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Abstract—Real-time decision-making in power system schedul-
ing is imperative in response to the increasing integration of
renewable energy. This paper proposes a novel framework
leveraging Reinforcement Learning from Demonstration (RLfD)
to address complex unit commitment (UC) and optimal power
flow (OPF) challenges, called GridZero-Imitation (GZ-I). Unlike
traditional RL approaches that require complex reward function
designs and have limited performance insurance, our method
employs intuitive rewards and expert demonstrations to reg-
ularize the RL training. The demonstrations can be collected
from asynchronous reanalysis of an expert solver, enabling RL
to synergize with expert knowledge. Specifically, we conduct
a decoupled training approach, employing two separate policy
networks, RL and expert. During the Monte Carlo Tree Search
(MCTS) process, action candidates from the expert policy foster a
guided search mechanism, which is especially helpful in the early
training stage. This framework alleviates the speed bottleneck
typical of physics-based solvers in online decision-making, and
also significantly enhances control performance and convergence
speed of RL scheduling agents, as validated by substantial
improvements in a 126-node real provincial test case.

Index Terms—Real-time Scheduling, Reinforcement Learning
from Demonstration, Predictive Control, Monte Carlo Tree
Search

I. INTRODUCTION

Reinforcement Learning (RL) has emerged as a promising
alternative to computationally demanding optimization tech-
niques for facilitating real-time scheduling and control [1],
[2]. Despite its promise, the nascent RL solutions present
challenges. Pure RL methods require careful design of reward
functions [3], extensive interactions with the environment, and
a long training time before convergence. Moreover, the perfor-
mance gaps and lack of interpretability drive the studies about
learning-assisted optimization [4], including unit commitment
[5], [6] and optimal power flow [7]. However, since these
methods require physics-based optimizers at each decision
step, the decision time still depends on the quality of the warm-
start solution and the problem scale. It is necessary to devise

1Institute for Interdisciplinary Information Science, Tsinghua Univer-
sity, Beijing 100084, email: liushaohuai42@gmail.com, gaoyangiiis@mail.
tsinghua.edu.cn. 2National Power Dispatching and Control Center, State Grid
Corporation of China, Beijing 100031. 3China Electric Power Research
Institute, Beijing 100192. 4Department of Electrical Engineering, Tsinghua
University, Beijing 100084. ∗corresponding author.

This work was supported by State Grid Corporation of China Science and
Technology Program ”Research on Key Technologies for Static Security Risk
Prevention and Control Based on Safe Reinforcement Learning” (No.5108-
202355440A-3-2-ZN).

an elegant methodology combining physics-based optimizers
and RL algorithms.

Reinforcement learning from demonstration (RLfD) aims
at addressing the above problems, leveraging demonstration
data to bolster online learning [8]. RLfD has broadened from
vector-state tasks [9] to visual input [10], [11], action-free
videos [12], and combinations with recently surged foundation
models [13]. Many previous works have harnessed demonstra-
tion data by incorporating it into the replay buffer to accelerate
training [14], [15]. However, offline demonstrations require
scrupulous selection to avoid out-of-distribution issues. Some
other works split training into two phases, imitation and RL
fine-tuning [9], [16]. Nevertheless, the two-staged training can-
not guarantee policy improvements after the imitation phase.
The most related work in power systems is Deep Deterministic
Policy Gradient from Demonstrations (DDPGfD) for service
restoration [17]. DDPGfD uses behavior cloning to accelerate
training and utilizes demonstration data to stabilize fine-tuning.
The service restoration task shares a similar mixture of contin-
uous actions and discrete actions as our power scheduling task.
However, DDPGfD uses a two-staged training mechanism that
might catch policy instability in the RL fine-tuning phase as
previously mentioned. The model-free RL framework might
also be constrained due to the lack of prospective planning
capability.

