseline implementation by performing
numerical integration with a simple Euler forward method.
The measured execution time for different component types
and different component counts are shown in Fig. 12, including
a benchmark of simulating a combination with three types of
components together with an equal number of each type. The
speedup of our optimized kernels to the library implementation
is between 1.3 and 6.7 times and to the baselines by up to 10.2
times, which shows that the optimized kernels outperform the
compared implementations by some margin.

Compared with the library implementation, the customized
component kernels, i. e. the baseline and optimized, have a
reduced number of kernel launches, as our kernels perform the
whole computation in a single kernel launch although with part
of computations being computed sequentially, i. e. nonlinear
contributions, whereas the library implementation requires
separated launches e. g. for updating the states and outputs.
This results in better cache coherence and less overhead in
our implementations. Nevertheless, the library implementation
still outperforms the baselines when the problem size is large
enough.

In all test cases of the library implementation, the NVIDIA
A100 outperformed the AMD MI100. It can be attributed

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



to the better optimization with the cuSparse library than the
hipSparse library. However, it needs to be noted that the A100
GPU has higher memory bandwidth, therefore, it gains more
advantage in the linear algebra related benchmarks which are
mainly memory-bounded operations.

Finally, we performed a roofline analysis [37] with the
optimized kernels. This relates the computational intensity,
given by FLOP per byte transferred, to the achievable perfor-
mance. The plot is shown in Fig. 13 and shows that especially
high component counts lead to efficient utilization of the
hardware and close to the peak performance. The devices are
likely not fully utilized for lower component counts. This is
because runtime overheads, such as scheduling time, become
a significant factor compared to light computational load,
leading to a large gap between peak and actual performance.

C. Memory consumption

Reformulation of the components inevitably leads to in-
creased memory consumption, which could be a limiting factor
for very large systems. We tracked the required buffer sizes
needed for each component to perform numerical integration
and compared them between the optimized and library im-
plementation, as shown in Fig. 14. The electrolyzer model
consumes the most memory per component since it has a more
detailed converter model considering switching dynamics; the
DG inverter considers only controller dynamics and therefore
needs less memory but is still larger than the synchronous
machine. Results show that our optimizer finds different ma-
trix format combinations for different problem sizes: when
the component count is small, the GPU memory bandwidth
is usually not saturated, hence leading our optimization to
choose more performant formats, including dense, regardless
of memory usage, and the increasing memory usage clearly
shows that dense format was used in some cases. With the
growing component count, the GPU memory bandwidth is
eventually saturated, therefore, the optimizer tends to find
format combinations that provide better compression on the
matrices.

VI. CONCLUSION

This work provides an approach to automatically accelerate
the numeric integration of component models for power sys-
tem simulations on GPU. Our approach automatically exploits
the data parallelism of the GPU by introducing vectorization
and different matrix storage strategy with mixed matrix for-
mats into the component computation. The approach can be
flexibly applied to kernels for any new components or be
applied to existing compatible implementations to improve
performance.

We demonstrated that our approach outperforms the aggre-
gated model approach based on sparse linear algebra libraries
with a speedup between 1.3 and 6.7 times, and up to 10
times compared to the unoptimized baseline implementation,
demonstrating the effectiveness of our optimizations.

With the growing size and complexity of the power sys-
tem, or when specific study cases require detail modelling,

component models can be more complex. Therefore, memory
bandwidth and, in some cases, memory volume will become
a limiting factor. The memory footprint shown in Sect. V-C
suggests that our approach could increase the efficiency in
memory utilization for component computations.

Nevertheless, it needs to be pointed out that the optimization
procedure takes a few minutes per component since it depends
on many automatically executed benchmarks, and need to
be re-executed for different problem sizes, indicating further
improvements needed, e. g., on the optimization algorithm.

We plan to consider different explicit and implicit integra-
tion schemes other than the explicit Euler and RK-4 schemes.
Moreover, one may consider the vectorization potential of the
nonlinearities to achieve even better performance. Including
more specialized matrix formats for the component matrices
may increase performance further.

REFERENCES

[1] A. Benigni and A. Monti, “A parallel approach to real-time simulation
of power electronics systems,” IEEE Transactions on Power Electronics,
vol. 30, no. 9, pp. 5192–5206, sep 2015.

[2] C. Dufour, J. Mahseredjian, and J. Bélanger, “A combined state-space
nodal method for the simulation of power system transients,” IEEE
Transactions on Power Delivery, vol. 26, no. 2, pp. 928–935, apr 2011.

[3] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale Transient
Stability Simulation on the Graphics Processing Unit,” IEEE Transac-
tions on Power Systems, vol. 25, no. 3, pp. 1589–1599, Aug. 2010.

[4] V. Brandwajn, “Synchronous generator models for the simulation of
electromagnetic transients,” Ph.D. dissertation, University of British
Columbia, 1977.

[5] Y. Song, Y. Chen, S. Huang, Y. Xu, Z. Yu, and W. Xue, “Efficient
gpu-based electromagnetic transient simulation for power systems with
thread-oriented transformation and automatic code generation,” IEEE
Access, vol. 6, pp. 25 724–25 736, 2018.