In this regard, this paper develops a planning-capable RLfD
solution for a complex power scheduling task, including op-
timal power flow (OPF) and unit commitment (UC). We are
committed to employing advanced RL algorithms combined
with RLfD technologies to approximate the performance of
physics-based optimizers, while preserving the computation
speed of learning-based methods. The upsurging renewable
generation requires fast and precise decisions on not only
the generators’ power setpoints, but also the on-off statuses
for fast start-stop generators. Consequently, the OPF and UC
are formulated as a single unified Markov Decision Process
(MDP). The designed RLfD operator observes the operational
states (generator power, load injections, line flows, etc), and
takes mixed actions (continuous power setpoints and discrete
generator startup/shutdowns) to ensure economical and fea-
sible power flow. In our 126-node test grid, a total of 54
generators are controllable, corresponding to 54-dimensional
continuous control and 254 possible combinations of generator
status, which brings difficulties of high-dimensional control
and combinatorial explosion.

This paper studies the following questions:
1) Is it possible to achieve RLfD in power scheduling?
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Fig. 1. Architecture of GridZero-Imitation (GZ-I).

2) How to utilize demonstrations to accelerate training and
stabilize fine-tuning in an end-to-end way?

At a high level, this paper proposes an end-to-end frame-
work that utilizes a mixture of imitation and RL fine-tuning.
This work employs the physics-based optimizer to asyn-
chronously reanalyze the scheduling trajectories. Hence, the
fresh demonstrations continuously flow into the replay buffer.
Simultaneously, the agent utilizes environmental rewards to
further fine-tune the performance. An overview of our ap-
proach is described in Figure 1. Notably, the expert uses
optimizers and not learnable.

The proposed RL agent is instantiated in the GridSim
environment, which is similar to OpenAI Gym [18]. GridSim
simulates power flows and provides interfaces for RL agents.
The agent deployed on GridSim controls the generators’ power
setpoints and on-off status of fast startup units. The generation
capability of renewable generators could vary with time.
GZ-I agent is built on top of the previous GridZero [19],
demonstrating the improved performance aided by RLfD.

Our contributions are formulated as follows:

• Different from the pure RL setting of GridZero [19], our
method proposes an asynchronous framework enabling
physics-based solvers to reanalyze the scheduling trajec-
tories without speed limitations in online decisions. Fresh
demonstrations are continuously generated, hence much
less distribution shifts need to be considered.

• We employ guided search, as well as environmental
rewards, which stabilize RL training and alleviate the
affects of sub-optimal demonstrations due to accelerations
for model linearizations and constraint relaxations.

• Different from GridZero [19], we make the GridSim
environment more realistic by adding a preheating time
for the startup process of thermal generators, which
means thermal generators must wait for steps to output
power after receiving the restart command.

Our work provides a natural combination of data-driven
RL and traditional optimization methods, combining their
respective strengths and avoiding weaknesses. This takes a step
towards demonstration-assisted RL in power system applica-
tions. Compared to existing pure optimization-based methods,
our method can accelerate over 100x times and achieve high

renewable energy integration with only short-term forecasts
(in 2 hours). Details are presented in Table I.

Our paper is organized as follows. Section II describes the
preliminaries and how to formulate power scheduling as an
MDP. Section III describes our efficient manner of incorpo-
rating demonstrations and fine-tuning. Section IV describes
the experimental results. Section V is the discussion and
conclusion.

II. POWER SCHEDULING AS A MARKOV DECISION
PROCESS

In this section, we will first introduce the power scheduling
problem definition. Subsequently, we formulate the power
scheduling problem as a Markov Decision Process (MDP).
Finally, we briefly introduce the preliminaries of GridZero
[19].

A. Power Scheduling Problem

This work considers a power system where N ,G,L indicate
sets of nodes, generators, and lines. The active/reactive power
outputs of generators at node i ∈ N are denoted as pg,i, qg,i.
Non-operating generators at node i are simply defined as
pg,i = qg,i = 0. The demand at node i is noted as pd,i, qd,i.
This paper looks into a power grid operational setting where
the power outputs and on-off status of generators can be
adjusted for economical operations. Power output setpoints are
constrained within time-varying bounds as ptg,i ∈ [ptg,i, p

t
g,i].

Power scheduling consists of OPF and UC. For mathemat-
ical definitions, the OPF problem could be formulated as

min
p

∑
i∈B

C(pg,i)

s.t. pij = gij(v
2
i − vivj cos θij)− bijvivj sin θij

qij = bij(−v2i + vivj cos θij)− gijvivj sin θij
pgi − pdi =

∑
j pij , i ∈ N

qgi − qdi =
∑

j qij , i ∈ N
θij ≤ θij = θi − θj ≤ θij , (i, j) ∈ L

p2ij + q2ij ≤ sij , (i, j) ∈ L
pg,i ≤ pg,i ≤ pg,i, i ∈ N
qg,i ≤ qg,i ≤ qg,i, i ∈ N

vi ≤ vi ≤ vi, i ∈ N

(1)

where gij , bij indicate the conductance and susceptance of line
(i, j). pij , qij represent the active and reactive power flowing
on line (i, j). θij represents the phase angle.

The UC problem could be defined as

min
u,p

T∑
t=1

∑
g∈G

csi |ut
g − ut−1

g |+ ut
gC(ptg)

s.t.
∑

g∈G ut
gp

t
g= Lt, t ∈ [0, T ]

pgu
t
g≤ ptg ≤ pgu

t
g, ∀g ∈ G, t ∈ [0, T ]

ut
g∈ {0, 1}

(2)

where Lt denotes the total load consumption at timestep t. ut
g

is the utility of generator g at timestep t, 1 as in-service and 0
for out-of-service. Only the total load-generation constraint is
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Fig. 2. Planning, Acting and Training of GridZero-Imitation.

demonstrated for simplified illustration, while all operational
constraints and rules are considered in implementations of
GridSim environment and ACOPF+UC baseline in Gurobi
solver.

B. Reinforcement learning for power scheduling

Reinforcement learning has provided a powerful paradigm,
by training a policy that maps the states to actions, to minimize
the loss function defined in Equation 1 and 2. In the remainder
of this section, we outline how the power scheduling problem
defined in II-A can be formulated as an RL problem. To be
specific, a Markov Decision Process (MDP) of (S,A, T , r, γ)
represents the power scheduling model. S is the set of states
(including generation and load consumptions, and line flows),
A is the action space, T : S × A → S is the state transition
function (reflecting system dynamics), r : S × A → R is the
reward function, and γ is the discount factor.

State. The state consists of the following parts.
1) Generators. The agent observes the generator’s infor-

mation, including active/reactive power setpoints, ad-
justable ranges, as well as startable and closable indexes.

2) Loads. Load information includes active and reactive
power.

3) Lines. Line information includes active/reactive trans-
mission power and line currents.

4) Nodes. Nodal information consists of active/reactive
power injections and voltages.

5) Forecasts. Forecasts include short-term predictions of
load and renewable maximum power (corresponding to
future 20 steps).

Action. For our RL agent, action a = (ap, ao, ac) consists
of two parts:

1) Dispatching ap. ap = {∆pg,i}. The agent can mod-
ify the generators’ active power setpoints pg,i through
∆pg,i, ∀i ∈ N . For thermal generators, ∆pg,i ∈[
−crampp

max
g,i , crampp

max
g,i

]
, where cramp = 0.05 in our

experiments. Specifically, for closed generators, ∆pg,i ∈
{0}. For startable and closable generators, ∆pg,i ∈

[0, pmin
g,i ] and [−pmin

g,i , crampp
max
g,i ]. For renewable genera-

tors, ∆pg,i ∈ [−pg,i, pg,i − pg,i].
2) Startup/shutdown ao, ac. The startup/shutdown actions

are set to be one-hot vectors, which means no more than
one generator can be started or shut down within one
decision step. The dimensions of ao, ac are |G|+1, where
the last dimension indicates doing nothing (no shutdown
or startup). Renewable generators are assumed to always
be in service. The illegal startup/shutdown action will be
masked out by the startable/closable indexes provided in
states.