[6] Z. Zhou and V. Dinavahi, “Fine-grained network decomposition for
massively parallel electromagnetic transient simulation of large power
systems,” IEEE Power and Energy Technology Systems Journal, vol. 4,
no. 3, pp. 51–64, 2017.

[7] N. Lin and V. Dinavahi, “Exact Nonlinear Micromodeling for Fine-
Grained Parallel EMT Simulation of MTDC Grid Interaction With Wind
Farm,” IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp.
6427–6436, Aug. 2019.

[8] Z. Zhou and V. Dinavahi, “Parallel Massive-Thread Electromagnetic
Transient Simulation on GPU,” IEEE Transactions on Power Delivery,
vol. 29, no. 3, pp. 1045–1053, 2014.

[9] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-Scale Transient
Stability Simulation of Electrical Power Systems on Parallel GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 7,
pp. 1255–1266, 2012.

[10] M. Milton, A. Benigni, and J. Bakos, “System-Level, FPGA-Based,
Real-Time Simulation of Ship Power Systems,” IEEE Transactions on
Energy Conversion, vol. 32, no. 2, pp. 737–747, 2017.

[11] M. Milton and A. Benigni, “Latency insertion method based real-time
simulation of power electronic systems,” IEEE Transactions on Power
Electronics, vol. 33, no. 8, pp. 7166–7177, 2018.

[12] M. Milton, A. Benigni, and A. Monti, “Real-Time Multi-FPGA Sim-
ulation of Energy Conversion Systems,” IEEE Transactions on Energy
Conversion, pp. 1–1, sep 2019.

[13] L. Zhang, J. Liu, W. Qi, Q. Chen, R. Long, and S. Quan, “A parallel
modular computing approach to real-time simulation of multiple fuel
cells hybrid power system,” International Journal of Energy Research,
vol. 43, no. 10, pp. 5266–5283, 2019.

[14] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, Jan. 2001.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



29 214 219
101

102

103

Inverter

Library

Baseline

Optimized

NVIDIA

AMD

29 214 219

Synchronous Machine

29 214 219

Electrolyzer

3 · 29 3 · 214 3 · 219

All Combined

Number of Components

E
x
ec
u
ti
o
n
T
im

e
(u
s)

Fig. 12. Execution time for performing numerical integration with different component models and component counts, with simulating each type of component
along or with all types combined.

0.2 0.3 0.4

Intensity (FLOP/Byte)

101

102

P
er
fo
rm

a
n
ce

(G
F
L
O
P
/
s)

NVIDIA A100

AMD MI100

Peak perf.

512 comp.

2048 comp.

8192 comp.

32768 comp.

131072 comp.

524288 comp.

Fig. 13. Performance of the optimized kernels in a roofline plot to relate
kernel performance to peak performance. The size of the dots relates to the
number of components.

[15] K. Sato, H. Takizawa, K. Komatsu, and H. Kobayashi, “Automatic
Tuning of CUDA Execution Parameters for Stencil Processing,” in
Software Automatic Tuning: From Concepts to State-of-the-Art Results,
K. Naono, K. Teranishi, J. Cavazos, and R. Suda, Eds. New York, NY:
Springer, 2010, pp. 209–228.

[16] D. Kirk and W.-m. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach, 2nd ed. Amsterdam: Elsevier, Morgan
Kaufmann, 2013.

[17] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation,
Tech. Rep., 2008.

[18] G. I. Goumas, K. Kourtis, N. Anastopoulos, V. P. Karakasis, and
N. Koziris, “Performance evaluation of the sparse matrix-vector mul-
tiplication on modern architectures,” The Journal of Supercomputing,
vol. 50, pp. 36–77, 2009.

[19] B.-Y. Su and K. Keutzer, “clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 353–364.

[20] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized sparse

1024 4096 16384 65536 262144

Number of Components

0

500

1000

1500

2000

2500

3000

3500

M
em

o
ry

p
er

C
o
m
p
.
(B

y
te
)

Library

Ours

Inverter

Sync. Machine

Electrolyzer

Fig. 14. Memory consumption per component on the NVIDIA A100 GPU of
different component models, for our and the library implementation. Lower
limit is calculated by considering minimum number of parameters required
for each component.

matrix multiply for compressed row storage format,” in International
Conference on Computational Science. Springer, 2005, pp. 99–106.

[21] J. L. Greathouse, K. Knox, J. Poła, K. Varaganti, and M. Daga, “clsparse:
A vendor-optimized open-source sparse blas library,” in Proceedings of
the 4th International Workshop on OpenCL, 2016, pp. 1–4.

[22] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[23] D. R. Kincaid, T. C. Oppe, and D. M. Young, “Itpackv 2d user’s guide,”
Texas Univ., Austin, TX (USA). Center for Numerical Analysis, Tech.
Rep., 1989.

[24] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing, 2015, pp. 339–
350.

[25] G. Klingbeil, R. Erban, M. Giles, and P. K. Maini, “Fat versus thin
threading approach on gpus: Application to stochastic simulation of
chemical reactions,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 2, pp. 280–287, 2011.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



[26] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on gpus,” ACM sigplan notices, vol. 45,
no. 5, pp. 115–126, 2010.