Reward. Operational constraints, such as nodal voltage, line
current, and reactive power limits, are all ranged constraints,
limiting the variables within feasible conditions. These con-
straints are presented in the form of reward functions. The total
reward is the sum of the reward parts defined by operational
objectives and constraints. Further design details are provided
in Appendix V-A.

r = λ1rrenewable + λ2rcost︸ ︷︷ ︸
objectives

+λ3roverflow + λ4rreactive + λ5rvoltage︸ ︷︷ ︸
constraints

(3)
State Transition. Despite power flow simulations, we simu-

late realistic operational rules within state transitions. The en-
vironment has different counters to manage these operational
rules. When these events are triggered, the counter will be set
to a value and start counting down. Once the counter reduces
to 0, the action space will change or the reconnection will be
automatically conducted. To be specific, if a generator is just
shut down, a counter will be set to N (N varies according to
the capacity). Within the following N steps, the action space of
this closed generator is set to {0}, hence preventing restarting
this generator. Transmission lines would be disconnected if
exceeding overflow limits. All disconnected lines would be
reconnected automatically after maintenance steps.

C. Model-based RL for power scheduling
GridZero is the first attempt to apply DNNs and MCTS

in power scheduling tasks [19]. Similar to GridZero, GZ-
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I has two functions, prediction f(s) → p, v, and dynamics
g(s, a)→ s′, r. The policy p employs a Gaussian distribution
pN and two categorial distributions po, pc to sample contin-
uous adjustments of power setpoints ap and discrete actions
on thermal generator status ao, ac, due to high-dimensional
continuous action space and the huge number of unit combi-
nations. Sampled actions are set as action candidates of each
node in MCTS as Samped MuZero [20].

In MCTS, the agent selects actions via the UCB formula,
which is defined as

a = argmax
a∼p

UCB score︷ ︸︸ ︷
Q(s, a) + β̂(s, a)︸ ︷︷ ︸

uniform prior

√∑
b N(s, b)

1 +N(s, a)
(4)

where Q(s, a) is the action-value of transition (s, a). β̂ is
a uniform distribution since the preferences of policies are
reflected in distributions in the action sampling setting [20].
N(s, a) indicates the number of taking action a at state s, and
N(s, b) refers to visit counts of sibling nodes.

As demonstrated in Figure 2(A) and (B), the agent dives to
a leaf node via the path with the highest UCB scores, then
expands new leaves and updates the values along the search
path. This process is repeated to grow a search tree as shown
in Figure 2(B).

The after-search root visit count distribution π and sampled
actions a are set as the training target of policy function
p. The reward prediction r is supervised by environmental
rewards u. The value prediction v is supervised by the N -step
bootstrapped target z. The dynamics function is supervised by
self-consistency as EfficientZero [21]. GridZero loss can be
defined as follows

lbase =

K∑
k=0

[ l(uk, rk)︸ ︷︷ ︸
reward

+ l(zk, vk)︸ ︷︷ ︸
value

+ l(πk, pk, ak)︸ ︷︷ ︸
policy

+ l(sk, ŝk)︸ ︷︷ ︸
dynamics

−H(pk)︸ ︷︷ ︸
entropy

]
(5)

where z =
∑N=5

i=0 γiui + γ5v̂(s5) refers to the target value.
H(pk) is the entropy of the policy function, used for encour-
aging exploration. The policy loss is defined as

l(π, p, a) =− π⊤ · log pN (ap)

− (π · ao)⊤ · LogSoftmax(po)

− (π · ac)⊤ · LogSoftmax(pc)

(6)

III. PROPOSED EFFICIENT IMITATION AND STABLE
FINE-TUNING

This section first discusses how to incorporate the traditional
optimizer to asynchronously reanalyze the post-scheduled tra-
jectories. We then establish an end-to-end framework that
combines behavior cloning (imitation) with online fine-tuning.
We introduce the mixed loss function design, and formulate a
guided tree search mechanism.

A. Expert experience collection through asynchronous reanal-
ysis

Different from holding a fixed demonstration buffer as
conventional RLfD algorithms, this work creates a continuous
expert data flow by employing the optimizer to produce
expert actions for the RL-collected trajectories. Our method
allows cold-start, which means starting training without initial
expert demonstrations. We construct the optimizer through
the combination of OPF solvers and UC solvers. For the
optimal power flow problem, we choose the common interior
point solver (IPS), and consider AC (considering voltage and
reactive power constraints) and DC (linearized model for
acceleration) settings [22]. In context of future applications
in large networks, we investigate the influences on the perfor-
mance of taking optimal (AC-OPF) and suboptimal (DC-OPF)
demonstrations in Section IV-C.

The UC problem is solved as the common mixed inte-
ger programming (MIP) modeling. However, the MIP prob-
lem is computationally intensive, making it expensive for
asynchronous demonstration generation. This work takes an
alternative heuristic method modified from PyPower duopf
function [23], as demonstrated in Algorithm 1.

Algorithm 1 Heuristic Unit Commitment (HUC, Modified
from duopf )
Require:

Total load Lt+i, maximum total renewable generation
pt+i
g,r , i ∈ [0, 10], ap ∈ R|G|, ao, ac ∈ {0, 1}|G|+1

1: while ptg > Lt+1 do
2: Find the unit with the lowest shutdown fee i
3: ac[i] = 1,
4: end while
5: while ptg < Lt+10 − (pt+10

g,r − ptg,r) do
6: Find the unit with the lowest startup fee i
7: ao[i] = 1, break
8: end while
9: for g in ready-to-start generators do

10: if OPF(G ∪ g) < OPF(G) then
11: ao[g] = 1, G ← G ∪ g, break
12: end if
13: end for
14: for g in closable generators do
15: if OPF(G \ g) < OPF(G) then
16: ac[g] = 1, G ← G \ g, break
17: end if
18: end for
19: ap = OPF(G)
20: return ap, ao, ac;

The Heuristic Unit Commitment (HUC) only considers
the balancing of total load and total generation, without
considering network constraints. Hence its decisions are much
faster, but the obtained solutions are suboptimal. The core
ideas are as follows. If the maximum power is lower than the
future 10-step load consumption, one ready-to-start generator
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Algorithm 2 GridZero-Imitation (GZ-I)
Require:

Training Steps N , traditional optimizer HUC, initial
parameter θ0

1: Start self-play workers to interact with env and collect
trajectories {(st, at, rt, st+1)}.

2: Start expert workers to relabel expert actions (st, a∗t ) using
HUC optimizer.

3: Start batch workers to sample transitions from the replay
buffer and make learning targets.

4: for i = 1, · · · , N do
5: θi ← θi−1

6: Get training batches from batch workers and calculate
loss l via Equation 8.

7: θi ← θi +∇l(θi)
8: if reach update interval then
9: update θi to self-play workers and batch workers.

10: end if
11: end for
12: return θN ;

is forced to be started. For the minimum power exceeding
future load consumption, HUC takes similar actions that close
one generator. In case of total load remains within the range of
minimum power to maximum power, HUC executes a heuristic
search within all closable and ready-to-start generators to
find a minimum operating cost. This is implemented by
enumeration that turning on or off the generators one by one
and performing OPF calculations. Although HUC results are
suboptimal to MIP results, our approach can further fine-tune
towards optimal solutions with the guidance of environmental
rewards.

The constructed optimizer continuously samples post tra-
jectories, reanalyzes each state transition with expert actions
st → a∗t , and sends reanalyzed trajectories to the replay buffer.

B. Efficient imitation and stable RL fine-tuning combined with
Monte Carlo Tree Search

How to train policy with the aid of demonstrations?
Given the reanalyzed expert demonstrations, a natural idea
is to train the RL agent with the aid of expert policies.
Essentially, the demonstration data can serve as a regulator
so that the RL policy will not deviate far from the expert
policy. Mathematically, this regulator can be defined as a
regularization loss:

l = lbase + lbc (7)

where lbase is the GridZero’s loss. lbc indicates the behav-
ior cloning regularization loss. Different from most previous
RLfD works that share a single policy head in behavior cloning
and RL fine-tuning, we design a separate expert policy head
p̄ for decoupling gradients of different objectives. As Figure 2
demonstrates, the expert policy is supervised by the reanalyzed