[27] P. Guo, L. Wang, and P. Chen, “A performance modeling and opti-
mization analysis tool for sparse matrix-vector multiplication on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 5,
pp. 1112–1123, 2013.

[28] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Performance
models for evaluation and automatic tuning of symmetric sparse matrix-
vector multiply,” in International Conference on Parallel Processing,
2004. ICPP 2004. IEEE, 2004, pp. 169–176.

[29] C. J. Balos, D. J. Gardner, C. S. Woodward, and D. R. Reynolds, “En-
abling GPU accelerated computing in the SUNDIALS time integration
library,” Parallel Computing, vol. 108, p. 102836, Dec. 2021.

[30] S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith,
and H. Zhang. PETSc/TS: A Modern Scalable ODE/DAE Solver Library.

[31] N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, Analysis and
Testing of Autonomous Operation of an Inverter-Based Microgrid,”
IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625,
2007.

[32] J. Zhang, M. Mittenbuehler, L. Razik, and A. Benigni, “Parallel Simula-
tion of Power Systems with High Penetration of Distributed Generation
Using GPUs and OpenCL,” in 2022 IEEE 13th International Symposium
on Power Electronics for Distributed Generation Systems (PEDG), 2022,
pp. 1–6.

[33] G. De Carne, G. Lauss, M. H. Syed, A. Monti, A. Benigni, S. Karrari,
P. Kotsampopoulos, and M. O. Faruque, “On modeling depths of power
electronic circuits for real-time simulation–a comparative analysis for
power systems,” IEEE Open Access Journal of Power and Energy, vol. 9,
pp. 76–87, 2022.

[34] H. Zhang, Y. Lu, J. Zhang, and A. Benigni, “Real-Time Simulation
of an Electrolyzer with a Diode Rectifier and a Three-Phase Interleaved
Buck Converter,” in 2022 IEEE 13th International Symposium on Power
Electronics for Distributed Generation Systems (PEDG), 2022, pp. 1–6.

[35] P. Azer and A. Emadi, “Generalized State Space Average Model for
Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Convert-
ers: Transient, Steady-State and Switching Dynamics,” IEEE Access,
vol. 8, pp. 77 735–77 745, 2020.

[36] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control, ser. EPRI power system engineering series. New York:
McGraw-Hill, 1994.

[37] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, p. 65–76, Apr. 2009.

APPENDIX

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



TABLE I
OPTIMIZATION RESULT FOR NVIDIA A100-40GB GPU

Component #Components Group #Components Matrix format with storage strategy
size per group A B C D

Inverter

512 16 2 CDia* CDia* Dense-cat ELL*
2048 32 32 Dense-cat Dense-cat Dense-cat Dense-cat
8192 128 32 ELL* ELL* CDia* ELL*

32768 128 64 ELL* ELL* ELL* ELL*
131072 64 40 ELL* ELL* ELL* ELL*
524288 32 20 ELL* ELL* ELL* ELL*

SyncMachine

512 128 14 CDia* Dia* ELL* -
2048 256 28 CDia* CDia* ELL* -
8192 256 28 CDia* Dia* CDia* -

32768 128 64 ELL* ELL* ELL* -
131072 64 32 ELL* Dia-BD CSR* -
524288 128 64 ELL* CDia* ELL* -

Electrolyzer

512 256 12 ELL-BD Dense-cat CSR* -
2048 128 6 Dia* ELL-BD CSR-BD -
8192 128 12 ELL-BD ELL-BD CSR-BD -

32768 256 48 CSR-BD ELL-BD CSR-BD -
131072 64 6 CSR-BD CDia* CSR* -
524288 256 48 CSR-BD CSR-BD CSR* -

*: pattern storage
-cat: concatenated storage
-BD: block diagonal storage

TABLE II
OPTIMIZATION RESULT FOR AMD MI100 GPU

Component #Components Group #Components Matrix format with storage strategy
size per group A B C D

Inverter

512 32 4 ELL* ELL* ELL* ELL*
2048 256 32 ELL* ELL* ELL* ELL*
8192 256 32 ELL* ELL* CSR* ELL*

32768 256 96 ELL* ELL* ELL* ELL*
131072 128 48 ELL* ELL* ELL* ELL*
524288 128 32 ELL* ELL* ELL* CSR*

SyncMachine

512 64 7 CDia* Dia* ELL* -
2048 64 7 CDia* ELL* ELL* -
8192 256 28 ELL* Dia* ELL* -

32768 256 96 ELL* Dia* ELL* -
131072 128 28 ELL* CSR* ELL* -
524288 256 28 CSR* CDia* ELL* -

Electrolyzer

512 64 3 ELL* Dense-cat CSR* -
2048 128 6 ELL* ELL* CSR* -
8192 256 12 ELL* CSR* CSR* -

32768 256 12 ELL* CSR* CSR* -
131072 256 12 ELL* CSR* CSR* -
524288 128 3 CSR* ELL* CSR* -

*: pattern storage
-cat: concatenated storage
-BD: block diagonal storage

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024