expert action a∗. The lbc loss is defined as maximizing the
likelihood of demonstration actions and the expert policy:

lbc =

K∑
k=0

lbc(p̄k, a
∗
k) (8)

where a∗ is the concatenation of power setpoints adjustments
a∗p, startup one-hot vector a∗o, and shutdown one-hot vector
a∗c , which is the same as the RL action a. In the same way
as the RL policy p, the expert policy p̄ consists of a Gaussian
policy p̄N , a startup categorial policy p̄o, and a shutdown
categorial policy p̄c. Hence the lbc can be further formulated
in mathematics as:

lbc(p̄, a
∗) =− log p̄N (a∗p)

− a∗o
⊤ · LogSoftmax(p̄o)

− a∗c
⊤ · LogSoftmax(p̄c)

(9)

Overall, the expert policy is trained as a supervised learning
task. In the following, we demonstrate how the expert policy
guides the RL policy.

How to use the expert policy to guide RL policy and
stablize fine-tuning? As mentioned in Section II-C, training
targets of the RL policy come from the root visit count
distributions of the MCTS process. Therefore, the expert
policy is supposed to be incorporated into the search process,
and have impacts on the final visit count distribution target π.

Specifically, action candidates at each node are sampled
from both the RL policy and the expert policy, as demonstrated
in Figure 2. The proportion is set as 4 : 1 in our experiments.
In this way, the UCB formula will choose expert actions with
higher probabilities if the RL policy deviates significantly from
the expert policy. It thus changes the final RL policy target
because the expert actions have more visit counts. This forms
a guided search mechanism that allows expert experience
to be effectively transferred into RL policies. Compared to
the commonly used ’single network-multi loss’ and teacher-
student network momentum updating methods, our method is
an explicit transferring with better interpretability.

Meanwhile, the demonstrations used are not theoretically
optimal due to computation speed limitations. Therefore, the
agent still needs the environmental reward to provide further
training signals for RL fine-tuning. The search process will
lean towards RL actions if the RL policy is better than the
expert policy. At this point, the agent will trade off between
RL fine-tuning and BC regularization.

IV. EVALUATION

We end up this paper with experiments demonstrating the
effectiveness of our proposed approach. The first is our evalu-
ation setup and the results of our efficient learning framework
compared to baselines. We then investigate the influences of
different quality of demonstrations. Finally, this work briefly
demonstrates the scenarios containing topology changes.
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A. Environment and Evaluation

Experimental Setup. A real provincial network is deployed
to evaluate our results. The grid has 126 buses, 185 power
lines, and 54 generators (17 renewables), resulting in 54-
dimensional continuous control and 254 possible unit com-
mitments. Our test grid uses the same parameters as the real
grid, it is reasonable to expect our capability to be maintained
in real-world tasks.

Different from some previous works using the same opera-
tional sections as the training and test datasets, this work uses
two-year data as separate datasets, which specify the load and
renewable generation data every 5 minutes. Each scenario is a
one-day power scheduling task, including 288 decision steps.
During training, the environment can randomly start from any
section of the training set. It starts from the specified sections
while testing.

The thermal generators have ramping ratios of 0.05, while
renewable generators do not. The start-close minimal interval
is set as 40 decision steps. The ready-to-start generator can be
restarted in 10 decision steps after receiving the restart com-
mand. Transmission lines would be disconnected if entering
soft overflow for 6 steps, and get immediately disconnected if
entering hard overflow. The soft overflow and hard overflow
limits are set as 1.0 and 1.25 times of maximum line loading
current. The disconnected line will be recovered automatically
after 16 maintenance steps.

Our Method and Baselines. To study the effectiveness
of our method, the ACOPF+UC is employed as the base-
line of physics-based optimization, implemented by PyPower
[23] and Gurobi [24] respectively. The UC model considers
network constraints in problem formulation. We also set the
simple behavior cloning (BC) as one of the baseline. The
most related DDPGfD algorithm is set as an RLfD baseline
which shares the same setting of mixing imitation and RL
fine-tuning but with a model-free RL backbone [17]. Finally,
we use GridZero (pure RL) to demonstrate our method can
further stabilize the RL fine-tuning.

Fig. 3. Histograms of renewable and load power distributions.

B. Efficient imitation and stable RL finetuning

We present results compared with ground-truth
ACOPF+UC, pure behavior cloning (BC), and an RLfD
baseline DDPGfD. We also compare GridZero to demonstrate
that our mixed training and guided search can stabilize RL
fine-tuning.

Fig. 4. Training curves of DDPGfD, Behavior Cloning (BC), GridZero-
ACOPF and GridZero-DCOPF. The proportion of reanalyzed transitions and
self-play transitions is set to 1 : 10.

Compared with ACOPF+UC and BC. As demonstrated in

TABLE I
TEST STATISTICS OF ACOPF+UC AND GridZero-ACOPF (10 SEEDS

AVERAGE).

BC DDPGfD ACOPF+UC GZ-I

Tepisode(s) 19.2 20.9 8557.3 43.2
Episodic Rewards 278.3 299.7 649.4 628.3
|Vbus| violation(%) 0.9 0.8 0.3 0.5
Q violation(%) 14.4 16.1 6.2 6.5

Pbalanced violation(%) 0.0 0.0 0.0 0.0
Line soft overflow(%) 11.2 10.8 6.5 6.9
Line hard overflow(%) 0.0 0.0 0.0 0.0

Operating cost(K $) 50356 48785 38565 40932
Renewable consumption(%) 61 64 97 93

N-1 tolerance rate(%) 89 87 95 96

Figure 4, the ground-truth expert using mixed integer program-
ming and optimal power flow solver can achieve an average
score of 649.4 in all test scenarios. Our proposed RLfD
framework GridZero-imitation can achieve an average score
of 628.3 with HUC and ACOPF demonstrations. However,
the BC method only has a much lower average score. This is
mainly due to the distribution deviation between the training
set and the test set as shown in Figure 3. Behavior Cloning
(BC) is sensitive to such distribution shifts which cause policy
collapses while testing.

Compared to DDPGfD. We take DDPGfD as the RLfD
baseline. Our proposed method outperforms DDPGfD with the
same environmental steps and demonstrations. This indicates
the benefits brought by model-based planning. DDPGfD em-
ploys a single actor-network and estimates policy gradients
both from the estimated Q-value with high variances and the
BC loss. Conversely, we employ four decoupled supervised
trainings of reward, value, RL policy, and expert policy
functions. The advantage of decoupled training is that each
network has only one supervised signal and is not affected
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by other loss functions. We incorporate the four well-trained
networks within an explicit planning process and produce a
distilled search policy. Such decoupled supervised learning
and explicit unified search are the essential characteristics
that distinguish our method from others. This also makes our
method outperform DDPGfD as shown in Figure 4.

C. Different qualities of demonstrations
ACOPF vs. DCOPF. We investigate the influences of

demonstrations with different qualities. In large grids, the
solving process of ACOPF demonstrations could be extremely
time-consuming or even without feasible solutions. Model
linearization is an acceptable trade-off between performance
and computation speed. In this case, we study if downgraded
demonstrations will affect the fine-tuning performance. As
demonstrated in Figure 4, the differences in qualities of
demonstrations didn’t affect the final fine-tuning performance
despite slightly slower convergence at the beginning. This
indicates the robustness of our algorithm to different demon-
strations, which is critical for applicability to larger grids.

D. Topology changes
N-1. The potential component failures that threaten the

safe operations of power grids, like line outages, can change
the operational topology. Such failures change the power
flow and invalidate the pre-calculated scheduling solutions.
The previous works propose that topology changes would
affect general learning-based methods, leading to performance
drops [25]. We demonstrate such a performance drop can
be avoided by adding topology information (including line
current magnitudes and directions, etc.) into observations and
randomly attacking the agent by disconnecting one line with a
certain probability while collecting data. As shown in Figure
5, an line outage lasted for 16 decision steps, and the agent
successfully ran to the reconnection. However, some outages
caused cascading failures. As shown in Table I, there is still
a 4% probability that the agent failed to deal with N-1. In
future work, we will focus on reducing the probability of such
occurrences.

V. CONCLUSION

In this paper, we study how to combine physics-based op-
timization methods with advanced data-driven RL. We aim to
improve the performance of RL policy and alleviate the affects
of computing speed bottlenecks of optimization on decision-
making. By using decoupled training and explicit forward
search, we create a framework that exploits the respective
advantages of optimization and RL. Our method has the ability
to be extended to more tasks, especially in scenarios where
optimization is slow but requiring fast decision-making.

We further provide a realistic test case, which suggests that
this effective Reinforcement Learning from Demonstrations
technique has the potential to be leveraged in real-world
applications. We also demonstrate that our agent can withstand
the topology changes to a certain extent. However, deliberate
attacks against weak links and their defenses need further
discussions in future adversarial training works.
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APPENDIX

A. Reward design details

The weight coefficients are λ1 = 2, λ2 = 4, λ3 = 1, λ4 =
2, λ5 = 1 in practice. The following are more details about
each component.

Renewable consumption. More renewable energy con-
sumption corresponds to a higher reward.

rrenewable =

∑
i pi∑

i pmax
i

, i ∈ renewable units

where pi represents the power output of generator i, pmax
i

indicates maximal power generation capability of renewable
generator i. The closer pi and pmax

i are, the higher the
renewable consumption reward.

Operating cost. Operating costs of thermal generators are
quadratic functions of output power, and additional costs
are incurred for the startup/shutdowns. Operating costs of
renewable sources are considered to be negligible.

rcost = −
∑

i ci,2p2i + ci,1pi + ci,0 + I(si, s−i )con-off,i

Z

where ci,2, ci,1 and ci,0 are the second order, first order,
and constant coefficients of the operation cost of generator
i, respectively. The coefficients of renewable units are much
lower than that of thermal units. pi represents the power output
of generator i. si represents the on-off status of generator i,
and the s−i is the status 1-step advance. con-off,i is the startup
and shutdown costs of generator i. I(si, s−i ) is an indicative
function that turns to be 1 if si ̸= s−i , otherwise 0. Z is the
normalization factor set as 105 in experiments.

Line overflow. The current load rate is equal to the ratio of
the transmission current to the maximum transmission current.
Maintaining a reasonable load level is necessary to prevent line
congestion and outages.

roverflow = 1−
∑

i min(ρi, 1)

nline

where ρi indicates the current load rate of line i. nline repre-
sents the line number.

Reactive power. The reactive power output capacities of
the generators are constrained. Exceeding the limits can sig-
nificantly increase operational costs.

rreactive = exp

(
−
∑
i

[
max(qi − qi, 0)

qi − qi
+

max(qi − qi, 0)

qi − qi

])
−1

where qi is the reactive power of generator i, and qi, qi are
the upper bound and the lower bound of generator i. There
would be a penalty if any generator violates its reactive power
constraint.

Bus voltage. To regulate the node voltage magnitudes
within specified ranges, we design the bus voltage reward
similar to the reactive power reward.

rvoltage = exp

(
−
∑
i

[
max(vi − vi, 0)

vi − vi
+

max(vi − vi, 0)
vi − vi

])
−1

where vi is the voltage magnitude of bus i, and vi, vi are the
upper bound and the lower bound of voltage magnitude of
bus i. There would be a penalty if any bus violates its voltage
magnitude constraint.

B. Hyper-parameters

TABLE II
HYPER-PARAMETERS FOR GRIDZERO-IMITATION

Parameter Setting

Max frames per episode 288
Discount factor 0.997
Minibatch size 256
Optimizer SGD
Optimizer: learning rate 0.01
Optimizer: momentum 0.9
Optimizer: weight decay (c) 1e-4
Max gradient norm 10
Priority exponent (α) 0.6
Priority correction (β) 0.4
Training steps 100k
Self-play network updating inerval 100
Target network interval 1000
Unroll steps (lunroll) 5
TD steps (k) 5
Number of simulations in MCTS (Nsim) 50
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